CS409m: Introduction to Cryptography

Lecture 16 (10/Oct/25)

Instructor;: Chethan Kamath



m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA
Lamport’s Digital Signature One-Way Function
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Lamport’s Signature is One-Time Secure...

Theorem 2 ([Mer90a, Gol87

If one-time DS and PRFs exists then many-time DS exists
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Lamport’s Signature is One-Time Secure...

Theorem 2 ([Mer90a, Gol87

If one-time DS and PRFs exists then many-time DS exists

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS for fixed-length
messages!

Exercise 1 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}", construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?
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m Task: sign arbitrarily long messages
m Threat model: EU-CMA
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Extending Lamport's One-Time DS for Long Messages
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m Hash-then-sign: compute “hash” h = H(m) and then sign h
@ What are the requirements from H? When can forge?

m Must be one-way. Is one-wayness sufficient?
/\ No, it must be hard to find inputs that “collide”

m Collisions are guaranteed to exist (pigeonhole principle)

m Is “collision-resistance” sufficient? Yes, as we’ll see.
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Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
By () = Hb )

(xix2) ! (k)

Nepd nat e sonelength 2

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
By () = Hb )

(xix2) ! (k)

Nepd nat e sonelength 2

@)f H, and H, are CRHFs then is H?

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
Hash-then-append: H(k,x) := Hy(k,x)]||0

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
o7 A Hash-then-append: H(k,x) := Hi(k, x)||0
Hash-then-truncate: H(k,x) := y1||...||yn—1, where
nll--llys = Hu(k, x)

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
7l Hash-then-append: H(k,x) := Hy(k, x)||0
E VA Hash-then-truncate: H(k,x) := y1|...|lyn—1, where

nll---llya = Hu(k, x)
Hash-then-XOR: H(k1||k2,X) = Hl(kl,X) D HQ(kQ,X)

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible. i
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
7l Hash-then-append: H(k,x) := Hy(k, x)||0
E VA Hash-then-truncate: H(k,x) := y1|...|lyn—1, where

nll---llya = Hu(k, x)
2 Hash-then-XOR: H(k1||k2,X) = Hl(kl,X) D HQ(kQ,X)

Exercise 2
Prove formally cases where H is CRHF; describe counter-e.g. otherwise
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Theorem 3 (Lecture 2)
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@ How does a randomised O(2"/2)-time collision-finder work?
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@Wh/at about a deterministic O(2")-time collision-finder?

@ Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 0]/0",...,0||1",1]|0"
m There must exist colliding pair of inputs

@ Can we do better? Yes, recall birthday paradox:
Theorem 3 (Lecture 2)

Let g < /22" elements (y1,...,yq) be chosen uniformly and
independently at random from {0,1}", then

Pri3i #j s.t. yi = tj] > q(q — 1)/42"

@ How does a randomised O(2"/2)-time collision-finder work?
m Compute hash of g := O(2"/2) random inputs xi, ..., x, < {0,1}"
m By Theorem 3, with noticeable probability there exists a colliding pair

Consequence: key-size/output length must be 2x security level
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Extending Lamport’'s One-Time DS for Long Messages...

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: Inv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et
Case @L: H(km)=H(km") L Case L : H(k )2H(km) =1

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et
Cagse @L: H(km)=H(km") L Case L : H(k )2H(km) =1

- : U
L ,m*) Lolli si on l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y){)Ofgs = \(\\'QA? f

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et
Cagse @L: H(km)=H(km") L Case L : H(k )2H(km) =1

- : U
L ,m*) Lolli si on l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y){)Ofgs = \(\\'QA? f

(3

(olliswn Finder

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and oSO forgery ,0*)
Cagse @L: H(km)=H(km") L Cage @L : H (ki) bt(kom) ="

- : U
L /m*) OH\ SioN l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y)PO{%‘S = \(\\'QA? ﬂ’

k)

.

(olliswn Finder

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and oSO forgery ,0*)
Cagse @L: H(km)=H(km") L Cage @L : H (ki) bt(kom) ="

- : U
L /m*) OH\ SioN l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y)PO{%‘S = \(\\'QA? ﬂ’

gqm?b(% " ?H)

qy
AR
he s ('Y ﬁ
(olliswn Finder

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and oSO forgery ,0*)
Cagse @L: H(km)=H(km") L Cage @L : H (ki) bt(kom) ="

- : U
L /m*) OH\ SioN l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y)PO{%‘S = \(\\'QA? ﬂ’

gqm?b(% " ?H)

“(Pﬁ k»

<« 7
TN
%_/_?L/ X

(llistan Hder

N m*)

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 9F for H <= 3Tam for “hash-then-sign”.
@ Suppose queres some Mol ang uﬁpah foxgeny o )
L Cage @L : H (ki) bt(kom) ="

: J o,
(w0 Yorgery for lOMPOf%S = i §

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 9F for H <= 3Tam for “hash-then-sign”.
@ Suppose queres some Mol ang uﬁpah foxgeny o )
L Cage @L : H (ki) bt(kom) ="

: J o,
(w0 Yorgery for lOMPOf%S = i §

\necker

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 9F for H <= 3Tam for “hash-then-sign”.
@ Suppose queres some Mol ang uﬁpah foxgeny o )
L Cage @L : H (ki) bt(kom) ="

: J o,
(w0 Yorgery for lOMPOf%S = i §

g{—? oﬂ:
lnvecter

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
@ SUppse queres some me ol ang ostpots forgery (et
L (ase @L - Hk, );H@«m*) W

Q\ ¢ )J(orgmj JKor MM{D{%S = nled

L "Pug’ 3*0% (¥) 1 ™
H \geﬂﬂmsfé (6k, P5)

O(Ph )
"—?o )

\necker

7/14



Extending Lamport’'s One-Time DS for Long Messages...

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
@ SUppse queres some me ol ang ostpots forgery (et
L (ase @L - Hk, );H@«m*) W

Q\ ¢ )J(orgmj JKor MM{D{%S = nled

L ug/ 3*0% (+e) 1 \\\\
| genente (6, ft) \\
; N frayi ey )mﬁb )

O(Ph )
"—? ) <&
\n\vecter a

7/14



Extending Lamport’'s One-Time DS for Long Messages...

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
@ SUppse queres some me ol ang ostpots forgery (et
L (ase @L - Hk, );H@«m*) W

Q\ ¢ )J(orgmj JKor MM{D{%S = nled

o Ug \30} (xb) \\\\
genfzm‘fa (6%, ‘?w) \\
E \\\\ \? \'09 (K) ) [\ﬂ #b /\

wag (K,m‘?)[\ﬂ b/
P o(mﬁk“
\nvecter v 8




m Task: sign arbitrarily long messages
: EU-CMA
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m Compression function: hash function for fixed input length ¢(n) > n

* Easier to construct in practice: e.g., MD5, SHA2 (unkeyed) m
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m Compression function: hash function for fixed input length ¢(n) > n

Easier to construct in practice: e.g., MD5, SHA2 (unkeyed)
compression function of certain block-size H

Definition 2 (¢(n)-compression function)

A keyed function (family) {H : K x {0,1}*™ — {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.

H(k H(k
P [ ) = Hlk o)
(xt%x2)<—1 (k)

sofelengh 2

m Domain extension: ¢(n)-compression function
= L(n)-compression function for L(n) > {(n) 7 H N



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')
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Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

)

it

axi|11|lz|’f-a|

7
m H'(k,x) := y2n, where FENNCEY
m y1:= H(k,0||x1) and y; := H(k, yi—1]|x;) for i € [2,2n]
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Exercise 3

Show that if H is a compression function then so is H’

@ Is H’ parallelisable?
@ Can parts of input can be locally verified?
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@ What happens if we use Construction 1 for {0,1}*?
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@ What happens if we use Construction 1 for {0,1}*?
é Is it possible to find collisions of different length?

/\ Yes, consider H for which H(k,0m*1) = 0" (for all k)
m For H’ instantiated with above H: H'(k,0"||x) = H'(k, x)
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Approach |: Merkle-Damgard Construction (Chaining)...

@ What happens if we use Construction 1 for {0,1}*?
¢ ls it possible to find collisions of different length?

I\ Yes, consider H for which H(k,0m+) = 0 (for all k)
m For H' instantiated with above H: H'(k,0"||x) = H'(k, x)

T
W
5

7

Exercise 4

Tweak Construction 1 to obtain CRHF (i.e., for domain {0,1}")
m Hint: add appropriate padding in the end
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Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')
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Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')

»]
2% =X e {of

depth d-1=3

mVve {07 1}d Yy =Xy and Vv € {Oa 1}<d ‘Y = H(kayv||0||va1)

Exercise b

Show that if H is a compression function then so is H’
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Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')

»]
2% =X e {of

depth d-1=3

mVve {07 1}d Yy =Xy and Vv € {Oa 1}<d ‘Y = H(kayv||0||va1)

Exercise b

Show that if H is a compression function then so is H’

7 @ Is H' parallelisable?
¥ @ Can parts of input can be locally verified?
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m Task: sign arbitrarily long messages
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*Old tricks: chain, tree-based constructions*
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m Unkeyed compression fn. for fixed input (block)/output length
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m Unkeyed compression fn. for fixed input (block)/output length

m Message Digest (MD) family

MD5 (512/128): collisions have been found! , -
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How to Construct Compression Functions in Practice?

m Unkeyed compression fn. for fixed input (block)/output Iene:th
m Message Digest (MD) family
MD5 (512/128): collisions have been found!,

5
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m Secure-Hashing Algorithm (SHA) family

m SHA2 (512/256,1024/512...): Davis-Meyer compression function
m SHA3 (1152/224,576,512): “Sponge”-based compression function
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m Based on DLP in Z): {H : (Z;)* x Z3 — 7.5}, where

H((ga h)a (aa b)) = gahb mod p
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.How to solve DLP given a collision ((a, b), (&', b'))?
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m Based on DLP in Z): {H : (Z;)* x Z3 — 7.5}, where

H((g’ h)’ (aa b)) = gahb mod p

.How to solve DLP given a collision ((a, b), (&', b'))?
m Based on subset-sum problem:

H((a1,..,an), 5l ... |Ixa) == Y _ xaj mod p
i€[1,n]

@ When is H compressing?
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How to Construct Compression Functions in Theory?

m Based on DLP in ZJ: {H : (Z ) X Zz — Zp }, where
H((g. h)(a, b)) := g?h® mod p

@How to solve DLP given a collision ((a, b), (&', b'))?
m Based on subset-sum problem:

H((a1,...,an), x| ... ||xn) == Z xjaj mod p
i€[1,n]

@When is H compressing? When we set p < 2"
@How to solve subset-sum given a collision?

13/14



m Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"
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Recap/Next Lecture

m Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"

m Domain extension

m Merkle-Damgard transform
m Merkle trees

m Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical /keyed: based on DLP and subset-sum problem
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Recap/Next Lecture

Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"

Domain extension

m Merkle-Damgard transform
m Merkle trees

Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical /keyed: based on DLP and subset-sum problem

Next lecture:

m Efficient many-time signatures
m New primitive: trap-door (one-way) permutation (TDP)
m Proof in random oracle model (ROM)
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