)

Yoo| Y| Y 20][I

30! Sll B 2 Bll

CS409m: Introduction to Cryptography

Lecture 15 (08/Oct/25)

Instructor: Chethan Kamath

m Tasks: Public-key encryption (PKE)
m Threat model: IND-CPA
Goldwasser-Micali PKE RSA PKE

e

©0ded Goldreich ot o5 enbeia)
Algebraic setting: multiplication modulo semiprime (RSA group)

N, ¢,4) <5(°
ed=1 med B
k= d

NO

1/14

COASKE . ey !

Lpa GhE —f

MD(C

P(’\G Pagh {onchon
e / Sobset sum .
SR A I S _
F‘"’“ﬂ’“d"m%e\/ 7777 \ fDLP"\ FACTOR

o bk mrg‘t\on FRLLN

""" RGH
vuchrek —

“Cry Pko e’

Hardness assumptions: integer factoring, QR and RSA

2/14

COASKE . ey !

Ga—sx«e —f

MRC

hacder 1‘ %/y‘\g/qmtu ras
PG Hadh foncaon

/.>lr' A Svbsek sum B
—_——— V'_ ______ — — = =TT T T = _
l«eg—e(c\r\ang« K E
2 ACTOR
o Pobhckey Wﬂm” @ o)
T RSk
dyucturek —
Sy Pko e’

Elliptic curves, lattices, isogenies, class groups...
2/14

m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

2/14

Plan for Today's Lecture...

m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

oML i P,,pr//,

%” é@DigitaI Signature One-Way Functlon%N@\\ﬁ

©Wikipedia

g

%

4
[

) ¥ e ©Lubos Houska

#% Proof technique: plug and pray 7

2/14

m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA
i L . _ .
{y\&dv} Digital Signature One-Way Function

Proof technique: plug and pray

2/14

m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

(aeser

3/14

m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

m/t & m(t >

(aeser Generu/

m Digital signature: public-key counterpart of MAC

3/14

m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

)y 9

(aeser

m Digital signature: public-key counterpart of MAC

3/14

m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

)y 9

(aeser

m Digital signature: public-key counterpart of MAC

3/14

m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

(aeser

m Digital signature: public-key counterpart of MAC

3/14

m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

(aeser

m Digital signature: public-key counterpart of MAC

3/14

Bob

3/14

Bob

3/14

I H ']

|
=

Bob

3/14

Il H ']

|
=

Bob

m Requirements:
Publicly verifiable
No one should be able to forge Bob's signature

3/14

m Requirements:

Publicly verifiable
No one should be able to forge Bob's signature

3/14

Digital (Analogues of Physical) Signatures...

How Google enforces boot integrity on
production machines 0 -

Measured boot process

Boot firmware

Hardware root of trust

m Requirements:

Publicly verifiable
No one should be able to forge Bob's signature

3/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

4/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

)
BOB
(SICNER)

4/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

B0
(SIGH ER)

4/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

B0
(SIGH ER)

4/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

B0
(SIGH ER)

4/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

B0
(SIGH ER)

4/14

Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the

following syntax:

0/1:=Ver (hon, O™

B0
(SIGH ER)

m Correctness of honest signing: for every n € N, message m € M,,

P Ver(pk =1]=1
(pk,sk)eGen(l")r,aeSign(sk,m)[er(p a2 m)]

4/14

<é Intuitively, what are the security requirements?

5/14

<é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new signature from
previously-seen signatures...

5/14

<é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new signature from
previously-seen signatures...
® ... on messages of its choice

5/14

<é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new signature from
previously-seen signatures...
® ... on messages of its choice
m Forged new signature can be on any message of Tam's choice

5/14

<é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new S|gnature from
previously-seen signatures... :
® ... on messages of its choice :
m Forged new signature can be on any message of Tam's ch0|ce

-l.‘EX|stent|a| Unforgeability Under Chosen-Message Attack /\

5/14

How to Define Security?

é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... :
® ... on messages of its choice
m Forged new signature can be on any message of Tam's chonce

»l‘.EX|stent|a| Unforgeability Under Chosen-Message Attack /i\
Definition 2 (EU-CMA)

A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary
Tam that makes at most g queries can break X as follows with
non-negligible probability.

ph 2t < 6en(i?)

() 9

B
((allenger)
5/14

How to Define Security?

é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... :
® ... on messages of its choice
m Forged new signature can be on any message of Tam's chonce

»l‘.EX|stent|a| Unforgeability Under Chosen-Message Attack /i\
Definition 2 (EU-CMA)

A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary
Tam that makes at most g queries can break X as follows with
non-negligible probability.

® gwm Pa

ph 2t < 6en(i?)

() 9

B
((allenger)
5/14

How to Define Security?

é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... :
® ... on messages of its choice
m Forged new signature can be on any message of Tam's chonce

»l‘.EX|stent|a| Unforgeability Under Chosen-Message Attack /i\
Definition 2 (EU-CMA)

A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary
Tam that makes at most g queries can break X as follows with
non-negligible probability. oo .

® gen Ph

ph 2t < 6en(i?)

() 9

B
((nallenger)
5/14

How to Define Security?

é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... :
® ... on messages of its choice
m Forged new signature can be on any message of Tam's chonce

»l‘.EX|stent|a| Unforgeability Under Chosen-Message Attack /i\
Definition 2 (EU-CMA)

A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary
Tam that makes at most g queries can break X as follows with
non-negligible probability.

® gen Ph

Bob
((nallenger)

5/14

How to Define Security?

é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... :
® ... on messages of its choice
m Forged new signature can be on any message of Tam's chonce

»l‘.EX|stent|a| Unforgeability Under Chosen-Message Attack /1\
Definition 2 (EU-CMA)
A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary

Tam that makes at most g queries can break X as follows with
non-negligible probability. .../

L 4 9’wm
* makes q queres o Sign (&,) oracle %
2

B
((nallenger)

5/14

How to Define Security?

é Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... :
® ... on messages of its choice
m Forged new signature can be on any message of Tam's chonce

»l‘.EX|stent|a| Unforgeability Under Chosen-Message Attack /i\
Definition 2 (EU-CMA)

A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary
Tam that makes at most g queries can break X as follows with
non-negligible probability.

® gen PA
o makes q quenes b Sign (¢) Orracle
& \nthe end OO’KP—YS (@) ¥ and
breaks 2 Y-
o Ver (hoie)= |
Bob
¢ VTE (a]: ((nallenger)

5/14

Y = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver’)
Truncate-then-sign: define ¥’ as
m Sign'(sk,m := my -~ my_ymy) < Sign(sk, my ---my_1)
m Ver'(pk,o, m) := Ver(pk,o,my ---my_1)

6/14

Y = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver’)
l\? Truncate-then-sign: define ¥’ as
m Sign'(sk,m := my -~ my_ymy) < Sign(sk, my ---my_1)
m Ver'(pk,o, m) := Ver(pk,o,my ---my_1)
Sign-then-truncate: define ¥’ as
m Sign’(sk,m) := 01+ 0s_1, where o1 -+ 0s_105 < Sign(sk, m)
m Ver'(pk,o’, m): accept if
m Ver(pk,o'||0,m) = 1 or Ver(pk,o'||1,m) =1

6/14

@ ¥’ EU-CMA Secure or Not?

Y = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver’)

i@ Truncate-then-sign: define X’ as
m Sign’(sk,m :=my ---my_1my) < Sign(sk,my -~ my_1)
m Ver'(pk,o, m) := Ver(pk,o,my ---my_1)

ﬁ Sign-then-truncate: define ¥’ as
m Sign'(sk,m) := 01 ---0s_1, where oy - - - 05_105 < Sign(sk, m)
m Ver'(pk,o’, m): accept if

m Ver(pk,o'||0,m) =1 or Ver(pk,d'||1,m) =1
Sign-then-append: define ¥’ as

m Sign'(sk, m) := 5|0, where o < Sign(sk, m)
m Ver'(pk,o||b, m) := Ver(pk, o, m)

6/14

@ ¥’ EU-CMA Secure or Not?

Y = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver’)

I@ Truncate-then-sign: define X’ as
m Sign’(sk,m :=my ---my_1my) < Sign(sk,my -~ my_1)
m Ver'(pk,o, m) := Ver(pk,o,my ---my_1)

ﬁ Sign-then-truncate: define ¥’ as
m Sign'(sk,m) := 01 ---0s_1, where oy - - - 05_105 < Sign(sk, m)
m Ver'(pk,o’, m): accept if

m Ver(pk,d'||0,m) =1 or Ver(pk,o'||1,m) =1

ﬁ Sign-then-append: define ¥’ as
m Sign'(sk, m) := 5|0, where o < Sign(sk, m)
m Ver'(pk,o||b, m) := Ver(pk, o, m)

Exercise 1

Prove by reduction that the X's in 1 and 3 are EU-CMA-secure.

6/14

Plan for Today's Lecture...

oML

One-Way Function ¢ \uil

©Lubos Houska

6/14

§ Intuitively: “easy to compute” function f that is “hard to invert”

f

7/14

é Intuitively: “easy to

“Solution

compute” function f that is “hard to invert”

5/3[4]6]7[8]9[1]2 :'_’_ 53 7

672[1 95348 6 195

19 4/2[5(6/7 9|8 6

85 61]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5
3lals]28l6[1]7]9 8 7.9, “Pozdle
©Cburnett/Wikipedia ©Tim Stelmach/Wikipedia

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt | :

yPPT nvecker [nv, \/1/
1) @
pe (Iov () =]

is r\eg‘\g" ble,

m Problem:

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt | :

yPPT nvecker [nv, s
1) @
P (Inv) =]

is r\eg‘\g" ble,

m Problem: Tny mdXh |o qsk (6\18!9@\'\6& hacdness)

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt L :

¢ PPT etker nv, 3w)
S1@)) @
pe (Iov () =]

is r\eg‘\g" ble,

m Problem:

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt L :

¥ PPT Taverter [ny, afx./
1) @
pe (Iov () =]

is ”%‘9' ble.
m Problem: This 5 rot 5»&?1(}2“‘ (L E-case mfdﬂCSS‘)

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt? :

¥ PPT I inveckee (nv

(v () ’t} @jh% @
. me—{o,ﬁ“

1S r\eg \9'
m Problem:

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt? :

J PPT avecker (v

(v () = ’t} @jh% @
. me—{o,ﬁ“

s ﬂeg ‘9'
m Problem: ANak a\boujc ‘g(ﬂ

\1\

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt 4 :

J PPT avecker (v

Pe (o Ge)e % fy@} @ﬂ%@
. me—{o,ﬁ“

1S r\eg \9'
m Problem:

7/14

A\ . T - ”
G Intuitively: “easy to compute” function f that is “hard to invert

5[3]4[6[7[8]9]1]2 :F 53 7

672[1 95348 6 195
19(8[34/2|5(6/7 98 6
850(761]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5

“Solution’ [314[s[2/8l6[1179 8l | (79 “Py2ale

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt 4 :

J PPT avecker (v

Pe (o Ge)e % fy@} @ﬂ%@
. me—{o,ﬁ“

s r\eg \9'
m Problem: %

7/14

Let's Define One-Way Functions...

\J) - i ' . T . 1
G Intuitively: “easy to compute” function that is “hard to invert

o Dieien & (One-way function (OWF))
- A function family f := {f,: {0,1}" — {0, 1}'"(”)}nEN is one-way if
~--m there exists an efficient algorithm F such that Vx : F(x) = f(x)

m for all PPT inverters Inv, the following is negligible:

©
n) .= r nv X — X
D)= Rr B0 € BN, (50

7/14

Let's Define One-Way Functions...

gl Intuitively: “easy to compute” function that is “hard to invert’
fll Definition 3 (One-way function (OWF))

- A function family f := {f,: {0,1}" — {0, 1}'"(”)}nEN is one-way if
~--m there exists an efficient algorithm F such that Vx : F(x) = f(x)

m for all PPT inverters Inv, the following is negligible:

©
n) .= r nv X — X
D)= Rr B0 € BN, (50

m Length-preserving OWF: m(n) = n

m One-way permutation: f is length-preserving and bijective

7/14

Let's Define One-Way Functions...

gl Intuitively: “easy to compute” function that is “hard to invert’
fll Definition 3 (One-way function (OWF))

- A function family f := {f,: {0,1}" — {0, 1}'"(”)}nEN is one-way if
~--m there exists an efficient algorithm F such that Vx : F(x) = f(x)

m for all PPT inverters Inv, the following is negligible:

©
n) .= r nv X — X
D)= Rr B0 € BN, (50

m Length-preserving OWF: m(n) = n
m One-way permutation: f is length-preserving and bijective
m Convenient to consider “collection” of OWF:

{fi : D1 = Ri}icpoy

7/14

m Some generic constructions:
fi(x) := f(x)||0!, where f is a OWF
fr(x1||x2) := x1||f(x2), where f is a OWF and |x1]| — x| <1
f3(x1]|x2) := x1||f (x1]|x2), where f is a OWF and |x1| — |xo| <1
fa(x) := G(x), where G is a PRG

8/14

m Some generic constructions:
7 B f(x) == f(x)]|0"], where f is a OWF
7 B fi(xx) == xi||f(x2), where f is a OWF and |x;| — |xp| < 1
2 f3(x1]|x2) := x1||f (x1]|x2), where f is a OWF and |x1| — |xo| <1
L&) fa(x) := G(x), where G is a PRG

m A concrete construction:
fs(x1]|x2) := x1 - x2, where x; and x, are parsed as integers

8/14

m Some generic constructions:
7 B f(x) == f(x)]|0"], where f is a OWF
7 B fi(xx) == xi||f(x2), where f is a OWF and |x;| — |xp| < 1
2 f3(x1]|x2) := x1||f (x1]|x2), where f is a OWF and |x1| — |xo| <1
fa(x) := G(x), where G is a PRG

m A concrete construction:

l@ fs(x1]|x2) := x1 - x2, where x; and x, are parsed as integers
B “Weakly” one-way since primes are dense enough

8/14

@ OWF or Not?

m Some generic constructions:

7 A fi(x f(x)||0™¥!, where f is a OWF

H fg(x1||xz) = x1||f(x2), where f is a OWF and |x| — |xo| <1

B f(x1||x2) := x1||f (x1]||x2), where f is a OWF and |x1| — |x2] <1
A fi(x) := G(x), where G is a PRG

2

m A concrete construction:

l;) fs(x1||x2) := x1 - x2, where x; and x are parsed as integers
B “Weakly” one-way since primes are dense enough

Show using security reduction that f, # and f; are OWFs

Come up fs such that f3 i) remains one-way and ii) becomes
invertible

8/14

largt onsegne N &p

Multiplication modulo prime p: fmgx) = cx mod p

9/14

largt ﬂ Co’)!nl n !,o

3 @ Multiplication modulo prime p: f, gx) ;= cx mod p

Matrix multiplication modulo prime p: fz(x =xTA mod p
2N i mabn over ZZP

9/14

We've Already Seen Some OWF Collections!
large constant In Zp

K3 | Multiplication modulo prime p: f, ¢(x) := cx mod p

- TA
K3 BA Matrix multiplication modulo prime p: f;(x) :=x"A mod p
m Inversion easy by Gaussian elimination \’\’ nxm mqh\xo%(ZP

Squaring modulo prime p: f5(x) := x? mod p
Squaring modulo semiprime N = pg: fy(x) := x? mod N

9/14

We've Already Seen Some OWF Collections!
large constant In Zp
K3 | Multiplication modulo prime p: f, ¢(x) := cx mod p

Matrix multiplication modulo prime p: fz(x) :=xTA mod p
< trix 0“6(ZP

m Inversion easy by Gaussian elimination \’\’ nxm 1m
E) B Squaring modulo prime p: f,(x) := x2 mod p
¥ @ Squaring modulo semiprime N = pg: fy(x) := x> mod N
m Inversion as hard as factoring N SQMQJ‘O"
Exponentiation modulo prime p: £, g(x) := g* mod p

9/14

We've Already Seen Some OWF Collections!
large constant In Zp
K3 | Multiplication modulo prime p: f, ¢(x) := cx mod p
7 Matrix multiplication modulo prime p: f;(x =xTA mod p
e = Inversnonpeasy by Gaussian epllmmaflon \(’\’) nx m Matnx O‘IU ZP
E) B Squaring modulo prime p: f,(x) := x2 mod p
¥ @ Squaring modulo semiprime N = pg: fy(x) := x> mod N
m Inversion as hard as factoring N QQMQJ‘O"
¥7HE Exponentiation modulo prime p: f, z(x) := g* mod p
m Inversion is the Discrete Logarithm Problem: believed hard
@ Power map modulo semiprime N = pg: fy ¢(x) := x® mod N

9/14

We've Already Seen Some OWF Collections!
lage constant In Zp
K3 | Multiplication modulo prime p: f, ¢(x) := cx mod p
71 Matrix multiplication modulo prime p: fz(x) :=xTA mod

e = Inversionpeasy by Gaussian epliminaItJionA\(’\’) nx m Matnx (p)\ICV Z[P
E) B Squaring modulo prime p: f,(x) := x2 mod p
¥ @ Squaring modulo semiprime N = pg: fy(x) := x> mod N

m Inversion as hard as factoring N SQMQJ‘O"
¥7HE Exponentiation modulo prime p: f, z(x) := g* mod p

m Inversion is the Discrete Logarithm Problem: believed hard
¥ @ Power map modulo semiprime N = pg: fy e(x) := x® mod N

m Inversion is the RSA problem: believed hard

Exercise 3

Show that taking square root modulo N is equivalent to factoring N.
(Hint: use the identity x*> — y% = (x + y)(x — y) mod N)

9/14

The Cryptographic Landscape

CON-SKE . “Mienceyge!

oo —(

MaC
hacder <}PRF wa@)ms
ma Hadh foncaon
¥ A Sobset svn B
T 7‘.:#:7"/"\" '''''''''''' -
Cfeyechngsy, Wa Frr

‘)
. Pu‘o\c keg mx%:\on 7 00H

dvudvred » mj Ptomo ng’

10/14

One-Wayness vs Pseudorandomness

The Cryptographic Landscape

S R Miiceypd
an e~
MD:C ;

hatder PRF %ﬁow(es
s PRG Hagh foncaon
= MDWF
s A Sobsd sum B
. — V~__.__—- —_— —— = T -
“fey-eXchong T

Lo fobhes keg W&t\m

i Theorem 1 ([HILL99, BM82
If one-way functions exist then so do pseudo-random generators

10/14

m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

N

{&dﬁ Digital Signature One-Way Function

¥4 Proof technique: plug and pray 7%

10/14

One-Time DS (g = 1): Lamport's Signature
§n~<Omnf9gDNn}n

Construction 1 (OWF f — one-time DS ¥ for M := {0,1}%)

11/ 14

One-Time DS (g = 1): Lamport's Signature
(o 3001 = 9007 3y
Construction 1 (OWF f — one-time DS ¥ for M := {0,1}%)

[
B0
(INER)

11/ 14

One-Time DS (g = 1): Lamport's Signature

[o',

B0
(INER)

11/14

One-Time DS (g = 1): Lamport's Signature

[o',

m < Gen(19)

Yoo| Y| Y ofY | _py &
Yor[Yu|Y oY Ph

B0
(INER)

11/14

One-Time DS (g = 1): Lamport's Signature

[o',

Yoo
Yo
m =10\
B0B
GICNER)

11/14

One-Time DS (g = 1): Lamport's Signature

[o',

B0
(INER)

11/14

One-Time DS (g = 1): Lamport's Signature

[o',

B0
(INER)

11/14

One-Time DS (g = 1): Lamport's Signature

[o',

B0
(INER)

11/14

One-Time DS (g = 1): Lamport's Signature

(o 5007 =501t §n

20)
P
Sl [5u155]

MCEPT IFF " F(c) =PR{0

B0
(INER)

11/ 14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

¢ 0
~

\n\etter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

.0 *
) — 3

\n\etter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

\n\etter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

Ny =sim=
[v
& p—

\netter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

Lg=rim=t
[v
& p—

\netter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

o—{o‘)ﬁ
$0)
. Ph* 5 :hu
; Y »] bkim
o —
nverter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

$0) & ABORT, IF m{)= "
N Ph*:‘.im Y Y 5]

WERIEBI)
=) __—_ O
—)
Ao

\n\etter

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

[5
(i)
T o ABORT, I (e
Yo]9 w]Y 5]
Be [35 6t

I*lly]r R A

\n\etter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

3

5 o ABORT, I {1)-
Yl
EX

F1Yalys] b
tel) —,Q
==)
U2

\n\etter

12/14

Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

S ‘Doﬁ

© ABORT, IF ()= b"
© ABORT, IFe) 46"

EX0)
b1
Yu B o

(1])

M8
ECF:

\n\etter

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

o ‘Doﬁ
(i)
$0) & ABDRT, [F m{t)=b"
3 old) ABORT, IF e () 4"
Yuly] b1t) X
el ___——,Q = () =y")
- th ©)
@ ndo o0 3*
\nvetter

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

S ‘Doﬁ
T

50 © ABORT, IF ()= b°
Yo @ ABORT, IFonn ()b
P !

(1])

— Q
\ ~

\n\etter

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

& ABORT, [F ()= b"
© ABORT, IFe) 46"
= §(es) <yl

| EX0)
J Ph*:ﬂm Y]9 3]
AN W ER },‘,im}

I‘tl[a] Q

R 0
m=10N O' D

N 1Y
o, T Wnerter

p((nrecks Jm P JABOR oeaks, TR
L)'

%" SV\ M/M

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

i ‘[\o\\i\

& ABORT, [F ()= b"
© ABORT, IFe) 46"
= §(es) <yl

| 506
;‘ thﬂm‘_‘hn
[y] b it

1] Q

meon B) E

N 1Y

\n\etter

e (i nveeks w:_%im\ oreaks, TR,) O (T reaks| 8087 e (70T,
A R WA

gs\«),m)m : independene DW

s

X

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

S ‘Doﬁ

& ABORT, [F ()= b"
© ABORT, IFe) 46"
= § (s} <07}

| EX0)
;‘ thﬂm Y »]Y]
[y] b it

1] Q

m=\(r)r[j @ oy 2

EE——

\n\etter

TT{\\[@(JUS er] = ,Pr&)i ABDR, | breaks, W‘] Pj{ [breaks| Wj E{ [W‘]
A oL ETE

independeni of & >
b

X

o 7 Yoy

12/14

Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

© ABORT, IF ()= b"
© ABORT, IFe) 46"

| 6
;‘ Ph*:ﬂm Y »]Y]
HER wm

KU
*

— o
m=10N O') & y

EE——
m,T \netter

Pr(ks F00)= Pe. NL\l’;om \ breaks, ABOKTl P([breks| WJ {ir[m‘]
) . O >
x)L - OACPU\AU\E Ji L <‘ md(pmdm‘li f’kb¥>
l

*‘_;5,%\»«_; Y
S y

ZVQ@QQ /4

7 \/ptf\)

12/14

Quan-um
Lamport’s Signature is,One-Time Secure

X% Theorem 2
AT ’
If f is a,OWF then Lamport’s scheme is a

4one-time DS.

Proof sketch: proof by reduction. Idea: “plug and pray”.

© ABORT, IF ()= b"
© ABORT, IFe) 46"

| 6
;‘ Ph*:ﬂm Y »]Y]
HER wm

I‘tl[a] Q
*

S 0
m=10N O') & y

BN]
m,T \netter

Pr(ks F00)= Pe. NL\l’;om \ breaks, ABOKTl P([breks| WJ {ir[m‘]
) . O >
x)L - OACPU\AU\E Ji L <‘ md(pmdm‘li f’kb¥>
l

*‘_;5,%\»«_; Y
S y

ZVQ@QQ /4

7 \/ptf\)

12/14

Lamport’s Signature is One-Time Secure...

Exercise 4

m Can a forger break EU-CMA given two signatures?

m Are the signatures unique? If not, can it be made unique?

12/14

Lamport’s Signature is One-Time Secure...

Exercise 4

m Can a forger break EU-CMA given two signatures?

m Are the signatures unique? If not, can it be made unique?

m Can we avoid the 1/2¢ loss in inverting advantage?

If f is a OWF then Lamport’s scheme is a one-time DS

12/14

Lamport’s Signature is One-Time Secure...

Exercise 4

m Can a forger break EU-CMA given two signatures?
m Are the signatures unique? If not, can it be made unique?

m Can we avoid the 1/2¢ loss in inverting advantage?

Theorem 3

If f is a OWF then Lamport’s scheme is a one-time DS for fixed-length
messages.

Exercise 5 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}*, construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?

12/14

How to Sign Many Times?

Theorem 4 ([Mer90, Gol87

If one-time DS and PRFs exists then many-time DS exists

13/14

How to Sign Many Times?

Theorem 4 ([Mer90, Gol87

If one-time DS and PRFs exists then many-time DS exists

Proof (Overview).

Step I: One-time DS = many-time stateful DS

m Stateful DS: Sign is stateful
m Idea: use one-time DS to sign message and next public key
m Proof uses plug and pray

13/14

How to Sign Many Times?

Theorem 4 ([Mer90, Gol87

If one-time DS and PRFs exists then many-time DS exists

Proof (Overview).

Step I: One-time DS = many-time stateful DS

m Stateful DS: Sign is stateful
m Idea: use one-time DS to sign message and next public key
m Proof uses plug and pray

Step Il: Many-time stateful DS = Many-time DS
m Use PRF to derandomise Step |

13/14

m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS

m Lamport’s one-time DS
m Generic transformation from one-time to many-time DS
m Takeaway: “Plug and pray”

14/14

Recap/Next Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS

m Lamport’s one-time DS

m Generic transformation from one-time to many-time DS

m Takeaway: “Plug and pray”
m Lectures 17: efficient DS in random-oracle model

m From trapdoor OWF via hash-then-invert
m Via Fiat-Shamir transform (e.g., Schnorr)

14/14

Recap/Next Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS

m Lamport’s one-time DS

m Generic transformation from one-time to many-time DS

m Takeaway: “Plug and pray”
m Lectures 17: efficient DS in random-oracle model

m From trapdoor OWF via hash-then-invert
m Via Fiat-Shamir transform (e.g., Schnorr)

Exercise 5 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}", construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?

m Next lecture: How to sign longer messages?
m New primitive: collision-resistant hash functions

14/14

References

Refer to [KL14, Chapters 13.1 and 13.2] for motivation and
definition of DS.

The construction of one-time DS and the subsequent generic
transform (Theorem 4) can be found in [KL14, Chapter 14.4]

For a historical take on OWFs, see [DH76].

The construction of PRG from OWF is due to [HILL99], building on
the construction of PRF from OWP from [BM82].

[A Manuel Blum and Silvio Micali.
How to generate cryptographically strong sequences of pseudo random bits.
In 23rd FOCS, pages 112-117. IEEE Computer Society Press, November 1982.

@ Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

[M Oded Goldreich.

Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.

In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
104-110. Springer, Berlin, Heidelberg, August 1987.

ﬁ Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364-1396, 1999.

ﬁ Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

[@ Ralph C. Merkle.

A certified digital signature.
14/14

	Digital Signatures
	One-Way Function
	One-Time Digital Signatures

