CS409m: Introduction to Cryptography

Lecture 16 (10/Oct/25)

Instructor;: Chethan Kamath



m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA
Lamport’s Digital Signature One-Way Function

+

J001] Sign(ch,m)
10N

=Ch
h (en(19)

e allnv(fa(x)) € AN

oWikpedia |1 el U4

1/14



m Task: integrity and authentication in the public-key setting
m Threat model: EU-CMA
Lamport’s Digital Signature One-Way Function

+

J001] Sign(ch,m)
1on

=Ch
h (en(19)

e allnv(fa(x)) € AN

oWikpedia |1 el U4

¥4 Proof technique: plug and pray 7

1/14



Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS

2/14



Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

¢ 0
-

\nvecker

2/14



Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

X
¢ 0 <

-

\nvecker

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

N

X

\nvecker

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

N

M= -ll-- bbb

Bl Uy

—_— =

N \leﬂf(

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

N

(——iﬂ,)}
| l +6)
\ Pl/] 390 _
- b(ﬂ 101
}%m
P |

N \leﬂf(

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

N

© ABORT, IF ()= b
L $0)
Pl{] 390 _
--- b

Felg %

\nvecker

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

@ ABORT, IF ()= b

H()
Pl{] 390 _
--- b

Felg %

\nvecker

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

T‘
3{3:%/} < APJOF\Tl IF m[ q: b
) l §()
300 0
Plﬁ R Tl o
”7‘*ﬂﬂ 'i::/” %
<,
P
\neter

2/14



Lamport’s Signature is One-Time Secure

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

I
‘a H() © ABORT, IF ()= b
[900[Y]Y e _ L4 A?)O?\Tl IF mse[ f'X;b’
Plﬁ EIRiERT bl
”7‘*ﬂﬂ 'C::/ %
) S 3*
N
\neter

2/14



Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

FORGERY T‘
H() © ABORT, IF (= 4"
[0 [90[% _ L4 A?)O?\Tl Fen| o
- vl
”7‘*ﬂﬂ 'C::/ %
) g 3*
h 0 0 -—
\neter

2/14



Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

FORGERY

@ ABORT, IF ()= b

H() ¥ L
MR a © ABORT, IF ey (1) #b
qu

t — (e] - %

N \leﬂf(

2/14



Lamport’s Signature is One-Time Secure

If f is a OWF then Lamport’s scheme is a one-time DS

Proof sketch: proof by reduction.  Idea: “plug and pray”.

FORGERY T‘
H() © ABORT, IF (= 4"
‘joo 2 _ ® A?)O?\Tl IF mse[ f'X;b’
- g
”7‘*ﬂﬂ 'C::/ %
Y, g 3*
e
N \lqu(
(Aalysis on hkebortd) |

2/14



Lamport’s Signature is One-Time Secure...

Theorem 2 ([Mer90a, Gol87

If one-time DS and PRFs exists then many-time DS exists

2/14



Lamport’s Signature is One-Time Secure...

Theorem 2 ([Mer90a, Gol87

If one-time DS and PRFs exists then many-time DS exists

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS

2/14



Lamport’s Signature is One-Time Secure...

Theorem 2 ([Mer90a, Gol87

If one-time DS and PRFs exists then many-time DS exists

Theorem 1

If f is a OWF then Lamport’s scheme is a one-time DS for fixed-length
messages!

Exercise 1 (Domain Extension)

Given a compressing function H : {0,1}* — {0,1}", construct a
one-time DS for arbitrary-length messages. What are the properties you
need from H to ensure that the one-time DS is secure?

2/14



m Task: sign arbitrarily long messages
m Threat model: EU-CMA

SR

7
' Hash Function Domain Extension {NEN}

e

k sinonizin N snclmt o B

FLyon ToP.
ZeETon

FLaNGE _—
secrion

ceNTER swiveL
pulley

RuNGS
(FLAT OR ROUND)

pLASTIC RAIL.
closlREs

Foor In OR 12 n END.
ASSEwL- PACING

©ANSI/Archive.org

©Prof. Bill Buchanan/Medium

©cs.au.dk/~ivan

3/14



m Task: sign arbitrarily long messages
m Threat model: EU-CMA

,m‘// MI‘/
{NQN\ Hash Function Domain Extensmn%l\l%m

k sinonizin N snclmt o B

FLyon ToP.
ZeETon

FLaNGE _—
secrion

ceNTER swiveL
pulley

RuNGS
(FLAT OR ROUND)

/lll |

g

pLASTIC RAIL.
closlREs

glnor 12 1nEND.
SPACIG

Foor
ASSEwL-

©ANSI/Archive.org

©Prof. Bill Buchanan/Medium

©cs.au.dk/~ivan

74 0ld tricks: chain, tree-based constructions 7

3/14



Task: sign arbitrarily long messages

: EU-CMA
{1\1% Hash Function Domain Extension
* Y

e
i

" I .
b 75

© Prof. Bill Buchanan/Medium

© cs.au.dk/~ivan

Old tricks: chain, tree-based constructions

3/14



9
&
(. ' ) we o

4/14



‘ ‘ > BB (SIGNER)

m Hash-then-sign: compute “hash” h = H(m) and then sign h

4/14



‘ ‘ > BB (SIGNER)

m Hash-then-sign: compute “hash” h = H(m) and then sign h
'What are the requirements from H? When can |2 forge?

4/14



‘ ‘ > BOB (SIGNER)

m Hash-then-sign: compute “hash” h = H(m) and then sign h
'What are the requirements from H? When can |2 forge?
m Must be one-way. Is one-wayness sufficient?

4/14



‘ ‘ > BOB (SIGNER)

m Hash-then-sign: compute “hash” h = ) and then sign h
.What are the requirements from H? When can = forge?

m Must be one-way. Is one-wayness sufficient?
/\ No, it must be hard to find inputs that “collide”

m Collisions are guaranteed to exist (pigeonhole principle)
m Is “collision-resistance” sufficient?

4/14



Extending Lamport's One-Time DS for Long Messages

= [h] GEWND

=

U() Om(‘n) /

Yio| Yz Yoo )PF] 4

N\ Yu[Ya| - | Yu
-
— ®
) (ﬁ
() ue ionen

m Hash-then-sign: compute “hash” h = H(m) and then sign h
@ What are the requirements from H? When can forge?

m Must be one-way. Is one-wayness sufficient?
/\ No, it must be hard to find inputs that “collide”

m Collisions are guaranteed to exist (pigeonhole principle)

m Is “collision-resistance” sufficient? Yes, as we’ll see.

4/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
By () = Hb )

(xix2) ! (k)

Nepd nat e sonelength 2

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
By () = Hb )

(xix2) ! (k)

Nepd nat e sonelength 2

@)f H, and H, are CRHFs then is H?

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
Hash-then-append: H(k,x) := Hy(k,x)]||0

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
o7 A Hash-then-append: H(k,x) := Hi(k, x)||0
Hash-then-truncate: H(k,x) := y1||...||yn—1, where
nll--llys = Hu(k, x)

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible.
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
7l Hash-then-append: H(k,x) := Hy(k, x)||0
E VA Hash-then-truncate: H(k,x) := y1|...|lyn—1, where

nll---llya = Hu(k, x)
Hash-then-XOR: H(k1||k2,X) = Hl(kl,X) D HQ(kQ,X)

5/14



Collision-Resistant Hash Function (CRHF)

Definition 1 (CRHF, with key generation algorithm Gen)
A keyed function (family) {H : K x {0,1}* — {0,1}"} is a CRHF if for
every PPT collision-finder ©, the following is negligible. i
H(k H(k
Bty () = Hlb )

(xix2) 1 (k)

Nepd nat e sanelength 2

@)f H, and H, are CRHFs then is H?
7l Hash-then-append: H(k,x) := Hy(k, x)||0
E VA Hash-then-truncate: H(k,x) := y1|...|lyn—1, where

nll---llya = Hu(k, x)
2 Hash-then-XOR: H(k1||k2,X) = Hl(kl,X) D HQ(kQ,X)

Exercise 2
Prove formally cases where H is CRHF; describe counter-e.g. otherwise

5/14



@ What about a deterministic O(2")-time collision-finder?

6/14



.What about a deterministic O(2")-time collision-finder?
g Exploit pigeonhole principle

6/14



.Wh/at about a deterministic O(2")-time collision-finder?

g Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 0]/0",...,0||1",1]|0"
m There must exist colliding pair of inputs

.Can we do better?

6/14



Let's (Slowly) Find Collisions in H!
O

@Wh/at about a deterministic O(2")-time collision-finder?

@ Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 0]/0",...,0||1",1]|0"
m There must exist colliding pair of inputs

@ Can we do better? Yes, recall birthday paradox:
Theorem 3 (Lecture 2)

Let g < /22" elements (y1,...,yq) be chosen uniformly and
independently at random from {0,1}", then

Pri3i #j s.t. yi = tj] > q(q — 1)/42"

@ How does a randomised O(2"/2)-time collision-finder work?

6/14



Let's (Slowly) Find Collisions in H!
O

@Wh/at about a deterministic O(2")-time collision-finder?

@ Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 0]/0",...,0||1",1]|0"
m There must exist colliding pair of inputs

@ Can we do better? Yes, recall birthday paradox:
Theorem 3 (Lecture 2)

Let g < /22" elements (y1,...,yq) be chosen uniformly and
independently at random from {0,1}", then

Pri3i #j s.t. yi = tj] > q(q — 1)/42"

@ How does a randomised O(2"/2)-time collision-finder work?

6/14



Let's (Slowly) Find Collisions in H!
O

@Wh/at about a deterministic O(2")-time collision-finder?

@ Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 0]/0",...,0||1",1]|0"
m There must exist colliding pair of inputs

@ Can we do better? Yes, recall birthday paradox:
Theorem 3 (Lecture 2)

Let g < /22" elements (y1,...,yq) be chosen uniformly and
independently at random from {0,1}", then

Pri3i #j s.t. yi = tj] > q(q — 1)/42"

@ How does a randomised O(2"/2)-time collision-finder work?
m Compute hash of g := O(2"/2) random inputs xi, ..., x, < {0,1}"
m By Theorem 3, with noticeable probability there exists a colliding pair

6/14



Let's (Slowly) Find Collisions in H!
O

@Wh/at about a deterministic O(2")-time collision-finder?

@ Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 0]/0",...,0||1",1]|0"
m There must exist colliding pair of inputs

@ Can we do better? Yes, recall birthday paradox:
Theorem 3 (Lecture 2)

Let g < /22" elements (y1,...,yq) be chosen uniformly and
independently at random from {0,1}", then

Pri3i #j s.t. yi = tj] > q(q — 1)/42"

@ How does a randomised O(2"/2)-time collision-finder work?
m Compute hash of g := O(2"/2) random inputs xi, ..., x, < {0,1}"
m By Theorem 3, with noticeable probability there exists a colliding pair

Consequence: key-size/output length must be 2x security level

6/14



Extending Lamport’'s One-Time DS for Long Messages...

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: Inv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et
Case @L: H(km)=H(km") L Case L : H(k )2H(km) =1

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et
Cagse @L: H(km)=H(km") L Case L : H(k )2H(km) =1

- : U
L ,m*) Lolli si on l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y){)Ofgs = \(\\'QA? f

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and ostpots forgery (et
Cagse @L: H(km)=H(km") L Case L : H(k )2H(km) =1

- : U
L ,m*) Lolli si on l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y){)Ofgs = \(\\'QA? f

(3

(olliswn Finder

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and oSO forgery ,0*)
Cagse @L: H(km)=H(km") L Cage @L : H (ki) bt(kom) ="

- : U
L /m*) OH\ SioN l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y)PO{%‘S = \(\\'QA? ﬂ’

k)

.

(olliswn Finder

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and oSO forgery ,0*)
Cagse @L: H(km)=H(km") L Cage @L : H (ki) bt(kom) ="

- : U
L /m*) OH\ SioN l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y)PO{%‘S = \(\\'QA? ﬂ’

gqm?b(% " ?H)

qy
AR
he s ('Y ﬁ
(olliswn Finder

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
& Suppose quenes some me o and oSO forgery ,0*)
Cagse @L: H(km)=H(km") L Cage @L : H (ki) bt(kom) ="

- : U
L /m*) OH\ SioN l(OY H (h*”/ Q'j) J(Drgpv\(g JKQr [O{Y)PO{%‘S = \(\\'QA? ﬂ’

gqm?b(% " ?H)

“(Pﬁ k»

<« 7
TN
%_/_?L/ X

(llistan Hder

N m*)

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 9F for H <= 3Tam for “hash-then-sign”.
@ Suppose queres some Mol ang uﬁpah foxgeny o )
L Cage @L : H (ki) bt(kom) ="

: J o,
(w0 Yorgery for lOMPOf%S = i §

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 9F for H <= 3Tam for “hash-then-sign”.
@ Suppose queres some Mol ang uﬁpah foxgeny o )
L Cage @L : H (ki) bt(kom) ="

: J o,
(w0 Yorgery for lOMPOf%S = i §

\necker

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 9F for H <= 3Tam for “hash-then-sign”.
@ Suppose queres some Mol ang uﬁpah foxgeny o )
L Cage @L : H (ki) bt(kom) ="

: J o,
(w0 Yorgery for lOMPOf%S = i §

g{—? oﬂ:
lnvecter

7/14



Extending Lamport’'s One-Time DS for Long Messages...

Theorem 4

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
@ SUppse queres some me ol ang ostpots forgery (et
L (ase @L - Hk, );H@«m*) W

Q\ ¢ )J(orgmj JKor MM{D{%S = nled

L "Pug’ 3*0% (¥) 1 ™
H \geﬂﬂmsfé (6k, P5)

O(Ph )
"—?o )

\necker

7/14



Extending Lamport’'s One-Time DS for Long Messages...

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
@ SUppse queres some me ol ang ostpots forgery (et
L (ase @L - Hk, );H@«m*) W

Q\ ¢ )J(orgmj JKor MM{D{%S = nled

L ug/ 3*0% (+e) 1 \\\\
| genente (6, ft) \\
; N frayi ey )mﬁb )

O(Ph )
"—? ) <&
\n\vecter a

7/14



Extending Lamport’'s One-Time DS for Long Messages...

If f is a OWF and H is CRHF then the “hash-then-sign” scheme is a
one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H <= 3Tam for “hash-then-sign”.
@ SUppse queres some me ol ang ostpots forgery (et
L (ase @L - Hk, );H@«m*) W

Q\ ¢ )J(orgmj JKor MM{D{%S = nled

o Ug \30} (xb) \\\\
genfzm‘fa (6%, ‘?w) \\
E \\\\ \? \'09 (K) ) [\ﬂ #b /\

wag (K,m‘?)[\ﬂ b/
P o(mﬁk“
\nvecter v 8




m Task: sign arbitrarily long messages
: EU-CMA

MM//&
W3

=
Domain Extension {N&

Hash Function

sinoRizinEnD smm}: I
<

rvontor— Il

ZeETon
FLance——fIfl_ -
secrion
ceNTER swiveL
34
fopE—|

©ANSI/Archive.org

*Old tricks: chain, tree-based constructions*

7/14



m Compression function: hash function for fixed input length ¢(n) > n

* Easier to construct in practice: e.g., MD5, SHA2 (unkeyed) m
{ n

compression function of certain block-size

k

8/14



Compression Functions and Domain-Extension

m Compression function: hash function for fixed input length ¢(n) > n

Easier to construct in practice: e.g., MD5, SHA2 (unkeyed)
compression function of certain block-size H

Definition 2 (¢(n)-compression function)

A keyed function (family) {H : K x {0,1}*™ — {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.

H(k H(k
P [ ) = Hlk o)
(xt%x2)<—1 (k)

sofelengh 2

8/14



Compression Functions and Domain-Extension

m Compression function: hash function for fixed input length ¢(n) > n

Easier to construct in practice: e.g., MD5, SHA2 (unkeyed)
compression function of certain block-size H

Definition 2 (¢(n)-compression function)

A keyed function (family) {H : K x {0,1}*™ — {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.

H(k H(k
P [ ) = Hlk o)
(xt%x2)<—1 (k)

sofelengh 2

m Domain extension: ¢(n)-compression function
= L(n)-compression function for L(n) > {(n) 7 H N



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

%Dﬂﬂtn)3l = | Ly ‘ X | Lz | - | ) | o |j€w&| 1ml
2n
N+
(W), k!
3
—

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

%Dﬂﬂtn)3l = | ! ‘ X | Lz | - | ) | o |j€w&| 1ml
2n
Ol’\
N+
y o k!
k &
‘——?

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

)

P AT 5 [ el
an
Ol’\
H‘
k R RAE
—

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

)

it

X = | Ly ‘ X, | Lo | ‘11 | |12n—}| 'Lml

2n

““ H!

Y U l%z

On

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

)

it

axi|11|lz|’f-a|

2n

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

)

it

axi|11|lz|’f-a|

T
\ji=H/(\‘/X)

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

)

it

axi|11|lz|’f-a|

7
m H'(k,x) := y2n, where FENNCEY
m y1:= H(k,0||x1) and y; := H(k, yi—1]|x;) for i € [2,2n]

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

T
m H'(k,x) = y2n, where :=1Gg%)
m y1:= H(k,0||x1) and y; := H(k, yi—1]|x;) for i € [2,2n]

Exercise 3

Show that if H is a compression function then so is H’

@ Is H’ parallelisable?
@ Can parts of input can be locally verified?

9/14



Approach |: Merkle-Damgard Construction (Chaining)

Construction 1 ((n + 1)-compression fn. H = 2n-compression fn. H')

T
m H'(k,x) = y2n, where :=1Gg%)
m y1:= H(k,0||x1) and y; := H(k, yi—1]|x;) for i € [2,2n]

Exercise 3

Show that if H is a compression function then so is H’

K3 @ Is H parallelisable?
K2 @ Can parts of input can be locally verified?

9/14



@ What happens if we use Construction 1 for {0,1}*?

10/14



@ What happens if we use Construction 1 for {0,1}*?
é Is it possible to find collisions of different length?

10/14



@ What happens if we use Construction 1 for {0,1}*?
é Is it possible to find collisions of different length?

/\ Yes, consider H for which H(k,0m*1) = 0" (for all k)
m For H’ instantiated with above H: H'(k,0"||x) = H'(k, x)

10/14



Approach |: Merkle-Damgard Construction (Chaining)...

@ What happens if we use Construction 1 for {0,1}*?
¢ ls it possible to find collisions of different length?

I\ Yes, consider H for which H(k,0m+) = 0 (for all k)
m For H' instantiated with above H: H'(k,0"||x) = H'(k, x)

T
W
5

7

Exercise 4

Tweak Construction 1 to obtain CRHF (i.e., for domain {0,1}")
m Hint: add appropriate padding in the end

10/14



Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')

»]
2% =X e {of

depth d-1=3

11/14



Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')

»]
2% =X e {of

depth d-1=3

mVve {07 1}d Yy =Xy and Vv € {Oa 1}<d ‘Y = H(kayv||0||va1)

Exercise b

Show that if H is a compression function then so is H’

11/14



Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')

»]
2% =X e {of

depth d-1=3

mVve {07 1}d Yy =Xy and Vv € {Oa 1}<d ‘Y = H(kayv||0||va1)

Exercise b

Show that if H is a compression function then so is H’

@ Is H' parallelisable?
@ Can parts of input can be locally verified?

11/14



Approach II: Merkle's Construction (Tree-Based)

Construction 2 (2n-compression fn. H = 292n-compression fn. H')

»]
2% =X e {of

depth d-1=3

mVve {07 1}d Yy =Xy and Vv € {Oa 1}<d ‘Y = H(kayv||0||va1)

Exercise b

Show that if H is a compression function then so is H’

7 @ Is H' parallelisable?
¥ @ Can parts of input can be locally verified?

11/14



m Task: sign arbitrarily long messages
: EU-CMA

MM//&
W3

=
Domain Extension {N&

Hash Function

sinoRizinEnD smm}: I
<

rvontor— Il

ZeETon
FLance——fIfl_ -
secrion
ceNTER swiveL
34
fopE—|

©ANSI/Archive.org

*Old tricks: chain, tree-based constructions*

7/14



m Unkeyed compression fn. for fixed input (block)/output length

12/14



m Unkeyed compression fn. for fixed input (block)/output length

m Message Digest (MD) family

MD5 (512/128): collisions have been found! , -

|A|B|C||?| 2 96Fo65abF 72270
FE
mesf]
ki~

[A]Bs[ec]o]

© SurachitW ikipedia

12/14



How to Construct Compression Functions in Practice?

m Unkeyed compression fn. for fixed input (block)/output Iene:th
m Message Digest (MD) family
MD5 (512/128): collisions have been found!,

5

967965206172270

a8 ]clpo] [ATBICIDIE[FIGIH]

Bl
;|-
ol

- =

M
[mm]

Y
[A]l B8] c]o] [ATBICIDIEIFIGIH]

Surachit/W ikipedia

m Secure-Hashing Algorithm (SHA) family

m SHA2 (512/256,1024/512...): Davis-Meyer compression function
m SHA3 (1152/224,576,512): “Sponge”-based compression function

12/14



m Based on DLP in Z): {H : (Z;)* x Z3 — 7.5}, where

H((ga h)a (aa b)) = gahb mod p

13/ 14



m Based on DLP in Z): {H : (Z;)* x Z3 — 7.5}, where

H((ga h)a (aa b)) = gahb mod p

.How to solve DLP given a collision ((a, b), (&', b'))?

13/14



m Based on DLP in Z): {H : (Z;)* x Z3 — 7.5}, where

H((g’ h)’ (aa b)) = gahb mod p

.How to solve DLP given a collision ((a, b), (&', b'))?
m Based on subset-sum problem:

H((a1,..,an), 5l ... |Ixa) == Y _ xaj mod p
i€[1,n]

@ When is H compressing?

13/14



How to Construct Compression Functions in Theory?

m Based on DLP in ZJ: {H : (Z ) X Zz — Zp }, where
H((g. h)(a, b)) := g?h® mod p

@How to solve DLP given a collision ((a, b), (&', b'))?
m Based on subset-sum problem:

H((a1,...,an), x| ... ||xn) == Z xjaj mod p
i€[1,n]

@When is H compressing? When we set p < 2"
@How to solve subset-sum given a collision?

13/14



m Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"

14/14



m Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"

m Domain extension

m Merkle-Damgard transform
m Merkle trees

14/14



Recap/Next Lecture

m Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"

m Domain extension

m Merkle-Damgard transform
m Merkle trees

m Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical /keyed: based on DLP and subset-sum problem

14/14



Recap/Next Lecture

Introduced a new primitive: collision-resistant hash function

m Application: sign long messages
m Also yields MAC for long messages! Refer to "HMAC"

Domain extension

m Merkle-Damgard transform
m Merkle trees

Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical /keyed: based on DLP and subset-sum problem

Next lecture:

m Efficient many-time signatures
m New primitive: trap-door (one-way) permutation (TDP)
m Proof in random oracle model (ROM)

14/14



References

You can read about hash functions and collision resistance in [KL14,
Chapter 6].

Hash functions were first studied in [WC81], but they considered
pairwise-independence/universal hashing

Collision resistance, and other cryptographic properties of hash
functions were studied later [Dam88, Dam90, NY89, Mer90b] a
thorough historical perspective can be found in [RS04]

14/14



@ lvan Damgard.
Collision free hash functions and public key signature schemes.

In David Chaum and Wyn L. Price, editors, EUROCRYPT 87, volume 304 of
LNCS, pages 203-216. Springer, Berlin, Heidelberg, April 1988.

@ lvan Damgard.
A design principle for hash functions.

In Gilles Brassard, editor, CRYPTO'89, volume 435 of LNCS, pages 416—427.
Springer, New York, August 1990.

[ Oded Goldreich.
Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.

In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
104-110. Springer, Berlin, Heidelberg, August 1987.

@ Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

B Ralph C. Merkle.
A certified digital signature.

In Gilles Brassard, editor, CRYPTQ'89, volume 435 of LNCS, pages 218-238.
Springer, New York, August 1990.

14/14



Ralph C. Merkle.
One way hash functions and DES.

In Gilles Brassard, editor, CRYPTQ'89, volume 435 of LNCS, pages 428-446.
Springer, New York, August 1990.

Moni Naor and Moti Yung.
Universal one-way hash functions and their cryptographic applications.
In 21st ACM STOC, pages 33-43. ACM Press, May 1989.

Phillip Rogaway and Thomas Shrimpton.

Cryptographic hash-function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, and collision resistance.

In Bimal K. Roy and Willi Meier, editors, FSE 2004, volume 3017 of LNCS,
pages 371-388. Springer, Berlin, Heidelberg, February 2004.

Mark N. Wegman and J.Lawrence Carter.
New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265-279, 1981.

14/14



	Hash Functions
	Compression Functions and Domain-Extension

