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CS409m: Introduction to Cryptography

Lecture 14 (01/Oct/25)

Instructor;: Chethan Kamath



m Quiz 2 moved to 10/Oct (next Friday), 08:25-09:25, in CC103
/\ Bounty on Problem 7.3 still on!

m Come up with a simple construction of MAC from weak PRF
m Construction provided in solution set is too complex!
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m Tasks: key exchange (KEx) and public-key encryption (PKE)
m 2-Round KEx < PKE
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The Cryptographic Landscape
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Group-based hard problems: DLP, CDH and DDH
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Plan for Today's Lecture...

m Task: public-key encryption (PKE)
m Threat model: IND-CPA

RYLA

{0 Goldwasser-Micali PKE {11\ RSA PKE
NN

©cs.miami.edu (Rosenberg)

Odcd Goldreich
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Plan for Today's Lecture

m Task: public-key encryption (PKE)
m Threat model: IND-CPA
£100; Goldwasser-Micali PKE {10 RSA PKE

L bt i
~ | 3
i d ©cs.miami.edu (Rosenberg)

©0ded Goldreich

¥4 Algebraic setting: multiplication modulo semiprime (RSA group)%
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m |ask: public-key encryption (PKE)
m Threat model: IND-CPA
Goldwasser-Micali PKE RSA PKE

¥4 Algebraic setting: multiplication modulo semiprime (RSA group)*
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m Problem: Given a integer N, find 1 < p < N that divides N
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Integer Factoring

m Problem: Given a integer N, find 1 < p < N that divides N
@Can you think of an algorithm that takes v/N steps? ®

Pseudocode 1

NaiveFactor(N):
Forl1<i< [\/NW

m If /2 = N then output i
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m Problem: Given a integer N, find 1 < p < N that divides N
@Can you think of an algorithm that takes v/N steps? ®

Pseudocode 1

NaiveFactor(/N):
Forl1<i< [\/NW
m If /2 = N then output i

Output “Prime!”
m Let's try to sample hard-to-factor integer N

@ what about a random integer N7 N even with probability 1/2 A
@ What about a random odd integer N?
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m Problem: Given a integer N, find 1 < p < N that divides N
@Can you think of an algorithm that takes v/N steps? ®

Pseudocode 1

NaiveFactor(/N):
Forl1<i< [\/NW
m If /2 = N then output i

Output “Prime!”

m Let's try to sample hard-to-factor integer N
@ what about a random integer N7 N even with probability 1/2 A
@ What about a random odd integer N? N divisible by 3 with
probability 1/3&
@ What seems hardest?
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Integer Factoring

m Problem: Given a integer N, find 1 < p < N that divides N
@Can you think of an algorithm that takes v/N steps? ®

Pseudocode 1

NaiveFactor(/N):
Forl1<i< [\/NW
m If /2 = N then output i

Output “Prime!”

m Let's try to sample hard-to-factor integer N
@ what about a random integer N7 N even with probability 1/2 A
@ What about a random odd integer N? N divisible by 3 with
probability 1/3&
What seems hardest? Semiprime, i.e., N product of two primes
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Integer Factoring...

Pseudocode 2

Semiprime sampler S(17):
m Sample two random primes p and g of length ~ n
m Output N := pg
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Integer Factoring...

Pseudocode 2

Semiprime sampler S(17):
m Sample two random primes p and g of length ~ n
m Output N := pg

Assumption 1 (Factoring assumption w.r.to S...)

... holds if for all PPT A, the following is negligible:

= Pr JA(N) divides N
d(n) N<—S|£1")[ (N) divides N]
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Integer Factoring...

Pseudocode 2

Semiprime sampler S(17):
m Sample two random primes p and g of length ~ n
m Output N := pg

Assumption 1 (Factoring assumption w.r.to S...)

... holds if for all PPT A, the following is negligible:

= Pr [A(N) divides N
d(n) N<—S|£1")[ (N) divides N]

1
@Best known algorithm (Number-Field Sieve) requires ~ 2/VI* time
AAssumption does not hold against quantum adversaries!
m Shor’s algorithm factors in polynomial time on quantum computer
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%% WIKIPEDIA
"ow The Free Encyclopedia

Q 00 Donate Create account Login eee

RSA Factoring Challenge %A 6 languages v
Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18,
199111 to encourage research into computational number theory and the practical difficulty of
factoring large integers and cracking RSA keys used in cryptography. They published a list of
semiprimes (numbers with exactly two prime factors) known as the RSA numbers, with a cash
prize for the successful factorization of some of them. The smallest of them, a 100-decimal digit
number called RSA-100 was factored by April 1, 1991. Many of the bigger numbers have still not
been factored and are expected to remain unfactored for quite some time, however advances in
quantum computers make this prediction uncertain due to Shor's algorithm.

Ao 5 F. Boudot, P. Gaudry, A.
el b q n a 4
RSA250P1 | 250 829 Guillevic, N. Heninger, E. Thomé

2020[16]
and P. Zimmermann
RSA260 260 862
RSA270 270 895
RSA896 270 896 US$75,000!]
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RSA Factoring Challenge %A 6 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18,
199111 to encourage research into computational number theory and the practical difficulty of
factoring large integers and cracking RSA keys used in cryptography. They published a list of
semiprimes (numbers with exactly two prime factors) known as the RSA numbers, with a cash
prize for the successful factorization of some of them. The smallest of them, a 100-decimal digit
number called RSA-100 was factored by April 1, 1991. Many of the bigger numbers have still not
been factored and are expected to remain unfactored for quite some time, however advances in
quantum computers make this prediction uncertain due to Shor's algorithm.

Ao 5 F. Boudot, P. Gaudry, A.
eb 28, o ) 2
RSA250P1 | 250 829 20201161 Guillevic, N. Heninger, E. Thomé
and P. Zimmermann

RSA260 260 862
RSA270 270 895
RSA896 270 896 US$75,000!]
RSA617 617 2048
RSA2048 617 2048 US$200,000(]
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m |ask: public-key encryption (PKE)
m Threat model: IND-CPA
Goldwasser-Micali PKE RSA PKE

¥4 Algebraic setting: multiplication modulo semiprime (RSA group)*
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Multiplication mod prime p
g mod p
\

=9 mw\p

{1, P—} 9 9;=9; G(modp)
@ order o @ qydlic
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Multiplication mod prime p
mod p
=g moo\p 29 >
p—} 9 9;=9, (MOdP)
@ order o @ qydlic

Multiplication mod semiprime);‘)q
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J
@  93=99(mdV)

Prwnts
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Multiplication mod prime p

Multiplication mod semiprime);‘)q

=g mOO\p 29 mo%? " prmes
@Sq Q
@ ) ™ g Y s 9-9;=4; 4(modN)
f\,---Pfl} 9 9;=9, 9(modp) e
o orderpd @ ydic §

@ What are the elements in Z;q? Every 0 < a < N that is invertible

6/13



Multiplication mod prime p Multiplication mod semiprime);‘)q
=9 mOO\p 29 mo%? @* ) prmes
i
@ ) gmudP / 2 9-9:=9, 4 (modN)
\10,
f\/---pfn} 9 9:=9, 9{mody) e
o orderpd @ ydic §

@ What are the elements in Z;q? Every 0 < a < N that is invertible

m 0 is not invertible
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Multiplication mod prime p

Multiplication mod semiprimej;‘)q

= q modP - g m@ @;q .) P(‘\ff\tﬁ
Lj
@ ) ™ g / 9-9:=9, 4 (modN)
f\/---Pft} ‘J 9;=9, 9{modp) Zm\ig,’m... D
@ order o @ qydlic

@ What are the elements in Z;q? Every 0 < a < N that is invertible

m 0 is not invertible

m p and its multiples are not invertible (proof on whiteboard)
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Multiplication Modulo Semiprime N = pg

Multiplication mod prime p
o — ¢ modp
SR

* - e
<3%/:> Rg‘ghwmdP 2/
¢
§,bip - 903:=9;9{modp)
o order 91 @ qydic

Multiplication mod semiprime)pq

. Pﬁfﬂtﬁ
(%)
J S
9-9;=4 4 modN)
Zm\io,
P 2P . (*’)F,
1,29 . (P9

@ What are the elements in Z;q? Every 0 < a < N that is invertible

m 0 is not invertible

m p and its multiples are not invertible (proof on whiteboard)
m g and its multiples are not invertible
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Multiplication Modulo Semiprime N = pg

Multiplication mod prime p
o — ¢ modp
SR

* - e
<3%/:> Rg‘ghwmdP 2/
¢

§,bip - 903:=9;9{modp)

o order 91 @ qydic

Multiplication mod semiprime)pq

. Pﬁfﬂtﬁ
(%)
J S
9-9;=4 4 modN)
Zg\R0,
P 2P . (*’)F

9,9 .. ()9

@ What are the elements in Z;q? Every 0 < a < N that is invertible

m 0 is not invertible

m p and its multiples are not invertible (proof on whiteboard)
m g and its multiples are not invertible

m What is the order of the qu?

pg—1—(¢-1)—(p—-1)=pg—p—qg—1

=(p—1)(g—1) = ¢(N)
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m 2-1 map = Half the elements Z;(+) C Z have square roots
O/A m Is it possible to test if y € 77 (+)?
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m 2-1 map = Half the elements Z;(+) C Z have square roots

O/A m Is it possible to test if y € 7 (+)7? Yes:
Compute discrete log x of y w.r.to some generator g
DOHA Output “square” if x is even
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m 2-1 map = Half the elements 7 (+) C Z have square roots

O/A m Is it possible to test if y € 7 (+)7? Yes:
Compute discrete log x of y w.r.to some generator g
DOHA Output “square’ if x is even

m Is it possible to efficiently test if y € 7.7 (+)?
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m 2-1 map = Half the elements 7 (+) C Z have square roots
O/A m Is it possible to test if y € 7 (+)7? Yes:
Compute discrete log x of y w.r.to some generator g
DOHA Output “square’ if x is even
m Is it possible to efficiently test if y € 7,5 (+)? Yes:
Compute sign y(P~1)/2 ¢ {41} (Legendre symbol)
O HA Output “square” if sign is +1
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Squaring Map x — x? mod p

KNS s R B R B
!

X_ p-L="L|pA="

:

m 2-1 map = Half the elements 7 (+) C Z have square roots

O/A m Is it possible to test if y € 7 (+)7? Yes:
Compute discrete log x of y w.r.to some generator g
DOHA Output “square’ if x is even

m Is it possible to efficiently test if y € 7 (+)? Yes:
Compute sign y(P~1)/2 ¢ {41} (Legendre symbol)
O HA Output “square” if sign is +1

Exercise 1 (Exercise 2, Assignment 4)

Show that DDH assumption doesn’t hold in (Z, )
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m Chinese Remaindering Theorem: Zy = Z; x Z; (on whiteboard)
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m Chinese Remaindering Theorem: Zy = Z; x Z; (on whiteboard)

m = 4-1 map = 1/4 of elements Z(+,+) C Zy have square roots

m Is it possible to test if y € Z(+,+)? Yes:
m Output “square” if y € ZJ(+) and y € Z;(+)
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Squaring Map x — x? mod pgq

Chinese Remaindering Theorem: Zy = 7Z; x Z; (on whiteboard)

= 4-1 map = 1/4 of elements Z(+, +) C Zj, have square roots
Is it possible to test if y € Zy(+,+)? Yes:
m Output “square” if y € ZJ(+) and y € Z;(+)
Is it possible to efficiently test if y € Zy,(+,+)? Unclear
m Can efficiently distinguish Zj(+, Jr)DU Zpy(—,—) from
Ziy (=, 4) U Zy(+,—): compute Jacobi symbol

8/13



Squaring Map x — x? mod pq...

Assumption 2 (Quadratic residuosity (QR) assumption w.r.to S...)

...holds if for all PPT distinguishers D, the following is negligible:
i(n) = D(N,y) = D(N,y)=0
(=], Br,) DOy =0 = e [D(N.y) =0
y<—Z (+,+) y%ZN( -)
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Squaring Map x — x? mod pq..

X
Z?:

Assumption 2 (Quadratic residuosity (QR) assumption w.r.to S...)

...holds if for all PPT distinguishers D, the following is negligible:

o(n) = D(N,y)=0 D(N,y)=0

(=], Br,) DOy =0 = e [D(N.y) =0
y<—Z (+,+) y%ZN( -)

Exercise 2

Show that QR assumption implies Factoring assumption

Show that computing square root mod N is equivalent to factoring
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Task: public-key encryption (PKE)
Threat model: IND-CPA

AL

{N%M Goldwasser-Micali PKE RSA PKE

NoN

izl B
©0ded Goldreich

Algebraic setting: multiplication modulo semiprime (RSA group)
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Q Key idea: encode message in the “sign”
m 0 Z5(+. +) and 1 25 (—. —)®
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Goldwasser-Micali Public-Key (Bit) Encryption

\\‘// 1 - - "
@ Key idea: encode message in the “sign
m 0 Zj5(+, ) and 1 Z3(—, )
m Exploit the fact that —1 € Zy(—, —)

Pseudocode 3 (Goldwasser-Micali PKE for M, := {0,1})

m Key generation Gen(1"):

Sample semiprime with factors (N, (p, q)) < S(17)
Output (pk := N, sk := (p, q))
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\\)// 1 - - "
& Key idea: encode message in the “sign
m 0 Z5(+, +) and T Z5(—, —)
m Exploit the fact that —1 € Zy(—, —)

Pseudocode 3 (Goldwasser-Micali PKE for M, := {0,1})

m Key generation Gen(1"):
Sample semiprime with factors (N, (p, q)) < S(1")
Output (pk := N, sk := (p, q))
m Encryption Enc(pk, m):
Sample random r «+ Zj
Output ¢ := (a}g”’ .62 mod N
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Goldwasser-Micali Public-Key (Bit) Encryption

(;5 Key idea: encode message in the “sign”
m 0 Z5(+, +) and T Z5(—, —)
m Exploit the fact that —1 € Zy(—, —)

Pseudocode 3 (Goldwasser-Micali PKE for M, := {0,1})

m Key generation Gen(1"):

Sample semiprime with factors (N, (p, q)) < S(1")

Output (pk := N, sk := (p, q))
m Encryption Enc(pk, m):

Sample random r «+ Zj

Output ¢ := (61 m .62 mod N
m Decryption Dec(sk,%: output

0 0 0

0 if c€Zy(+,+)=Z;(+) x Z5(+)
{1 otherwise A&/A
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Goldwasser-Micali Public-Key (Bit) Encryption

e

& Key idea: encode message in the “sign”
m 0 Zj5(+, ) and 1 Z3(—, )
m Exploit the fact that —1 € Zy(—, —)

Pseudocode 3 (Goldwasser-Micali PKE for M, := {0,1})

m Key generation Gen(1"):

Sample semiprime with factors (N, (p, q)) < S(1")

Output (pk := N, sk := (p, q))
m Encryption Enc(pk, m):

Sample random r «+ Zj

Output ¢ := (61 m .62 mod N
m Decryption Dec(sk,%: output

0 0 0

0 if c€Zy(+,+)=Z;(+) x Z5(+)
{1 otherwise A&/A

m Correctness of decryption: Since r'c Z: ), ¢ (:Z; @6 f m-o
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Goldwasser-Micali PKE is CPA-secret

Theorem 1 (QR — IND-CPA securityl)
Goldwasser-Micali PKE is CPA-secret under QR assumption.

Proof. 30 against QR < 3 against PKE.

o

QR Dushnqo\sher PRE adversary
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Goldwasser-Micali PKE is CPA-secret

Theorem 1 (QR — IND-CPA securityl)
Goldwasser-Micali PKE is CPA-secret under QR assumption.

Proof. 30 against QR < 3 against PKE.
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Goldwasser-Micali PKE is CPA-secret

Theorem 1 (QR — IND-CPA securityl)
Goldwasser-Micali PKE is CPA-secret under QR assumption.

Proof. 30 against QR < 3 against PKE.

<:::2 ‘ !ﬂiibi <:::2/G§\
7,01 o 7y (~ U — n \)

QR Dls%lnqo\Shef PKE adversary

10/13



Goldwasser-Micali PKE is CPA-secret

Theorem 1 (QR — IND-CPA securityl)
Goldwasser-Micali PKE is CPA-secret under QR assumption.

Proof. 30 against QR < 3 against PKE.

7/<f,wf7/<~ U*

Analysis QR Diskinguner PIRE aowefsarg
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Proof. 30 against QR < 3 against PKE.
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Goldwasser-Micali PKE is CPA-secret

Theorem 1 (QR — IND-CPA securityl)
Goldwasser-Micali PKE is CPA-secret under QR assumption.

Proof. 30 against QR < 3 against PKE.

R oy @
*uf)m/@ U* . &

Binalysis AR Dls‘clnqo\sher PRE ao\veaarﬁ
e (Ere(v,u)=0 - pr [Ere,w)=0]
| Py OL-2l 2 P CCDRICA I R XM& | |
9%%&0 %%%&J %%mﬂ) Y < Zy(-)
Adisriboted «)enbcal dtstmbuked denbially
’ b ne(ph, } b 6nc (P, )
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Goldwasser-Micali PKE is CPA-secret

Theorem 1 (QR — IND-CPA securityl)
Goldwasser-Micali PKE is CPA-secret under QR assumption.

Proof. 30 against QR < 3 against PKE.

R oy @
*uf)m/@ U* . &

Qv\o\gsm QR Dlshnqo\sher PIRE adve(sar9 ﬂnon/neglkg’\b\e
e (Eeny=0] - pr [Ere,y-=0]
| Py OL-2l 2 P CCDRICA I R XM& | |
9%%&0 %%%&J %%mﬂ) Y < Zy(-)
Adisriboted «)enbcal dtsttr)buked denbiaally
b Gne(pk, } b 6nc (P, ) B
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Task: public-key encryption (PKE)

Threat model: IND-CPA
Goldwasser-Micali PKE
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9. 3
. \
4 v

Algebraic setting: multiplication

{100 RSA PKE
el 'RSA PKE

©cs.miami.edu (Rosenberg)

modulo semiprime (RSA group)
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m Consider fiy ¢(x) := x mod N for 3 < e < ¢(N)
m fy . is a permutation if e is coprime to ¢(NV)
m Efficiently computable via square-and-multiply
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m Consider fiy ¢(x) := x mod N for 3 < e < ¢(N)
m fy . is a permutation if e is coprime to ¢(NV)
m Efficiently computable via square-and-multiply

m What about the inverse map f,\zi(x) .= x'/¢ mod N?
m Taking e-th root believed to be hard
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Powering Map x — x€ mod pq

m Consider fy ¢(x) := x® mod N for 3 < e < ¢(N)
m fy e is a permutation if e is coprime to ¢(N)
m Efficiently computable via square-and-multiply

m What about the inverse map f,\zi(x) .= x'/¢ mod N?
m Taking e-th root believed to be hard

Assumption 3 (RSA assumption w.r.to S...)

... holds if for all PPT A, the following is negligible:
[A(N, x€) = x]

o(n) := Pr
(N,(p,q))<-S(1")
e« [Lp(N)]
x<—[1,N]
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(Textbook) RSA PKE

ﬂgKey idea: apply the power map to encrypt
Pseudocode 4 (RSA PKE for M, := Zy))

m Key generation Gen(1"):
Sample semiprime with factors: (N, (p, g)) < S(1")
Sample e < [1,¢p(N)] such that ged(e, p(N)) =1
Compute d such that ed = 1 mod ¢(NV)
Output (pk := (N, e), sk := (N, d))
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m Encryption Enc(pk, m): Output ¢ := m® mod N
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(Textbook) RSA PKE

ﬂgKey idea: apply the power map to encrypt
Pseudocode 4 (RSA PKE for M, := Zy))

m Key generation Gen(1"):

Sample semiprime with factors: (N, (p, g)) < S(1")
Sample e < [1,¢p(N)] such that ged(e, p(N)) =1
Compute d such that ed = 1 mod ¢(NV)

Output (pk := (N, e), sk := (N, d))

m Encryption Enc(pk, m): Output ¢ := m® mod N
m Decryption Dec(sk, c): Output m := ¢¢ mod N
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(Textbook) RSA PKE

GgKey idea: apply the power map to encrypt
Pseudocode 4 (RSA PKE for M, := Zy))

m Key generation Gen(1"):

Sample semiprime with factors: (N, (p, g)) < S(1")
Sample e < [1,¢p(N)] such that ged(e, p(N)) =1
Compute d such that ed = 1 mod ¢(NV)

Output (pk := (N, e), sk := (N, d))

m Encryption Enc(pk, m): Output ¢ := m® mod N
m Decryption Dec(sk, c): Output m := ¢¢ mod N

m Correctness of decryption : Vm € Z : (m®)4 = m® = m mod N

Exercise 3

m Show that RSA PKE is not IND-CPA secure
m Show that RSA PKE is OW-CPA secure (see Assignment 4)
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m Group-based functions (easy) vs. their inverse (hard):
m Z,: exponentiation (x — g*) vs discrete-log
m Zp: squaring (x — x? mod pq) vs square root
m Zp: e-th power (x — x® mod pq) vs e-th root

m Built PKE/KEx based on these hard problems

[ | Takeaway: structure, structure, structure
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Recap/Next Lecture

m Group-based functions (easy) vs. their inverse (hard):
m Z,: exponentiation (x — g*) vs discrete-log
m Zpy: squaring (x — x? mod pq) vs square root
m Zp: e-th power (x — x® mod pq) vs e-th root

m Built PKE/KEx based on these hard problems

[ | Takeaway: structure, structure, structure

m Next Lecture(s): how to deal with active adversary?

m Digital signatures: public-key version of MAC
m How to construct digital signature
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