CS409m: Introduction to Cryptography

Lecture 12 (24/Sep/25)

Instructor; Chethan Kamath



m Mid-sem cribs session 12:%2-14.55 Ma\daj(w[Scp)
m View your answer sheet 14:00-16:00 on Friday (26/Sep) in CC305

m Submit cribs online by Menrday—{29/Sep, 23:59)
Wenesday o] Ock

m Assignment 4 (ungraded) will be released on Friday (26/Sep)
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m We learnt: secure communication in the shared-key setting CCN-SKE
m Primitives encountered: PRG, PRF, MAC (.PH—SKE"(\
m Computational hardness assumptions: subset-sum problem MAC
PRF
m Key conceptual takeaways: PRG
2 Comutmoon iy I s S

m What design choices lead to vulnerability?

m Key tools: security reduction, hybrid argument
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-Today: how does one establish a shared key in the first place?
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Plan for Today's Lecture

m Task: key exchange A
m Threat model: computational secrecy against eavesdroppers D@ﬂ

s M1

%;\}é@ Key Exchange %N@g{} Basic Group Theory

©Mike Gonzalez/Wikipedia
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m The setting: Alice and Bob want to establish a shared key
k € {0,1}" in presence of an eavesdropper Eve

m Alice and Bob execute a protocol, at the end of which they will have
established a key

m Key Exchange IRL: HTTPs, TLS, SSH

wikipedia.org
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Syntax of Key Exchange Protocol

Definition 1 (Key Exchange Protocol)

A (two-party) key-exchange protocol I is a probabilistic protocol
between two parties A and B at the end of which party A locally outputs
ka € {0,1}" and party B locally outputs kg € {0,1}".

kron Scnpt ¢ o
o

T a
—5— [*°
| —
& Bob
—_—
Be
m Correctness of key exchange: for every n € N
[ka = kg] =1

(ka.ks, T)<—n(1r-

5/16



m Intuitively, what is the security requirement?
m Key k should be "“hidden” given only transcript T of the protocol
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How to Define Security?

m Intuitively, what is the security requirement?
m Key k should be “hidden” given only transcript T of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol I is computationally secret against
eavesdroppers if for every PPT eavesdropper Eve the following is
negligible.

(S = P E .k = - P E ) =
(n) (k,r)<—|;‘|(1")[ ve(7,%) = 0] (k,r)<—';1(1")[ ve(T, ) O]I
r<{0,1}" .,
e\ LAO(HI/ *Random word

Exercise 1

How can an unbounded eavesdropper Eve break secrecy?
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Task: key exchange |

Threat model: against

Key Exchange ﬁ%ﬁ} Basic Group Theory

©Mike Gonzalez/ikipedia
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Basic Group Theory

@What are some properties of ({0,1}",®) we have exploited?
m Closure of @, self-inverse (k @ k = 0"), associativity?

Definition 3 (Group axioms) ¥a,,0,64:0,09,¢4

A group G is a set G with a binary operation - satisfying: 1) closure 2)j
associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it(additionally satisfies 5) commutativity. v

JeyVgeh: 14 41=9
¥, 00560 (0%) 09, (329)

\]tqgg"; cj.q“zl

Ng, 9, €9 1419,<8,9,

7/16



Basic Group Theory

@What are some properties of ({0,1}",®) we have exploited?
m Closure of @, self-inverse (k @ k = 0"), associativity?

Definition 3 (Group axioms)

A group G is a set G with a binary operation - satisfying: 1) closure 2)
associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.

ol ] ]

& Abstracts properties of integers Z := ({---,—1,0,1,---},+)
Exercise 2

m Show that Z := ({---,-1,0,1,---},+) is a group

m What is the group corresponding to 2 x 2 x 2 Rubik’s cube?
m Describe the set G and the operation -
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Basic Group Theory

Definition 4 (Group terminology)
A Order of the group, |G|.

m We're interested in groups of finite order
A Can be represented on a digital computer LI Times

A Order of an element g: smallest £ € N such that g :=g-....g =1
A Cyclic group: there exists a “generator” g € G with order ¢ = |G|
m Thatis {g' =g,g%....8" . g"' =1} =G

2 i PL
0=A40 l—:ﬁl’m ‘S’g<0’)'-=q( \=9L<? g_'ﬁq.h

B S 2 b
l‘ (L;> E/ = ﬂi—l d‘l _‘(y
NMoa i F9)=0 a9

m “Isomorphism"” between (Z;, +) and G

@ 1s ({0,1}",@) cyclic? What is the maximum order of any element?
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Addition modulo prime p
0=p7 'Y

+\
+1

Multiplication modulo Qrime p
A — g modp
=9 m;?[) -4 -g\.
% L .
B Nomap ¥
1, pp 909;=9,9(modp)
& order p- & cyclic

P-t 7
7+ \ . +|
%P, \l‘ Q(_*} 1 (/
{o--P}  9#g;=gg[modp)
 order p & cydlic
Multiplication modulo N = pgq
. Pnrms 2
@)
¢
(\/' =P, 9:9;=9; gx.(mOdN)
Py, 2,
- pa-tt

o order(p-)a-) & nd cyclic

Elliptic curves modulo prime p
Ct) » i ‘ -
(;, G/‘wrve FD\I*S qt’dﬁ)‘\

olukions to ~/
grdehax® (md p)

0

& |pvi-order[<2Tp @ cydlic
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Let's focus on Zj, = ({0,...,p — 1},)

m Modular multiplication g1 - g2 mod p
m Reduces to integer operations. How?
Compute g := g1 - g2 (over Z) using integer multiplication
Reduce g mod p using integer division
@Computable in O(n) time, where n := ||p||
m Modular exponentiation: g2 mod p
m Reduces to modular multiplication. How?‘
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Let's focus on Zj, = ({0,...,p — 1},")

m Modular multiplication g1 - g» mod p
m Reduces to integer operations. How?
Compute g := g1 - g2 (over Z) using integer multiplication
Reduce g mod p using integer division
@Computable in O(n) time, where n := ||p||
m Modular exponentiation: g2 mod p
m Reduces to modular multiplication. How?‘
m Square and multiply (and reduce) algorithm
@Computable in O(n?) time
m Modular inverse: g~! mod p

m Claim: reduces to finding a, b € Z such that ag + bp = 1. Why?‘
m Can use Extended Euclidean Algorithm to compute a and b
(DComputabIe in O(n?) time

N, L/, L
? In general: group operation, exponentiation and inverse efficient
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What is Hard to Compute Over Cyclic Groups?

Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

. _Odex
m Input: 7 > genecdtor

(G, 4, g) sampled by a group sampler S(1")
h:= g? for a + Z;

m Solution: a

Assumption 1 (DLog assumption in G w.rto S...)

. holds if solving the DLog problem in G w.r.to S is hard for all PPT
inverters Inv. That is, for all Inv, the following is negligible:

)= o S (BH8) ) =
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Addition modulo prime p
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Eg: (Zy,p,8) « S(1")

Sample random prime p such that ||p|| = n

El Sample random integer p such that ||p|| ~ n

Test whether p prime using (say) Miller-Rabin text

Randomised test, runs in roughly é(n”) time for negligible error

Sample a random generator

B Sample a random g € {0,...,p — 1}

Test whether g is a generator

(D Efficient if factorisation of p — 1 known

m Note: sample random generator = sample random group
element via “isomorphism”
b2
T AN N O . o S N
f @y . - f G :
f-t L y e _ {- :
|

J -
Q‘-"é" \ 5.1(90«);:___0’ @,éq‘ (y

11/16



Diffie-Hellman Key-Exchange Protocol

Bob

Protocol 1

Alice—Bob: Send ((G, ¥, g), ha := g2), where (G, £, g) + S(1")
and a + Zy

Alice<—Bob: Send hg := gP for b+ Z;
Alice outputsm Bob outputsfkg :

m Correctness of key generation:

b ayp
k}\: h?),:- (qb)q: (ja :(q) = U =0g
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m What does Eve see? The transcript is (ha := g2, hg := g°)
.What if DLog problem is easy over G?

Then Eve can invert ha to get a and compute k = hg
@:s DLog problem being hard sufficient?

No, what if Eve can compute g?° given g? and gb?
m This is the “computational Diffie-Hellman™ (CDH) problem

‘Is CDH problem being hard sufficient?

AWhat if Eve can distinguish g2 from random group elements?
m There exist such groups!
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When is it Secret Against Eavesdroppers?...

Assumption 2 (Decisional DH (DDH) assumption in G w.rto S--+)

-+ holds if for all PPT distinguishers D, the following is negligible:

Pr D aﬂ bw L = 0 D — O
(G‘@,g%s(ln)[ (6%.6".8 ) =0] - <,,{g) e [ (g%.8°.8") =0
a,b1Z, Real world ab 12, HaMom oo’

Theorem 1

Diffie-Hellman key-exchange is computationally secret against
eavesdroppers under the DDH assumption in G w.r.to S.

Proof

Secrecy requirement is same as the assumption!

Exercise 6

But | did slightly cheat! Figure out where.
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m What if Eve is an active adversary?
m Recall that active Eve can intercept/tamper messages
AThere is a person-in-the-middle attack!

m Pretends to be Alice to Bob and Bob to Alice
m Eve sets up two separate key exchanges with Alice and Bob

/\ Insecure against active adversary
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@™, Vi) &9

m Key exchange against eavesdroppers @ — @
m Modelled key exchange setting and security | =

m Diffie-Hellman key exchange protocol .ot 2 $4®):<g 129"79‘199;
m Based security on the DDH assumption @» > gt @ :

Moo 1Y S@)me a9

74 Takeaway: structure vs hardness

Structure is useful for protocol design and proofs
Also makes it susceptible to algorithms hacder

PRG
m Next lecture: public-key encryption (PKE) f
m Syntax and security /_/*‘»_QW_E,__\_’_,.\_/
m Relationship with key-exchange v P
m Elgamal PKE fey exchang DOR

ruchured
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@9 References

Basic group theory and algorithmic number theory can be found in
[KL14, Appendix B]. MIT 6875 handout is also an excellent
resource.

More motivation about groups can be found in Keith Conrad'’s
expository paper on the topic
[KL14, Chapter 11] for more details on key exchange

A Read the seminal paper by Diffie and Hellman [DH76] for a
description of the namesake key-exchange. In general this paper is a
very insightful read.

Boneh's survey [Bon98] is an excellent source on the DDH problem.
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