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CS409m: Introduction to Cryptography

Lecture 15 (08/Oct/25)

Instructor: Chethan Kamath



m Tasks: Public-key encryption (PKE)
m Threat model: IND-CPA
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Elliptic curves, lattices, isogenies, class groups...
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m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA
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Plan for Today's Lecture...

m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA
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m Threat model: EU-CMA
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m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

(aeser
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m Requirements:
Publicly verifiable
No one should be able to forge Bob's signature
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Digital (Analogues of Physical) Signatures...

How Google enforces boot integrity on
production machines 0 -

Measured boot process

Boot firmware

Hardware root of trust

m Requirements:

Publicly verifiable
No one should be able to forge Bob's signature
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Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:
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Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the

following syntax:

0/1:=Ver (hon, O™

B0
(SIGH ER)

m Correctness of honest signing: for every n € N, message m € M,,

P Ver(pk =1]=1
(pk,sk)eGen(l")r,aeSign(sk,m)[ er(p a2 m) ]
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<é Intuitively, what are the security requirements?
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Y = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver’)
Truncate-then-sign: define ¥’ as
m Sign'(sk,m := my -~ my_ymy) < Sign(sk, my ---my_1)
m Ver'(pk,o, m) := Ver(pk,o,my ---my_1)
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Y = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver’)

I@ Truncate-then-sign: define X’ as
m Sign’(sk,m :=my ---my_1my) < Sign(sk,my -~ my_1)
m Ver'(pk,o, m) := Ver(pk,o,my ---my_1)

ﬁ Sign-then-truncate: define ¥’ as
m Sign'(sk,m) := 01 ---0s_1, where oy - - - 05_105 < Sign(sk, m)
m Ver'(pk,o’, m): accept if

m Ver(pk,d'||0,m) =1 or Ver(pk,o'||1,m) =1

ﬁ Sign-then-append: define ¥’ as
m Sign'(sk, m) := 5|0, where o < Sign(sk, m)
m Ver'(pk,o||b, m) := Ver(pk, o, m)

Exercise 1

Prove by reduction that the X's in 1 and 3 are EU-CMA-secure.
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Plan for Today's Lecture...
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One-Way Function ¢ \uil

©Lubos Houska
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§ Intuitively: “easy to compute” function f that is “hard to invert”
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é Intuitively: “easy to

“Solution

compute” function f that is “hard to invert”

5/3[4]6]7[8]9[1]2 :'_’_ 53 7

672[1 95348 6 195

19 4/2[5(6/7 9|8 6

85 61]423 8 6 3
42/6(8/53|7/91 4 8 3 1
7/1(3[9/2/4[8[5]6 7 2 6
96/1]537]2/84 6 28
218/7[419]6/35 419 5
3lals]28l6[1]7]9 8 7.9, “Pozdle
©Cburnett/Wikipedia ©Tim Stelmach/Wikipedia
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m Problem:
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Let's Define One-Way Functions...

\J) - i ' . T . 1
G Intuitively: “easy to compute” function that is “hard to invert

o Dieien & (One-way function (OWF))
- A function family f := {f,: {0,1}" — {0, 1}'"(”)}nEN is one-way if
~--m there exists an efficient algorithm F such that Vx : F(x) = f(x)

m for all PPT inverters Inv, the following is negligible:

©
n) .= r nv X — X
D)= Rr B0 € BN, (50
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Let's Define One-Way Functions...

gl Intuitively: “easy to compute” function that is “hard to invert’
fll Definition 3 (One-way function (OWF))

- A function family f := {f,: {0,1}" — {0, 1}'"(”)}nEN is one-way if
~--m there exists an efficient algorithm F such that Vx : F(x) = f(x)

m for all PPT inverters Inv, the following is negligible:

©
n) .= r nv X — X
D)= Rr B0 € BN, (50

m Length-preserving OWF: m(n) = n
m One-way permutation: f is length-preserving and bijective
m Convenient to consider “collection” of OWF:

{fi : D1 = Ri}icpoy
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m Some generic constructions:
fi(x) := f(x)||0!, where f is a OWF
fr(x1||x2) := x1||f(x2), where f is a OWF and |x1]| — x| <1
f3(x1]|x2) := x1||f (x1]|x2), where f is a OWF and |x1| — |xo| <1
fa(x) := G(x), where G is a PRG
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@ OWF or Not?

m Some generic constructions:

7 A fi(x f(x)||0™¥!, where f is a OWF

H fg(x1||xz) = x1||f(x2), where f is a OWF and |x| — |xo| <1

B f(x1||x2) := x1||f (x1]||x2), where f is a OWF and |x1| — |x2] <1
A fi(x) := G(x), where G is a PRG

2

m A concrete construction:

l;) fs(x1||x2) := x1 - x2, where x; and x are parsed as integers
B “Weakly” one-way since primes are dense enough

Show using security reduction that f, # and f; are OWFs

Come up fs such that f3 i) remains one-way and ii) becomes
invertible
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Multiplication modulo prime p: fmgx) = cx mod p

9/14



largt ﬂ Co’)!nl n !,o

3 @ Multiplication modulo prime p: f, gx) ;= cx mod p

Matrix multiplication modulo prime p: fz(x =xTA mod p
2N i mabn over ZZP
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We've Already Seen Some OWF Collections!
large constant In Zp

K3 | Multiplication modulo prime p: f, ¢(x) := cx mod p

- TA
K3 BA Matrix multiplication modulo prime p: f;(x) :=x"A mod p
m Inversion easy by Gaussian elimination \’\’ nxm mqh\xo%( ZP

Squaring modulo prime p: f5(x) := x? mod p
Squaring modulo semiprime N = pg: fy(x) := x? mod N
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e = Inversnonpeasy by Gaussian epllmmaflon \(’\’) nx m Matnx O‘IU ZP
E) B Squaring modulo prime p: f,(x) := x2 mod p
¥ @ Squaring modulo semiprime N = pg: fy(x) := x> mod N
m Inversion as hard as factoring N QQMQJ‘O"
¥7HE Exponentiation modulo prime p: f, z(x) := g* mod p
m Inversion is the Discrete Logarithm Problem: believed hard
@ Power map modulo semiprime N = pg: fy ¢(x) := x® mod N
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71 Matrix multiplication modulo prime p: fz(x) :=xTA mod

e = Inversionpeasy by Gaussian epliminaItJionA\(’\’) nx m Matnx (p)\ICV Z[P
E) B Squaring modulo prime p: f,(x) := x2 mod p
¥ @ Squaring modulo semiprime N = pg: fy(x) := x> mod N

m Inversion as hard as factoring N SQMQJ‘O"
¥7HE Exponentiation modulo prime p: f, z(x) := g* mod p

m Inversion is the Discrete Logarithm Problem: believed hard
¥ @ Power map modulo semiprime N = pg: fy e(x) := x® mod N

m Inversion is the RSA problem: believed hard

Exercise 3

Show that taking square root modulo N is equivalent to factoring N.
(Hint: use the identity x*> — y% = (x + y)(x — y) mod N)
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The Cryptographic Landscape
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One-Wayness vs Pseudorandomness

The Cryptographic Landscape
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If one-way functions exist then so do pseudo-random generators
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m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

N

{&dﬁ Digital Signature One-Way Function

¥4 Proof technique: plug and pray 7%
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One-Time DS (g = 1): Lamport's Signature
§n~<Omnf9gDNn}n

Construction 1 (OWF f — one-time DS ¥ for M := {0,1}%)

11/ 14



One-Time DS (g = 1): Lamport's Signature
(o 3001 = 9007 3y
Construction 1 (OWF f — one-time DS ¥ for M := {0,1}%)

[
B0
(INER)

11/ 14



One-Time DS (g = 1): Lamport's Signature

[ o',

B0
(INER)

11/14



One-Time DS (g = 1): Lamport's Signature

[ o',

m < Gen(19)

Yoo| Y| Y ofY | _py &
Yor[Yu|Y oY Ph

B0
(INER)

11/14



One-Time DS (g = 1): Lamport's Signature

[ o',

Yoo
Yo
m =10\
B0B
GICNER)

11/14



One-Time DS (g = 1): Lamport's Signature

[ o',

B0
(INER)

11/14



One-Time DS (g = 1): Lamport's Signature

[ o',

B0
(INER)

11/14



One-Time DS (g = 1): Lamport's Signature

[ o',

B0
(INER)

11/14



One-Time DS (g = 1): Lamport's Signature
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Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.
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Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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Lamport’s Signature is One-Time Secure

Theorem 2
If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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Quan-um
Lamport’s Signature is,One-Time Secure

X% Theorem 2
AT ’
If f is a,OWF then Lamport’s scheme is a

4one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.
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Lamport’s Signature is One-Time Secure...

Exercise 4

m Can a forger break EU-CMA given two signatures?

m Are the signatures unique? If not, can it be made unique?
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Lamport’s Signature is One-Time Secure...

Exercise 4

m Can a forger break EU-CMA given two signatures?
m Are the signatures unique? If not, can it be made unique?

m Can we avoid the 1/2¢ loss in inverting advantage?

Theorem 3

If f is a OWF then Lamport’s scheme is a one-time DS for fixed-length
messages.

Exercise 5 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}*, construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?
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How to Sign Many Times?

Theorem 4 ([Mer90, Gol87

If one-time DS and PRFs exists then many-time DS exists
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m Stateful DS: Sign is stateful
m Idea: use one-time DS to sign message and next public key
m Proof uses plug and pray
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How to Sign Many Times?

Theorem 4 ([Mer90, Gol87

If one-time DS and PRFs exists then many-time DS exists

Proof (Overview).

Step I: One-time DS = many-time stateful DS

m Stateful DS: Sign is stateful
m Idea: use one-time DS to sign message and next public key
m Proof uses plug and pray

Step Il: Many-time stateful DS = Many-time DS
m Use PRF to derandomise Step |
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m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS

m Lamport’s one-time DS
m Generic transformation from one-time to many-time DS
m Takeaway: “Plug and pray”
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m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS

m Lamport’s one-time DS

m Generic transformation from one-time to many-time DS

m Takeaway: “Plug and pray”
m Lectures 17: efficient DS in random-oracle model

m From trapdoor OWF via hash-then-invert
m Via Fiat-Shamir transform (e.g., Schnorr)
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Recap/Next Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS

m Lamport’s one-time DS

m Generic transformation from one-time to many-time DS

m Takeaway: “Plug and pray”
m Lectures 17: efficient DS in random-oracle model

m From trapdoor OWF via hash-then-invert
m Via Fiat-Shamir transform (e.g., Schnorr)

Exercise 5 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}", construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?

m Next lecture: How to sign longer messages?
m New primitive: collision-resistant hash functions
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