CS409m: Introduction to Cryptography

Lecture 17 (15/Oct/25)

Instructor: Chethan Kamath



m Primitive: digital signature (DS)
m Threat model: EU-CMA
Lamport’s One-Time DS Hash-then-Sign
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m Based on DLP in Z): {H : (Z;)* x Z3 — 7}, where

Hg n(a, b) := g?h? mod p
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m Based on DLP in Z): {H : (Z;)* x Z3 — 7}, where
Hg n(a, b) := g?h? mod p

.How to compute discrete-log of h given a collision ((a, b), (&', b'))7?
m Based on subset-sum problem?

Hay,.oan(xall - xn) := ) xjaj mod p
i€[1,n]

@ When is H compressing? When we set p < 27
@) How to solve subset-sum given a collision?
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m Task: efficient (many-time) digital signatures
m Threat model: EU-CMA
{I\j:%:@ Via Hash-then-Invert Via Identification Protocols%ﬁﬁé@
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Task: efficient (many-time) digital signatures
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Collection of OWFs

Definition 1 (One-way function (OWF) collection)

A collection of functions f := {f; : D; — Ri}iezg{o,l}* is one-way if
There is an efficient index-sampling algorithm Index ~ &i §; Ri

Each f; in collection is efficiently computable . (f
For all PPT inverters ., the following is negligible: ’
p(n):=  Pr [1(fi(x)) € fH{fi(x))]

i<—Index(1")
X(—D,’
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Collection of OWFs

Definition 1 (One-way function (OWF) collection)

A collection of functions f := {f; : D; — Ri}iezg{o,l}* is one-way if
There is an efficient index-sampling algorithm Index ~ &i §; Ri

Each f; in collection is efficiently computable
For all PPT inverters ., the following is negligible:
p(n):=  Pr [1(fi(x)) € fH{fi(x))]

i<—Index(1")
X(—D,’

m One-way permutation (OWP): D; = R; and f; injective
Recall examples:

RSA function (power mod semiprime N = pq): fy o(x) := x¢ mod N
Exponentiation function (modulo prime p): f, ,(x) := g* mod p
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Collection of Trapdoor OWP

Definition 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D; — Di}iezg{o,l}* is trapdoor
one-way if
There is an efficient index+trapdoor sampling algorithm Index
Each f;, i € Z, is efficiently computable
For all PPT inverters ', the following is negligible:
O g R B . 1
, p(n) = Pr [(fi(x)) € £ (£i(x))]

(7,7)+Index(1™)
x<D;
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Collection of Trapdoor OWP

Definition 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D; — Di}iezg{o,l}* is trapdoor
one-way if
There is an efficient index+trapdoor sampling algorithm Index
Each f;, i € Z, is efficiently computable
For all PPT inverters ', the following is negligible:
O g R B . 1
p(n) = Pr [(fi(x)) € £ (£i(x))]

(7,7)+Index(1™)
x<D;

4] fl-_l can be efficiently computed given trapdoor 7 for i
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m RSA function {fy e : Zp — Z,T,}N .+ defined as

fne(x) == x® mod N

m fy . is permutation when GCD(e,(p —1)(g — 1)) =1
m One-way by RSA assumption
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m RSA function {fy e : Zp — Z,T,}N .+ defined as

fne(x) == x® mod N

m fy . is permutation when GCD(e,(p —1)(g — 1)) =1
m One-way by RSA assumption
7t The trapdoor is d := e~ mod (p — 1)(q — 1)

m Exponentiation function {fp ¢(x) : Z; — Z; }p ¢, defined as

fo,g(x) :=g* mod p

m f, . is permutation
m One-way by discrete-log assumption
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Collection of Trapdoor OWP...
m RSA function {fy e : Zp — Z,TI}N .+ defined as

fne(x) == x® mod N

m fy e is permutation when GCD(e,(p —1)(¢ — 1)) =1
m One-way by RSA assumption
The trapdoor is d := e~ mod (p — 1)(g — 1)

m Exponentiation function {fp ¢(x) : Z; — Z; }p ¢, defined as

fo.g(x) := g* mod p

m f, . is permutation
m One-way by discrete-log assumption
/A We don’t know a trapdoor!
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m 1) Compute “hash” h = H(k, m) 2) sign h using Lamport’s OTDS
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Recall: “"Hash-Then-Sign” Paradigm

1) Compute “hash” h = H(k, m) 2) sign h using Lamport’s OTDS

; ta

~ /
l o ben(1D)
[ (Yo _ =Pl &

- \ ?:j
PF’ BB (SIGNER)

Theorem 4 (from Lecture 16, rephrased)

If Lamport’s scheme is OTDS and H is CRHF then “hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.
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; ta

~ /
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PF’ BB (SIGNER)

Theorem 4 (from Lecture 16, rephrased)

If Lamport’s scheme is OTDS and H is CRHF then “hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

@ How can a TDP be useful here?
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Recall: “"Hash-Then-Sign” Paradigm

1) Compute “hash” h = H(k, m) 2) sign h using Lamport’s OTDS
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Theorem 4 (from Lecture 16, rephrased)

If Lamport’s scheme is OTDS and H is CRHF then “hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

@How can a TDP be useful here? To replace Lamport's OTS!
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él) Compute “hash” h = H(k, m) 2) invert h using trapdoor p,
m “Full domain” hash function H : K x {0,1}" — D;
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él) Compute “hash” h = H(k, m) 2) invert h using trapdoor p,
m “Full domain” hash function H : K x {0,1}" — D;

sign(e,m
syle)
¢ = i (h) where n=H)

ke UGen(") (@ ¢ Inder )
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él) Compute “hash” h = H(k, m) 2) invert h using trapdoor p,
m “Full domain” hash function H : K x {0,1}" — D;

n H ;) 0 , S"

sign(e,m
syle)
¢ = i (h) where n=H)

ke UGen(") (@ ¢ Inder )

B0B (SICNER)
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él) Compute “hash” h = H(k, m) 2) invert h using trapdoor p,
m “Full domain” hash function H : K x {0,1}" — D;

n HE,) 0 , S"

siga(em)
Ver (Phn©) = fi (h) where wi=HE)
h=H(m)

AR € §(@)=h

ke UGen(") (@ ¢ Inder )

BJB GICNER)
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él) Compute “hash” h = H(k, m) 2) invert h using trapdoor p,
m “Full domain” hash function H : K x {0,1}" — D;

n ALt 0 S“

siga(em)
Ver (Ph) = £ () where =R
h:=H(m)

ke UGen(") (@ ¢ Inder )

f BOB (SIGNER)
Efficiency, when using RSA function (i.e., RSA-FDH)

fne(x) == x° mod N

m Public key: (N, e) and description of H
m Signature: one element of Zj
m Signing/verification: one exponentiation + hash evaluation
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.Is H being CRHF sufficient to prove security?
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Let's Prove Security of “Hash-then-Invert”

@Is H being CRHF sufficient to prove security? Seems not, problem:

Need to invert a particular challenge y* Dl M) s,
Forger could forger any message m* W

Ny . e ” \)ﬁ7
G Exploit H to “link” forgery (¢, m*) and challenge y* \°
¥ Solution: model H as a random-oracle

Recall: H is a random function that all parties have oracle access to
Key idea: reduction “controls” H (programming): ‘
m Constructs H by on-the-fly/lazy sampling

m A “fresh” query m € {0,1}" replied with y + D; B
m A “repeat” query m responded consistently with y (in table)
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Let's Prove Security of “Hash-then-Invert”

@Is H being CRHF sufficient to prove security? Seems not, problem:

Need to invert a particular challenge y* Dl M) s,
Forger could forger any message m* W

é Exploit H to “link” forgery (*, m*) and challenge y* g
\gSolution' model H as a random-oracle

Recall: H is a random function that all parties have oracle access to
Key idea: reduction “controls” H (programming): ‘
m Constructs H by on-the-fly/lazy sampling
m A “fresh” query m € {0,1}" replied with y + D; B
m A “repeat” query m responded consistently with y (in table)

Theore mL"5

Iff isa TDP and H is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.

m Proof uses “plug and pray” (on the whiteboard)
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m Task: efficient (many-time) digital signatures

[ : EU-CMA
Via Hash-then-Invert Via Identification Protocols{m
L
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Tools: Trapdoor perm., plug-and-pray, Fiat-Shamir Transform
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‘How do you (the prover) identify yourself to ITB webmail server
(the verifier)?
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m Verifier must be convinced it is communicating with P rather than
an imposter
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|dentification in Public-Key Setting

@ How do you (the prover) identify yourself to ITB webmail server
(the verifier)? LDAP identity+password (via SSO)
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m |dentification in the public-key setting:

m Verifier (V) knows only the public key of the prover (P)
m Verifier must be convinced it is communicating with P rather than
an imposter

m E.g.: SSHing into a remote server
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Let's Look at the Syntax

Definition 3 ((Three-Round) Identification (ID) Protocol...)

... Mis a triple of PPT algorithms (Gen, P = (P1,P2),V) with the
following syntax:
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Let's Look at the Syntax

Definition 3 ((Three-Round) Identification (ID) Protocol...)

... Mis a triple of PPT algorithms (Gen, P = (P1,P2),V) with the
following syntax:

(Psh)<=Gen ) -
b (1)« 7 heegpe vk (PR XL) =

L= PZ (S/()

Exercise 1

Define the correctness requirement
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m The impostor (who doesn’t know the secret key):

m May see several transcripts: via Authg, oracle
m Should not be able to fool the verifier into accepting in the protocol
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How to Model Security?

m The impostor (who doesn’t know the secret key):

m May see several transcripts: via Authg, oracle
m Should not be able to fool the verifier into accepting in the protocol

Definition 4 (Security against passive attack)

An ID protocol I := (Gen, P = (P1,P2),V) is secure against passive
attacks if no PPT adversary can break I in the following game with
a non-negligible probability. (k)

(@]
Give pk to |1, for (pk, sk) + Gen(1") @p
(4
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How to Model Security?

m The impostor (who doesn’t know the secret key):

m May see several transcripts: via Authg, oracle
m Should not be able to fool the verifier into accepting in the protocol

Definition 4 (Security against passive attack)

An ID protocol I := (Gen, P = (P1,P2),V) is secure against passive
attacks if no PPT adversary can break I in the following game with

a non-negligible probability. Cpk)
PP .
1 Give pk to 1, for (pk,sk) < Gen(1"
H Give pk to or (pk, sk) + Gen(1") ﬁ@
queries to Authg () to get s @ e

T
When sends /*, respond with r* < R \
4] responds with L* and breaks I if ﬁ‘\\ﬂ@

V(pk,r*,L*) = I*
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|dentification to Signatures: Fiat-Shamir Transform

ol

& Intuition: 1D protocol “proves” P’s knowledge of sk

@ Problem: how to non-interactively generate V's message r?

m Replace V with a random oracle H: {0,1}" — R

m Signature on m is the “flattened” transcript where r := H(/||m)

Construction 1 (M := (Gen, (P1,P2),V) — X := (Gen, Sign"’, Vert))

@ m Signt(sk, m): output o := (/,r, L), where
(1,s) < Pi(sk), r :== H(l||m) and
L :=Py(s,r)
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|dentification to Signatures: Fiat-Shamir Transform

ol

& Intuition: 1D protocol “proves” P’s knowledge of sk

@ Problem: how to non-interactively generate V's message r?

m Replace V with a random oracle H: {0,1}" — R

m Signature on m is the “flattened” transcript where r := H(/||m)

Construction 1 (M := (Gen, (P1,P2),V) — X := (Gen, Sign"’, Vert))

m Signt(sk, m): output o := (/,r, L), where
(1,s) < Pi(sk), r :== H(l||m) and
L :=Py(s,r)

m Ver’(pk, o, m): accept iff r = H(I||m)
and V(pk,r,L) =1

If T1 is secure against passive attacks, then ¥ is EU-CMA secure if H is
modelled as random oracle
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Recall Elgamal PKE over group G of prime order ¢
m Gen: public key is h := g* and secret key is x € Z,
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Schnorr’s ID Protocol
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Protocol 1 (Schnorr’s ID protocol N := (Gen, (P1, P2),V))
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Recall Elgamal PKE over group G of prime order ¢
m Gen: public key is h := g* and secret key is x € Z,
m Schnorr’s ID protocol: authenticates Elgamal public key

Protocol 1 (Schnorr’s ID protocol N := (Gen, (P1, P2),V))

,?Z(/ Sek h,r/g,

sy
\)\: ‘KQ/ZQ/I~:@(
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Schnorr’s ID Protocol

Recall Elgamal PKE over group G of prime order ¢
m Gen: public key is h := g* and secret key is x € Z,
m Schnorr’s ID protocol: authenticates Elgamal public key

Protocol 1 (Schnorr’s ID protocol N := (Gen, (P1, P2),V))

reQ:Z/Q

<2y, set h+=9
shody 5 Q(L@k 4 hri;gl,
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Schnorr’s ID Protocol

Recall Elgamal PKE over group G of prime order ¢
m Gen: public key is h := g* and secret key is x € Z,
m Schnorr’s ID protocol: authenticates Elgamal public key

Protocol 1 (Schnorr’s ID protocol N := (Gen, (P1, P2),V))

reQ:Z/Q

<2y, set h+=9
shody 5 Q(L@k 4 hri;gl,
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m Intuition for M's passive security:
@ m Can compute correct L without knowing x?
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Schnorr’s ID Protocol

Recall Elgamal PKE over group G of prime order ¢
m Gen: public key is h := g* and secret key is x € Z,
m Schnorr’s ID protocol: authenticates Elgamal public key

Protocol 1 (Schnorr’s ID protocol N := (Gen, (P1, P2),V))

reQ:Z/Q

<2y, set h+=9
shody 5 Q(L@k 4 hri;gl,
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—_
P oL v
m Intuition for M's passive security:
m Can compute correct L without knowing x? Seems not
@ m It is possible to “extract” x from if fools V a lot!
m Does transcript reveal x?
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Schnorr’s ID Protocol

Recall Elgamal PKE over group G of prime order ¢
m Gen: public key is h := g* and secret key is x € Z,
m Schnorr’s ID protocol: authenticates Elgamal public key

Protocol 1 (Schnorr’s ID protocol N := (Gen, (P1, P2),V))

reQ:Z/Q

<2y, set h+=9
shody 5 Q(L@k 4 hri;gl,

% ‘(e?g /I ~:q(
% L=t+ra(mod () o, FEEN
@ é"lr
—_
P oL v
m Intuition for M's passive security:
m Can compute correct L without knowing x? Seems not
@ m It is possible to “extract” x from if fools V a lot!
m Does transcript reveal x? No, it can be “simulated”! ¢/
Sample r,s + Z;
Output (g°-h™",r,s)

00,
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Schnorr’s ID Protocol...

Theorem 7

If discrete-log assumption holds in G, then T is secure against passive
attacks

m Schnorr signature: apply Fiat-Shamir transform to I

Exercise 2

Formally describe Schnorr signature
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m Efficient digital signatures
m RSA-FDH: via hash-then-invert
m Tools: trapdoor permutation, random oracle programming
m Schnorr signature: via identification protocol
m Tool: Fiat-Shamir Transform
m Other efficient signatures: ECDSA and EdDSA

m Coming up in Lab Exercise 4!
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Recap/Next Module

m Efficient digital signatures
m RSA-FDH: via hash-then-invert
m Tools: trapdoor permutation, random oracle programming
m Schnorr signature: via identification protocol
m Tool: Fiat-Shamir Transform
m Other efficient signatures: ECDSA and EdDSA

m Coming up in Lab Exercise 4!

m Next Module: Applications!

m Zero-knowledge proof
m eVoting
m TLS/SSL
|
|

Secure messaging
Zerocash
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