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CS409m: Introduction to Cryptography

Lecture 15 (08/Oct/25)

Instructor: Chethan Kamath




m Tasks: Public-key encryption (PKE)
m Threat model: IND-CPA
Goldwasser-Micali PKE RSA PKE
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Algebraic setting: multiplication modulo semiprime (RSA group)
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Hardness assumptions: integer factoring, QR and RSA
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Elliptic curves, lattices, isogenies, class groups...
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Plan for Today's Lecture...

m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

N i . R

4 Q/Q}Dlgltal Signature One-Way Functlon%N%gﬁ'

©Wikipedia

©Lubos Houska

¥% Proof technique: plug and pray 74
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m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

_»J-"\"//& - . - B
{NB‘:\\I\'} Digital Signature One-Way Function

Proof technique: plug and pray
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m Recall: Message-Authentication Code (MAC)

m Used to detect tampering by active adversary

b0 g

m Digital signature: public-key counterpart of MAC
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Bob

m Requirements:
Publicly verifiable
No one should be able to forge Bob's signature
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Bob

m Requirements:

Publicly verifiable
No one should be able to forge Bob's signature
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Digital (Analogues of Physical) Signatures...

! _ WiIKIPEDIA .

How Google enforces boot integrity on
production machines

Measured boot process

m Requirements:

Publicly verifiable
No one should be able to forge Bob's signature
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Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Definition 1 (Digital signature (DS))

A DS X is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:

0/):=Ver Ph,m,T)

AT o
V) GICER)
m Correctness of honest signing: for every n € N, message m € M,,

P V k =1]=1
(pk7sk)<—Gen(1")r,o<—Sign(sk,m)[ er(pk, o, m) = 1]
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How to Define Security?

g Intuitively, what are the security requirements?
m Tam must not be able to forge a valid new sngnature from
previously-seen signatures... =
® ... on messages of its choice -
m Forged new signature can be on any message of Tam's choice

.z(ij‘;-.‘EmstentlaI Unforgeability Under Chosen-Message Attack /i\
Definition 2 (EU-CMA)

A DS X = (Gen, Sign, Ver) is g-EU-CMA secure if no PPT adversary
Tam that makes at most g queries can break X as follows with
non-negligible probability. .../

@ Tam aiven PR
& Tam ?nakas qquencslyﬁ‘qﬂ@q oracle ”% N éam(m){
o In the ed Tam oolps (a7 and _ 0
breaks 2 4 Ny
o Ver(hpi)= |
¢ VTE (4] s ri ne ((hoﬁg\ger)
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@ ¥’ EU-CMA Secure or Not?

¥ = (Gen, Sign, Ver) — ¥’ = (Gen’, Sign’, Ver')

L) Truncate-then-sign: define ¥’ as
m Sign'(sk,m :=my---my_1my) < Sign(sk, my---my;_;)
m Ver'(pk,o,m) := Ver(pk,o,my---my_1)

) Sign-then-truncate: define ¥’ as
m Sign'(sk,m) := oy ---0s_1, where 07 ---0s_10¢ < Sign(sk, m)
m Ver'(pk,o’, m): accept if

m Ver(pk,d'||0,m) =1 or Ver(pk,o'||1,m) =1

a] ;| Sign-then-append: define ¥’ as
m Sign’(sk, m) := ¢||0, where o < Sign(sk, m)
m Ver'(pk,o||b, m) := Ver(pk, o, m)

Exercise 1

Prove by reduction that the ¥'s in 1 and 3 are EU-CMA-secure.
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Q Intuitively: “easy to compute” function f that is “hard to invert
5[3[4[6[7]8]9]1]2 J: 53 7
6|72[1]9/5[3[4[8 6 | [19]5
1[9/8[3.42]567 98 6
8[5[0]7]6]1[4]2]3 8 T 3
4/2|6/8 5 3|7/ 9|1 4 8 3 1
7/1]3[0 2 48|56 7 2 6
S5161]5/3/7]2]8]4 3 218
2(8(7[4/1,9]6(3]5
“Sofotiof’ [314/5[2/8/6[17]9 SONRUOR Pazale
©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt | :

V PPT invecker Inv, YL
&) @
or (Inv () =

is neglgl ble,

m Problem: Tny M to 0\5k (6\'6@@\0@& hacdness)
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é Intuitively: “easy to compute” function f that is “hard to invert”

s[3]4[6[7]8[9]1]2 J: 53 7

6/7/2|1/9 5[3/4[8 6 195

1198 4.2]56/|7 9.8 6

8|5/9|7/6 1|4 /2|3 8 6 3
4|2/6|8 5 3|7 91 4 8 3 1

7 3|92 4(8 6 7 2 6
916/1]5/3.7]28]4 3 28

2 7141 9(6 5 419 5

“Solutiofl [3145]2/86]17]9 8 | 1719 “Pazale!

©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt 2 :

v PPT laverter [nv, 31./
1) @
or (Inv () =

1S ﬂegl\g‘l blg.
m Problem: This 15 nat sofert (L k-case norcdness )
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Q Intuitively: “easy to compute” function f that is “hard to invert
5[3[4[6[7]8]9]1]2 J: 53 7
6|72[1]9/5[3[4[8 6 | [19]5
1[9/8[3.42]567 98 6
8[5[0]7]6]1[4]2]3 8 T 3
4/2|6/8 5 3|7/ 9|1 4 8 3 1
7/1]3[0 2 48|56 7 2 6
S5161]5/3/7]2]8]4 3 218
2(8(7[4/1,9]6(3]5
“Sofotiof’ [314/5[2/8/6[17]9 SONRUOR Pazale
©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt3 :

) PPT_(QVQ(ke( lnv
b)) @Y <>

’\L(—{a,lj}n
s neg 91 ble.
m Problem: |hak AbOu‘lZ ‘g('o

n\
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Q Intuitively: “easy to compute” function f that is “hard to invert
5[3[4[6[7]8]9]1]2 J: 53 7
6|72[1]9/5[3[4[8 6 | [19]5
1[9/8[3.42]567 98 6
8[5[0]7]6]1[4]2]3 8 T 3
4/2|6/8 5 3|7/ 9|1 4 8 3 1
7/1]3[0 2 48|56 7 2 6
S5161]5/3/7]2]8]4 3 218
2(8(7[4/1,9]6(3]5
“Sofotiof’ [314/5[2/8/6[17]9 SONRUOR Pazale
©Cburnett/Wikipedia ©Tim Stellmach/Wikipedia

m What does “hard to invert” entail? Attempt 4 :

VY PPT invetker [nv
1) @
P Iy e S ( Li)]

) ’\L(—{a,l’}n
1S neg \9'
m Problem: 7
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Let's Define One-Way Functions. ..

Def|n|t|on 3 (One-way function (OWF))
‘A function family f := {fa:{0,1}" — {0,1}" ")} _—
“-m there exists an efficient algorithm F such that Vx : F(x) = f(x)

is one-way if

m for all PPT inverters Inv, the following is negligible: -

@
n):= Inv(fa(x £l (Fa(x
Pln) = B IO € 61O )

Length-preserving OWF: m(n) = n

One-way permutation: f is length-preserving and bijective

m Convenient to consider “collection” of OWF:
{fi:D) — R’}IQ{O.I}’
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@ OWF or Not?

m Some generic constructions:
7 B f(x) = f(x)|[0"], where f is a OWF
.b A f(xi||x) = x1||f(x2), where f is a OWF and |x;| — |xo| < 1
B (x1||x2) := x1||f (x1]|x2), where f is a OWF and |x1| — [x2] <1
ﬁ A fi(x) := G(x), where G is a PRG

m A concrete construction:
l\? A f5(x1||x2) := x1 - xo, where x; and x, are parsed as integers
m “Weakly" one-way since primes are dense enough

Exercise 2

Show using security reduction that f;, , and f, are OWFs

Come up fs such that £ i) remains one-way and ii) becomes
invertible
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We've Already Seen Some OWF Collections!
large / constant 10 Zﬁ‘
K3 @ Multiplication modulo prime p: f, {(x) := cx mod p
£ B Matrix multiplication modulo prime p: f5(X) :=x "A mod p
m Inversion easy by Gaussian elimination A5 nkm man o\!ef ZP
£ @ Squaring modulo prime p: fy(x) := x? mod p
¥7 @ Squaring modulo semiprime N = pg: fy(x) := x*> mod N
m Inversion as hard as factoring N Bewdbr
¥'7 A Exponentiation modulo prime p: f, ¢(x) := g* mod p
m Inversion is the Discrete Logarithm Problem: believed hard
¥7 @ Power map modulo semiprime N = pg: fye(x) := x® mod N
m Inversion is the RSA problem: believed hard

Exercise 3

Show that taking square root modulo N is equivalent to factoring N.
(Hint: use the identity x> — y2 = (x + y)(x — y) mod N)
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One-Wayness vs Pseudorandomness

The Cryptographic Landscape

T NRE “encrypk’

mex«c -

MAC

hacder ‘~. pR; %ﬁa@ms
S PRG Pash foncaon

=7 %;(‘ N
0 ’R/ Subsek sum

l‘\etj e(dr\anqe
Puplc -key W%C\OY)

i Theorem 1 ([HILL99, BM82
If one-way functions exist then so do pseudo-random generators
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m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA

{:@}x Digital Signature One-Way Function

oW

7% Proof technique: plug and pray 7%
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One-Time DS (g = 1): Lamport's Signature
J jor}'— S,

Construction 1 (OWF f — one-time DS ¥ for M := {0,1}")

Ver (Phm,T)

BoB
(SICNER)
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Quon-um
Lamport’s Signature is,One-Time Secure

X% Theorem 2

S b o
If f is a,OWF then Lamport’s scheme is a,one-time DS.

Proof sketch: proof by reduction.  Idea: “plug and pray”.

@ ABORT, IF ()= b’
© ABORT, IF o [t} "

: m, T Werter
frotsis
Pl mverts 00)= b [ TORC | Tom breaks, TA0R, ) Pr (T breake| T, (7087,

EN A ndene 0§ ¢
,,‘._s\‘:,rv\,m”’} g/me “Hok, G independenie 0’&)
: _ 0
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Lamport’s Signature is One-Time Secure...

Exercise 4

m Can a forger break EU-CMA given two signatures?
m Are the signatures unique? If not, can it be made unique?

m Can we avoid the 1/2¢ loss in inverting advantage?

Theorem 3

If f is a OWF then Lamport’s scheme is a one-time DS for fixed-length
messages.

Exercise 5 (Domain Extension)

Given a compressing function H : {0,1}?* — {0,1}", construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?
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How to Sign Many Times?

Theorem 4 ([Mer90, Gol87

If one-time DS and PRFs exists then many-time DS exists

Proof (Overview).

Step I: One-time DS = many-time stateful DS

m Stateful DS: Sign is stateful
m ldea: use one-time DS to sign message and next public key
m Proof uses plug and pray

Step Il: Many-time stateful DS = Many-time DS
m Use PRF to derandomise Step |
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Recap/Next Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical constructions of DS
m Lamport's one-time DS
m Generic transformation from one-time to many-time DS
m Takeaway: “Plug and pray”
m Lectures 17: efficient DS in random-oracle model
m From trapdoor OWF via hash-then-invert
m Via Fiat-Shamir transform (e.g., Schnorr)

Exercise 5 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}", construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?

m Next lecture: How to sign longer messages?
m New primitive: collision-resistant hash functions
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the construction of PRF from OWP from [BM82].



B

B

Manuel Blum and Silvio Micali.
How to generate cryptographically strong sequences of pseudo random bits.
In 23rd FOCS, pages 112-117. IEEE Computer Society Press, November 1982.

Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644—654, 1976.

Oded Goldreich.
Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.

In Andrew M. Odlyzko, editor, CRYPTQO'86, volume 263 of LNCS, pages
104-110. Springer, Berlin, Heidelberg, August 1987.

Johan Hé&stad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364-1396, 1999.

Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

Ralph C. Merkle.

A certified digital signature.
14/14



