

CS409m: Introduction to Cryptography

Lecture 12 (24/Sep/25)

Instructor: Chethan Kamath

Announcements

- Mid-sem cribs session
- 12:30-14:30 Monday(19/Sep)
- View your answer sheet 14:00 16:00 on Friday (26/Sep) in CC305
- Submit cribs online by Monday (29/Sep, 23:59)

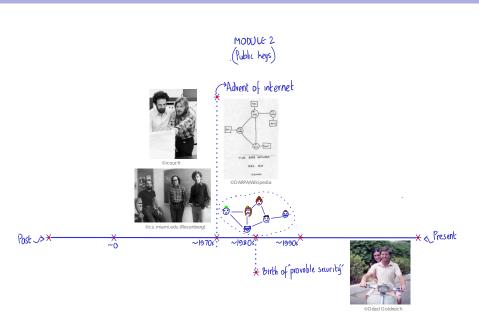
Assignment 4 (ungraded) will be released on Friday (26/Sep)

Recall from Last Module

- We learnt: secure communication in the shared-key setting
- Primitives encountered: PRG, PRF, MAC
- Computational hardness assumptions: subset-sum problem
- Key conceptual takeaways:
 - Threat modelling
 - Computational security

 - What design choices lead to vulnerability?
- Key tools: security reduction, hybrid argument

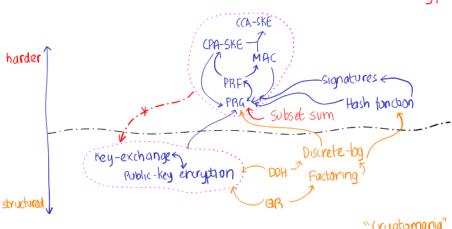
This Module



This Module...

Minicrypt to Cryptomania

"MINICRY PL"



Today: how does one establish a shared key in the first place?

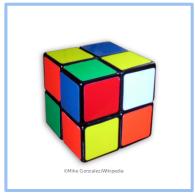
Plan for Today's Lecture

■ Task: key exchange

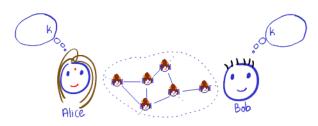
■ Threat model: computational secrecy against eavesdroppers

Key Exchange

Basic Group Theory



How To Establish a Shared Key in the First Place?

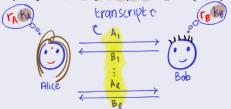


- The setting: Alice and Bob want to establish a shared key $k \in \{0,1\}^n$ in presence of an eavesdropper Eve
- Alice and Bob execute a protocol, at the end of which they will have established a key
- Key Exchange IRL: HTTPs, TLS, SSH

Syntax of Key Exchange Protocol

Definition 1 (Key Exchange Protocol)

A (two-party) key-exchange protocol Π is a probabilistic protocol between two parties A and B at the end of which party A locally outputs $k_A \in \{0,1\}^n$ and party B locally outputs $k_B \in \{0,1\}^n$.

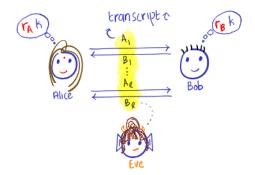


Correctness of key exchange: for every $n \in \mathbb{N}$

$$\Pr_{(k_A,k_B,\tau)\leftarrow\Pi(1")}[k_A=k_B]=1$$

How to Define Security?

- Intuitively, what is the security requirement?
 - Key k should be "hidden" given only transcript τ of the protocol



How to Define Security?

- Intuitively, what is the security requirement?
 - Key k should be "hidden" given only transcript τ of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol Π is computationally secret against eavesdroppers if for every PPT eavesdropper Eve the following is negligible.

$$\delta(n) := \left| \Pr_{\substack{(k, \tau) \leftarrow \Pi(1^n) \\ \text{\downarrow re-{0,1}}^n$}} [\mathsf{Eve}(\tau, k) = 0] - \Pr_{\substack{(k, \tau) \leftarrow \Pi(1^n) \\ \text{$r \leftarrow \{0,1\}}^n$}} [\mathsf{Eve}(\tau, k) = 0] \right|$$

$$\mathsf{Rankom} \ \mathsf{work}^n$$

Exercise 1

How can an unbounded eavesdropper Eve break secrecy?

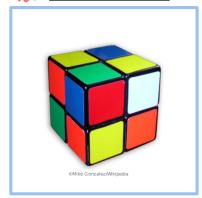
Plan for Today's Lecture

■ Task: key exchange

■ Threat model: computational secrecy against eavesdroppers

Key Exchange

Basic Group Theory



Basic Group Theory

- **?** What are some properties of $(\{0,1\}^n, \oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

A group $\mathbb G$ is a set $\mathcal G$ with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

 \mathbb{G} Abelian if it/additionally satisfies 5) commutativity.

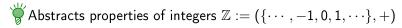
Basic Group Theory

- ? What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?
 - Closure of \oplus , self-inverse ($k \oplus k = 0^n$), associativity?

Definition 3 (Group axioms)

A group $\mathbb G$ is a set $\mathcal G$ with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

G Abelian if it additionally satisfies 5) commutativity.



Exercise 2

- Show that $\mathbb{Z}:=(\{\cdots,-1,0,1,\cdots\},+)$ is a group
- What is the group corresponding to $2 \times 2 \times 2$ Rubik's cube?
 - lacksquare Describe the set ${\mathcal G}$ and the operation \cdot

Basic Group Theory

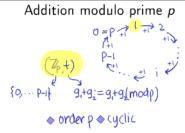
Definition 4 (Group terminology)

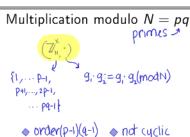
- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of finite order
 - Can be represented on a digital computer
- \triangle Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^{\ell} := g \cdot \ldots \cdot g = 1$
- \triangle Cyclic group: there exists a "generator" $g \in \mathcal{G}$ with order $\ell = |\mathcal{G}|$
 - That is $\{g^1 = g, g^2, \dots, g^{\ell-1}, g^{\ell} = 1\} = \mathcal{G}$

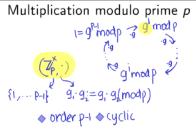
$$0 = 1 + \frac{1}{1 + i} + \frac{2}{1 + i} + \frac{1}{1 + i} + \frac{1}{1$$

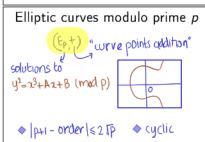
- "Isomorphism" between $(\mathbb{Z}_{\ell},+)$ and \mathbb{G}
- $(0,1)^n,\oplus$ cyclic? What is the maximum order of any element?

Some Examples of (Finite) Groups









What is Easy to Compute Over Cyclic Groups?

Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How?
 - **1** Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - Computable in $\tilde{O}(n)$ time, where $n := \|p\|$
- Modular exponentiation: g^a mod p
 - Reduces to modular multiplication. How? <?</p>

What is Easy to Compute Over Cyclic Groups?

Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How?
 - **1** Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - Computable in $\tilde{O}(n)$ time, where $n:=\|p\|$
- Modular exponentiation: g^a mod p
 - Reduces to modular multiplication. How?
 - Square and multiply (and reduce) algorithm
 - Computable in $\tilde{O}(n^2)$ time
- Modular inverse: $g^{-1} \mod p$
 - Claim: reduces to finding $a, b \in \mathbb{Z}$ such that ag + bp = 1. Why? $\ref{position}$
 - Can use Extended Euclidean Algorithm to compute a and b(1) Computable in $\tilde{O}(n^2)$ time

What is Hard to Compute Over Cyclic Groups?

E Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

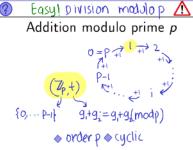
- Input: $\nearrow g_{enerator}$ (G, ℓ , g) sampled by a group sampler S(1")
 $h := g^a$ for $a \leftarrow \mathbb{Z}_\ell$
- Solution: a

Assumption 1 (DLog assumption in G w.r.to S...)

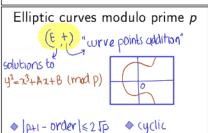
... holds if solving the DLog problem in \mathbb{G} w.r.to S is hard for all PPT inverters Inv. That is, for all Inv, the following is negligible:

$$\delta(n) := \Pr_{\substack{(\mathbb{G}, \ell, g) \leftarrow \mathsf{S}(1^n) \\ \mathsf{a} \leftarrow \mathbb{Z}_{\ell}}} [\mathsf{Inv}((\mathbb{Z}/\mathbb{Z}_g), g^{\mathsf{a}}) = \mathsf{a}]$$

What is Hard to Compute Over Cyclic Groups?...



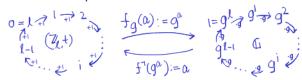
Multiplication modulo N = pqprimes \nearrow $\{1, \dots p_{-1}, \qquad g_i \cdot g_i = g_i \cdot g_i \pmod{N} \}$ $p_1, \dots, p_{-1}, \qquad \dots p_{-1}$

◆ order(p-1)(q-1) ◆(not)cyclic Hard in its cyclic subgroup 

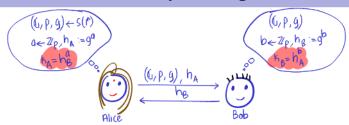
Efficient Group Samplers Exist

E.g.:
$$(\mathbb{Z}_p^*, p, g) \leftarrow \mathsf{S}(1^n)$$

- **I** Sample random prime p such that $||p|| \approx n$
 - **1** Sample random integer p such that $||p|| \approx n$
 - **Test** whether p prime using (say) Miller-Rabin text (1) Randomised test, runs in roughly $\tilde{O}(n^3)$ time for negligible error
- 2 Sample a random generator
 - **Sample** a random $g \in \{0, \ldots, p-1\}$
 - 2 Test whether g is a generator
 - (1) Efficient if factorisation of p-1 known
- Note: sample random generator ⇒ sample random group element via "isomorphism"



Diffie-Hellman Key-Exchange Protocol

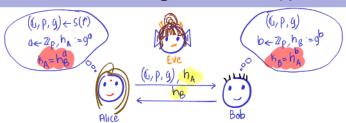


Protocol 1

- AliceoBob: Send $((\mathbb{G},\ell,g),h_A:=g^a)$, where $(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)$ and $a\leftarrow \mathbb{Z}_\ell$
- **2** Alice←Bob: Send $h_B := g^b$ for $b \leftarrow \mathbb{Z}_\ell$
- Alice outputs $k_A := (h_B)^a$; Bob outputs $k_B := (h_A)^b$
- Correctness of key generation:

$$k_{A} = h_{B}^{a} = (g^{b})^{q} = g^{ab} = (g^{a})^{b} = h_{A}^{b} = k_{B}$$

When is it Secret Against Eavesdroppers?



- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- What if DLog problem is easy over G?
 - \bigwedge Then Eve can invert h_A to get a and compute $k = h_B^a$
- ②Is DLog problem being hard sufficient?
 - \triangle No, what if Eve can compute g^{ab} given g^a and g^b ?
 - This is the "computational Diffie-Hellman" (CDH) problem
- ② Is CDH problem being hard sufficient?
 - \triangle What if Eve can distinguish g^{ab} from random group elements?
 - There exist such groups!

When is it Secret Against Eavesdroppers?...

Assumption 2 (Decisional DH (DDH) assumption in \mathbb{G} w.r.to S \cdots)

· · · holds if for all PPT distinguishers D, the following is negligible:

$$\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow\mathsf{S}(1^n)\\a,b\leftarrow\mathbb{Z}_\ell}} [\mathsf{D}(g^a,g^b,g^{ab})=0] - \Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow\mathsf{S}(1^n)\\a,b,r\leftarrow\mathbb{Z}_\ell}} [\mathsf{D}(g^a,g^b,g^r)=0] - \Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow\mathsf{S}(1^n)\\a,b,r\leftarrow\mathbb{Z}_\ell}} [\mathsf{D}(g^a,g^b,g^r)=0]$$

Theorem 1

Diffie-Hellman key-exchange is computationally secret against eavesdroppers under the DDH assumption in \mathbb{G} w.r.to \mathbb{S} .

Proof.

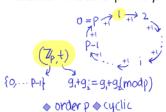
Secrecy requirement is same as the assumption!

Exercise 6

But I did slightly cheat! Figure out where.

Where is **DDH** Assumption Known to Hold?





Multiplication modulo N = pq

$$\{1, \dots, p_{-1}, g_1, g_2 = g_1, g_2 \pmod{N}\}$$

 $\{1, \dots, p_{-1}, g_1, g_2 = g_1, g_2 \pmod{N}\}$
 $\{1, \dots, p_{-1}, g_1, g_2 = g_1, g_2 \pmod{N}\}$

♦ order(p-1)(q-1)
♦ (not) tyclic

Hard in its cyclic subgroup

@ Easy! See Assignment 4 A

Multiplication modulo prime p

Elliptic curves modulo prime p

solutions to
$$y^2=x^3+Az+B \pmod{p}$$

Believed hard

What About Secrecy Against Active Eve?



- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

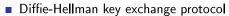
⚠There is a person-in-the-middle attack!

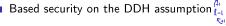
- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob

↑ Insecure against active adversary

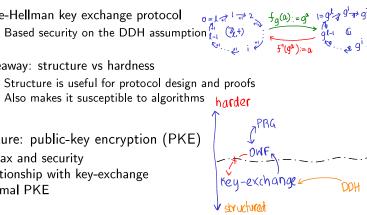
Recap/Next Lecture

- Key exchange against eavesdroppers
 - Modelled key exchange setting and security





- 🖈 Takeaway: structure vs hardness
 - Structure is useful for protocol design and proofs
 - Also makes it susceptible to algorithms
- Next lecture: public-key encryption (PKE)
 - Syntax and security
 - Relationship with key-exchange
 - Elgamal PKE



- Basic group theory and algorithmic number theory can be found in [KL14, Appendix B]. MIT 6875 handout is also an excellent resource.
- 2 More motivation about groups can be found in Keith Conrad's expository paper on the topic
- [KL14, Chapter 11] for more details on key exchange
- Read the seminal paper by Diffie and Hellman [DH76] for a description of the namesake key-exchange. In general this paper is a very insightful read.
- **5** Boneh's survey [Bon98] is an excellent source on the DDH problem.

The decision diffie-hellman problem.

In *ANTS*, volume 1423 of *Lecture Notes in Computer Science*, pages 48–63. Springer, 1998.

Whitfield Diffie and Martin E. Hellman.

New directions in cryptography.

IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.