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CS409m: Introduction to Cryptography

Lecture 13 (26/Sep/25)

Instructor;: Chethan Kamath



Announcements

A Changes to mid-sem crib session
m View your answer sheet 12:30-14:30 on Monday (29/Sep) in CC305
m Submit cribs online by Wednesday (01/Oct, 23:59)

/\ Bounty on Problem 7.3:

m Come up with a simple construction of MAC from weak PRF
m Construction provided in solution set is too complex!

"BON
APPETIT!.

Eat what makes you happy,
with people who make you happy

800+ 220M+
s Covres ‘ zomato e

zomatoliR

XXX XXXXXKXXXX

m Quiz 2 on 08/Oct, 08:25-09:25
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Recall from Last Lecture

m Task: key exchange
m Threat model: computational secrecy against eavesdroppers

Key Exchange Basic Group Theory

Definition 3 (Lecture 11)

Qtrqnsmgt(‘ An Abelian group G is a set G
A
pe.

&

with a binary op. - satisfying:
= B Closure
Bob Associativity
Existence of identity

Existence of inverse

Commutativity
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" Recall from Last Lecture

m Task: key exchange
m Threat model: computational secrecy against eavesdroppers

Key Exchange Basic Group Theory

Definition 3 (Lecture 11)

Qtrqnsaf\gtt\ An Abelian group G is a set G
A
pe.

&

with a binary op. - satisfying:
= Closure
Bob Associativity
Existence of identity

Existence of inverse

Commutativity

ol

%) Motivation: need richer algebraic structure to construct key exchange
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A Cyclic group: there exists a “generator” g € G with order ¢ = |G|
m Thatis {g' =g,8%....8" 1, g' =1} =g
| — DY G
0-1 Thy 3®=q A N

7 | -
f-t @J{) w T e |<y
e ¥ T D

m “Isomorphism” between (Z,, +) and G
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A\ Cyclic group: there exists a “generator" g € G with order ¢ = |G|

m Thatis {g' =g,8%...,8 1, g' =1} =¢
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m Examples:
Addition modulo prime p Multiplication modulo prime p
@ order p & yclic & order p- @ ydlic
—pp 2 — g modp
0 J( * +1 \= qmod}) g gx
C? -l') p-t +1: 7
P, RO
;G e i @2 W ¥
{0 bt 9#9;=9r9(modp) f\/...pA,} g 9;=9; 9{modp)

2/16



A\ Cyclic group: there exists a “generator" g € G with order ¢ = |G|
m Thatis {g' =g,8%...,8 1, g' =1} =¢

I A = 4?9—99
* Lo /Q) 3 =N
(, Do - M G

K“-._é\/ | ' @)= N g.‘ 4

m “Isomorphism” between (Z,, +) and G

m Examples:

Addition modulo prime p Multiplication modulo prime p

@ order p & yclic & order p- @ ydlic
ol onod p
T Sy 797

C? -l') p-t +1: 7
P R +)
{0 bt 9#9;=9r9(modp) f\/...pA,} g g4:=g, g(mod\))

m Easy to compute: Group operation, exponentiation, inverse etc.

2/16



Recall from Last Lecture...

A\ Cyclic group: there exists a “generator" g € G with order ¢ = |G|
m Thatis {g' =g,8%...,8 1, g' =1} =¢
o122 GG - YR
7 T HE ) X

@ %) : = 314 G :
) ) 4 : . n.S -q
Q‘é/ &/ an)‘;o/ @é/d 4
m “Isomorphism” between (Z,, +) and G
m Examples:
/\ Addition modulo prime p Multiplication modulo prime p
@ order p <>(g( & order p- @ Cyclic
)/7 [ iy /7 g mal
T AR
7 ’%) P—i\ . w; 7 ;
{0 bt 9*9 9*9@\0&\&?) f,... pq} 3 9;=4, g(modp)

m Easy to compute: Group operation, exponentiation, inverse etc.
m What is possibly hard to compute? Discrete logarithm (DLP)
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m Task: public-key encryption
m Threat model: IND-CPA
{}\i’%@ Diffie-Hellman Key Exchange {ﬁéﬁ}Public—Key Encryption

kran Sk e Oo

@::"U

_____>Bob

Alice

© cs.miami.edu (Rosenberg) ded Goldreich _©Alexander Kiink/Wikipedi
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Plan for Today's Lecture

m Task: public-key encryption
m Threat model: IND-CPA
{m}éﬁj Diffie-Hellman Key Exchange {”Ngﬁ}Public—Key Encryption

Lran SCeve ¢ s
Qﬁ Q(C:\‘ e aoo ° @

e f_:jcj
I [

Ae

ﬁ Underlying hard problem: Decisional Diffie-Hellman (DDH)}%
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m Task: public-key encryption
m Threat model: IND-CPA
{y\jg@ Diffie-Hellman Key Exchange Public-Key Encryption

krc:n s e ?O

o
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Underlying hard problem: Decisional Diffie-Hellman (DDH)
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Diffie-Hellman Key-Exchange Protocol

Al Bob

Protocol 1
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Diffie-Hellman Key-Exchange Protocol
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()67/[ /hl\ .:qa
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:

Al Bob
Protocol 1
Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy
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Diffie-Hellman Key-Exchange Protocol
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Alice

Protocol 1

Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy
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Diffie-Hellman Key-Exchange Protocol

()

(}67/[ /hl\ .:qa

Alice

Protocol 1

Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

Alice<—Bob: Send hg := g for b + 7,
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Diffie-Hellman Key-Exchange Protocol

(G0, 5)<clr) Ge,9)

(}67/[ /hl\ .:qa

szhé .
\ \(\% -

Al Bob

Protocol 1

Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

Alice<—Bob: Send hg := g for b + 7,

()
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Protocol 1

Diffie-Hellman Key-Exchange Protocol

(G0, 5)<cr) Ge,9)

(}67/4 /hl\':qa
((J/(/ 9){ hA k
\ \(\& ‘ - )

. [}
N
Al Bob

()

Alice—Bob: Send ((G, 4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

Alice«Bob: Send hg := g? for b + 7,
Alice outputs ks :={(hg)2; Bob outputs kg :={(ha)®

m Correctness of key generation (by Exercise 4, Lecture 12):

NI N

3/16



(G0, 8) <)

aiﬁ,mﬁy

Al Bob

m What does Eve see? The transcript is (ha := g2, hg := g?)
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Al Bob

m What does Eve see? The transcript is (ha := g2, hg := g?)
.What if DLog problem is easy over G?
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Bob

m What does Eve see? The transcript is (ha 1= g2, hg = g?)
@ What if DLog problem is easy over G?
Then Eve can invert hy to get a and compute k = h,
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m What does Eve see? The transcript is (ha 1= g2, hg = g?)
@ What if DLog problem is easy over G?
Then Eve can invert hy to get a and compute k = h,

.Is DLog problem being hard sufficient?
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Alice BOb

m What does Eve see? The transcript is (ha 1= g2, hg = g?)
.What if DLog problem is easy over G?

Then Eve can invert hy to get a and compute k = h,
.Is DLog problem being hard sufficient?

/\No, what if Eve can compute g2 given g2 and gb?
m This is the “computational Diffie-Hellman™ (CDH) problem
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When is it Secret Against Eavesdroppers?

((\,( ) [j) < 5" @ (@/( , 9)
G<fZQ,hA':9a i
b= h@

e Bob

m What does Eve see? The transcript is (ha := g2, hg :== gb)
@What if DLog problem is easy over G?

Then Eve can invert hy to get a and compute k = h,
@)|s DLog problem being hard sufficient?

/\No, what if Eve can compute g2 given g2 and gb?
m This is the “computational Diffie-Hellman™ (CDH) problem

@)s CDH problem being hard sufficient?
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((\,( ) [j) <&
a< 2y, =9
b= h@

Alice

m What does Eve see? The transcript is (ha := g2, hg :== gb)
@What if DLog problem is easy over G?

Then Eve can invert hy to get a and compute k = h,
@)|s DLog problem being hard sufficient?

/\No, what if Eve can compute g2 given g2 and gb?
m This is the “computational Diffie-Hellman™ (CDH) problem

@)s CDH problem being hard sufficient?

AWhat if Eve can distinguish g2 from random group elements?
m There exist such groups!
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When is it Secret Against Eavesdroppers?...

Assumption 1 (Decisional DH (DDH) assumption in G w.r.to S---)

- holds if for all PPT distinguishers D, the following is negligible:

P D(g? b aby _ 0 D _ 0
L gL ({,g 87)=0= ., b 5(1n[ (&% 8" &") =10
a,b<7, ﬂ()a\ L,)O(U a,b,r<7, Handom VJ’D(U
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When is it Secret Against Eavesdroppers?...

Assumption 1 (Decisional DH (DDH) assumption in G w.r.to S---)

- holds if for all PPT distinguishers D, the following is negligible:

P D(g? b aby _ 0] — D _ 0
L gL ({,g 87)=0= ., b 5(1n[ (&% 8" &") =10
a,b<7, ﬂ()a\ L,)O(U a,b,r<7, ﬁandom RJD(U

Theorem 1

Diffie-Hellman key-exchange is computationally secret against
eavesdroppers under the DDH assumption in G w.r.to S.

Proof

Secrecy requirement is same as the assumption!
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When is it Secret Against Eavesdroppers?...

Assumption 1 (Decisional DH (DDH) assumption in G w.r.to S---)

- holds if for all PPT distinguishers D, the following is negligible:

P D(g? b aby _ 0] — D _ 0
L gL ({,g 87)=0= ., b 5(1n[ (&% 8" &") =10
a,b<7, ﬂ()a\ mor‘d a,b,r<7, ﬁandom Wh

Theorem 1

Diffie-Hellman key-exchange is computationally secret against
eavesdroppers under the DDH assumption in G w.r.to S.

Proof

Secrecy requirement is same as the assumption!

Exercise 1
But | did slightly cheat! Figure out where.
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m What if Eve is an active adversary?
m Recall that active Eve can intercept/tamper messages
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m What if Eve is an active adversary?
m Recall that active Eve can intercept/tamper messages
AThere is a person-in-the-middle attack!

m Pretends to be Alice to Bob and Bob to Alice
m Eve sets up two separate key exchanges with Alice and Bob
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m What if Eve is an active adversary?
m Recall that active Eve can intercept/tamper messages
AThere is a person-in-the-middle attack!

m Pretends to be Alice to Bob and Bob to Alice
m Eve sets up two separate key exchanges with Alice and Bob

Alnsecure against active adversary
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/M Easy) Singe Plog 1§ casy

/N Casyl See hesian.4
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What Else Can be Built from DDH?

o \\V\s{r\\Crﬂ ?P)
ONSKE

cm e~

hacder ‘ MD:C
) > (06 Pagh {unchon

e N Subsejc Su .

— \‘p,, ————————————— —_ e —
- tey- ew\ange
Puble- ke3 &N«j\i\oﬂ

Exercise 2
Construct a PRG from DDH
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Task: public-key encryption

Threat model: IND-CPA

Diffie-Hellman Key Exchange %’ﬁgﬁ}Public—Key Encryption
PN

YN

‘ .—L[
. s

e -

~ .4

2%
&L :
i © cs.miami.edu (Rosenberg) ©0 ded Goldreich Shlexander Kink/Wikipedid

Underlying hard problem: Decisional Diffie-Hellman (DDH)
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m Recall the SKE setting: Alice and Bob share k € {0,1}" and want
to securely communicate in presence of eavesdropper Eve
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The Setting: Shared (Private) Keys vs Public Keys

m Recall the SKE setting: Alice and Bob share k € {0,1}" and want
to securely communicate in presence of eavesdropper Eve
m The public-key setting:
Alice announces a public key pk; known to everyone!

Bob wants to use pk to secretly send a message to Alice in presence
of Eve
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m Recall the SKE setting: Alice and Bob share k € {0,1}" and want
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The Setting: Shared (Private) Keys vs Public Keys <

oSy o'
aoo

m Recall the SKE setting: Alice and Bob share k € {0,1}" and want
to securely communicate in presence of eavesdropper Eve
m The public-key setting:
Alice announces a public key pk; known to everyone!
Bob wants to use pk to secretly send a message to Alice in presence
of Eve
Alice decrypts using her secret key sk (related to pk)

-+ Advantage: scalability! It suffices to have one “key” per user
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THE POSSIBILITY OF SECURE NON-SECRET DIGITAL ENCRYPTION
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m PKE IRL: PGP, hybrid encryption
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Syntax of Public-Key Encryption

Definition 4 (Public-Key Encryption (PKE))

A PKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

Bob
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Syntax of Public-Key Encryption

Definition 4 (Public-Key Encryption (PKE))

A PKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

/ (P\“/S\*)(~ Gen (D
\pelng) P G OQ@

C
S f[eo o
Bob

m Correctness of decryption: for every n € N, message m € M,,

Pr [Dec(sk,c) =m] =1
(pk,sk)«Gen(1"),c<Enc(pk,m)
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Syntax of Public-Key Encryption

Definition 4 (Public-Key Encryption (PKE))

A PKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

/ (P\“/S\*)(~ Gen (D
\pelng) P G OQ@

C
S f[eo o
Bob

m Correctness of decryption: for every n € N, message m € M,,

Pr [Dec(sk,c) =m] =1
(pk,sk)«Gen(1"),c<Enc(pk,m)

@How can an unbounded eavesdropper Eve break PKE?
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m Recall CPA-secrecy requirement in the SKE setting

k< Gea(™")
C e—Enc(“;"‘)

CL<~ E V\C(_k /MJL)
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m Recall CPA-secrecy requirement in the SKE setting
@ What is different in the PKE setting?

|
ke Gea(1") IO P
. C( f@

(eEnc(l,m)  v---y | ..... S
--------------- naul
be o) iChllogey( ) 27
Ce Encle, M) |
o
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m Recall CPA-secrecy requirement in the SKE setting
@ What is different in the PKE setting?

m The public key known to Eve = encryption oracle “redundant”

k< Gea(™")

C<~€V\LQ< Mb)
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How to Define Security?

m Recall CPA-secrecy requirement in the SKE setting
@ What is different in the PKE setting?

m The public key known to Eve = encryption oracle “redundant”
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Task: public-key encryption

Threat model: IND-CPA

Diffie-Hellman Key Exchange %’ﬁgﬁ}Public—Key Encryption
PN

YN

o

.
M
P>

i

Underlying hard problem: Decisional Diffie-Hellman (DDH)
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ElGamal PKE over Group G

©Alexander Klink/Wikipedia

Pseudocode 3 (ElGamal PKE over group G = (G, -))

m Key generation Gen(1"):
Sample group (G, ¢, g) + S(1")
Sample random index a < Z,
Output (pk := g2, sk := a)
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Exercise 3 (Converse to Claim 1: two-message KE <~ CPA-PKE)

If PKE exists then so does two-message key exchange. oL
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Recap/Next Lecture

m Diffie-Hellman key exchange (DHKE)

m Based on DDH assumption in cyclic groups
m Algebraic structure exploited: (g?)? = g2 = (g?)?

m Public-key encryption (PKE) Ka«ﬁ g
m Equivalent to two-round KE ‘\ P : hl:b

m Derived Elgamal PKE from DHKE

m Next lecture:

m Factoring and related hardness assumptions

RSA group: multiplicative group modulo N =pqg
Goldwasser-Micali encryption
RSA encryption '

gaumang@
Pu‘om keg ewyaon
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