

CS409m: Introduction to Cryptography

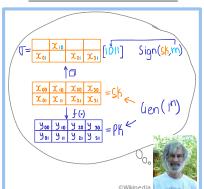
Lecture 17 (15/Oct/25)

Instructor: Chethan Kamath

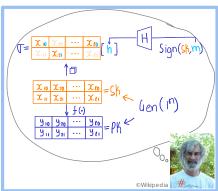
Recall from Last Two Lectures

- Primitive: digital signature (DS)
- Threat model: EU-CMA

Lamport's One-Time DS



Hash-then-Sign



Tools: OWF, CRHF and CRCF

How to Construct CRCF in Theory?

■ Based on DLP in \mathbb{Z}_p^{\times} : $\{H: (\mathbb{Z}_p^{\times})^2 \times \mathbb{Z}_p^2 \to \mathbb{Z}_p^{\times}\}$, where

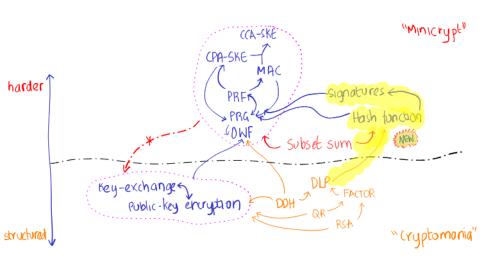
$$H_{g,h}(a,b) := g^a h^b \mod p$$

- ? How to compute discrete-log of h given a collision ((a, b), (a', b'))?
- Based on subset-sum problem?

$$H_{a_1,...,a_n}(x_1\|...\|x_n) := \sum_{i \in [1,n]} x_i a_i \mod p$$

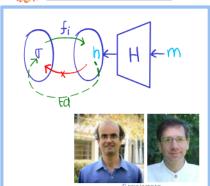
- When is H compressing? When we set $p < 2^n$
- Mow to solve subset-sum given a collision?

The Cryptographic Landscape

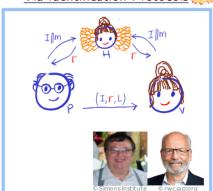


Plan for Today's Lecture...

- Task: efficient (many-time) digital signatures
- Threat model: EU-CMA



Via Identification Protocols



Tools: Trapdoor perm., plug-and-pray, Fiat-Shamir Transform

Collection of OWFs

Definition 1 (One-way function (OWF) collection)

A collection of functions $f := \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I} \subset \{0,1\}^*}$ is one-way if

- There is an efficient index-sampling algorithm Index
- **2** Each f_i in collection is efficiently computable
- 3 For all PPT inverters Inv, the following is negligible:

$$p(n) := \Pr_{\substack{i \leftarrow \text{Index}(1^n) \\ x \leftarrow \mathcal{D}_i}} [\text{Inv}(f_i(x)) \in f_i^{-1}(f_i(x))]$$

- One-way permutation (OWP): $\mathcal{D}_i = \mathcal{R}_i$ and f_i injective
- Recall examples:
 - **II** RSA function (power mod semiprime N = pq): $f_{N,e}(x) := x^e \mod N$
 - **2** Exponentiation function (modulo prime p): $f_{p,g}(x) := g^x \mod p$

Collection of Trapdoor OWP

Definition 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations $f = \{f_i : \mathcal{D}_i \to \mathcal{D}_i\}_{i \in \mathcal{I} \subseteq \{0,1\}^*}$ is **trapdoor** one-way if

- There is an efficient index+trapdoor sampling algorithm Index
- **2** Each f_i , $i \in \mathcal{I}$, is efficiently computable
- 3 For all PPT inverters Inv, the following is negligible:

$$p(n) := \Pr_{\substack{(i,\tau) \leftarrow \mathsf{Index}(1^n) \\ \mathsf{x} \leftarrow \mathcal{D}_i}} [\mathsf{Inv}(f_i(\mathsf{x})) \in f_i^{-1}(f_i(\mathsf{x}))]$$

 $\underline{\mathbf{d}} \mathbf{f}_{i}^{-1}$ can be efficiently computed given trapdoor τ for i

Collection of *Trapdoor* OWP...

RSA function $\{f_{N,e}: \mathbb{Z}_N^{\times} \to \mathbb{Z}_N^{\times}\}_{N,e}$, defined as

$$f_{N,e}(x) := x^e \mod N$$

- $f_{N,e}$ is permutation when GCD(e,(p-1)(q-1))=1
- One-way by RSA assumption
- \uparrow The trapdoor is $d:=e^{-1} \mod (p-1)(q-1)$
- **Exponentiation function** $\{f_{p,g}(x): \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}\}_{p,g}$, defined as

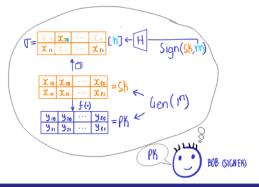
$$f_{p,g}(x) := g^x \mod p$$

- \bullet $f_{p,g}$ is permutation
- One-way by discrete-log assumption

⚠ We don't know a trapdoor!

Recall: "Hash-Then-Sign" Paradigm

■ 1) Compute "hash" h = H(k, m) 2) sign h using Lamport's OTDS



Theorem 4 (from Lecture 16, rephrased)

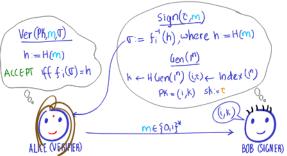
If Lamport's scheme is OTDS and H is CRHF then "hash-then-sign" scheme is a one-time EU-CMA for arbitrarily-long messages.

? How can a TDP be useful here? To replace Lamport's OTS!

TDP-based Signature: "Hash-then-Invert"

(1) Compute "hash" h = H(k, m) 2) invert h using trapdoor \mathfrak{p}_i

• "Full domain" hash function $H: \mathcal{K} \times \{0,1\}^* \to \mathcal{D}_i$



(i.e., RSA-FDH)

$$f_{N,e}(x) := x^e \mod N$$

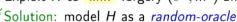
- Public key: (N, e) and description of H
- Signature: one element of \mathbb{Z}_N^{\times}
- Signing/verification: one exponentiation + hash evaluation

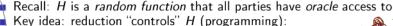
H(K;) 50 12

Let's Prove Security of "Hash-then-Invert"

- Is H being CRHF sufficient to prove security? Seems not, problem:
 - Need to invert a particular challenge y*
 - 2 Forger could forger any message m*

Exploit H to "link" forgery (σ^*, m^*) and challenge y^*





■ A "fresh" query m ∈ {0,1}* replied with y ← D_i

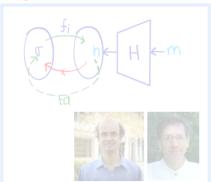
A "repeat" guery m responded consistently with y (in table)

If f is a TDP and H is a random oracle then "hash-then-invert" is EU-CMA for arbitrarily-long messages.

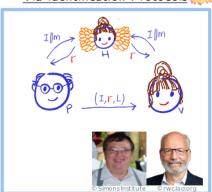
Proof uses "plug and pray" (on the whiteboard)

Plan for Today's Lecture...

- Task: *efficient* (many-time) digital signatures
- Threat model: EU-CMA



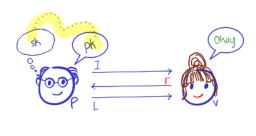
Via Identification Protocols



Tools: Trapdoor perm., plug-and-pray, Fiat-Shamir Transform

Identification in Public-Key Setting

(2) How do you (the prover) identify yourself to IITB webmail server (the verifier)? LDAP identity+password (via SSO)

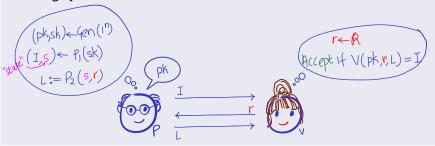


- Identification in the public-key setting:
 - Verifier (V) knows only the public key of the prover (P)
 - Verifier must be convinced it is communicating with P rather than an imposter
- E.g.: SSHing into a remote server

Let's Look at the Syntax

Definition 3 ((Three-Round) Identification (ID) Protocol...)

... Π is a triple of PPT algorithms (Gen, P = (P₁, P₂), V) with the following syntax:



Exercise 1

Define the correctness requirement

How to Model Security?

■ The impostor (who doesn't know the secret key):

- May see several transcripts: via Auth_{sk} oracle
- Should not be able to fool the verifier into accepting in the protocol

Definition 4 (Security against passive attack)

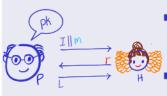
An ID protocol $\Pi := (\text{Gen}, P = (P_1, P_2), V)$ is secure against passive attacks if no PPT adversary Imp can break Π in the following game with a non-negligible probability.

- I Give pk to Imp, for $(pk, sk) \leftarrow Gen(1^n)$
- 2 Imp queries to Auth_{sk}() to get τ s
- **3** When Imp sends I^* , respond with $r^* \leftarrow \mathcal{R}$
- Imp responds with L^* and breaks Π if $V(pk, r^*, L^*) = I^*$

Identification to Signatures: Fiat-Shamir Transform

- Intuition: ID protocol "proves" P's knowledge of sk
 - Problem: how to non-interactively generate V's message r?
 - **Replace** V with a random oracle $H: \{0,1\}^* \to \mathcal{R}$
 - Signature on m is the "flattened" transcript where r := H(I||m)

Construction 1 ($\Pi := (\mathsf{Gen}, (\mathsf{P}_1, \mathsf{P}_2), \mathsf{V}) \mapsto \Sigma := (\mathsf{Gen}, \mathsf{Sign}^H, \mathsf{Ver}^H)$)



- Sign^H(sk, m): output $\sigma := (I, r, L)$, where $(I, s) \leftarrow P_1(sk)$, r := H(I||m) and $L := P_2(s, r)$
- $Ver^H(pk, \sigma, m)$: accept iff r = H(I||m)and V(pk, r, L) = I

Theorem 6

If Π is secure against passive attacks, then Σ is EU-CMA secure if H is modelled as random oracle

Schnorr's ID Protocol

- oting Recall Elgamal PKE over group $\mathbb G$ of prime order ℓ
 - Gen: public key is $h := g^x$ and secret key is $x \in \mathbb{Z}_\ell$
 - Schnorr's ID protocol: authenticates Elgamal public key

Protocol 1 (Schnorr's ID protocol $\Pi := (\mathsf{Gen}, (\mathsf{P}_1, \mathsf{P}_2), \mathsf{V}))$

Intuition for Π's passive security:

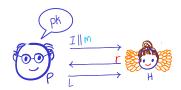
- Can Imp compute correct L without knowing x? Seems not
 - It is possible to "extract" x from Imp if fools V a lot!
- Does transcript reveal x? No, it can be "simulated"! **
 - 1 Sample $r, s \leftarrow \mathbb{Z}_{\ell}$
 - 2 Output $(g^s \cdot h^{-r}, r, s)$

Schnorr's ID Protocol...

Theorem 7

If discrete-log assumption holds in \mathbb{G} , then Π is secure against passive attacks

Schnorr signature: apply Fiat-Shamir transform to Π

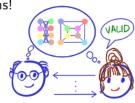


Exercise 2

Formally describe Schnorr signature

Recap/Next Module

- Efficient digital signatures
 - RSA-FDH: via hash-then-invert
 - Tools: trapdoor permutation, random oracle programming
 - Schnorr signature: via identification protocol
 - Tool: Fiat-Shamir Transform
 - Other efficient signatures: ECDSA and EdDSA
 - Coming up in Lab Exercise 4!
- Next Module: Applications!
 - Zero-knowledge proof
 - eVoting
 - TLS/SSL
 - Secure messaging
 - Zerocash



References

- Details about trapdoor permutation (TDP) can be found in [KL14, Chapter 15.1.1]. As a primitive, they were introduced by Yao [Yao82].
- 2 You can read about RSA-FDH in [KL14, Chapter 13.4.2]. A tighter analysis was done later on by Coron [Cor00].
- Identification protocols and its connections to signatures are discussed in [KL14, Chapter 13.5.1]. In particular, proof of Theorem 6 can be found in [KL14, Theorem 13.10]. Schnorr's identification protocol for DLP is then covered in [KL14, Chapter 13.5.2]. The protocol is originally from [Sch90].

On the exact security of full domain hash.

In Mihir Bellare, editor, *CRYPTO 2000*, volume 1880 of *LNCS*, pages 229–235. Springer, Berlin, Heidelberg, August 2000.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.

Claus-Peter Schnorr.

Efficient identification and signatures for smart cards.

In Gilles Brassard, editor, *CRYPTO'89*, volume 435 of *LNCS*, pages 239–252. Springer, New York, August 1990.

Andrew Chi-Chih Yao.

Theory and applications of trapdoor functions (extended abstract).

In 23rd FOCS, pages 80-91. IEEE Computer Society Press, November 1982.