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Wil .
@ What really constitutes a proof?

{@3} Interactive Proof (IP) Zero-Knowledge IP {@3}

©Wikipedia
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Plan for Today's Lecture...

ol .
@ What really constitutes a proof?

%N&ﬁ Interactive Proof (IP) Zero-Knowledge IP wéﬂ

I
© blog.com putationalcom plexity.org

# Main tools: simulation paradigm, Chernoff bound...
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m Applications of IP: Verifiable outsourcing
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m Applications of IP: Verifiable outsourcing
. @ D

@@

S
m Applications of ZKP:

a’.\,//
m eVoting: coming up in Lecture 20! hellk‘JS

Trust the vote.

m Crypto(currencies): prove validity of transaction without revealing
e details: coming up in Lecture 23!
m Efficient digital signatures: Schnorr ID protocol
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What really constitutes a proof?

{@3} Interactive Proof (IP) Zero-Knowledge IP

©Wikipedia
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Main tools: simulation paradigm, Chernoff bound...
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. derivation rules
m Axioms ——————— theorems=true statements

m E.g.: Axioms of Euclidean geometry

Theorem: “Sum of angles of a triangle equals 180"
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. derivation rules
m Axioms ——————— theorems=true statements

m E.g.. Axioms of Euclidean geometry

Theorem: “Sum of angles of a triangle equals 180

D v/ €
P\ (

m Prover vs. verifier
Prover does the heavy lifting: derives the proof

Construct a line through B parallel to AC
/DBA = /a and ZEBC = /c (alternate interior angles)
2= /a+/b+ ZLc=/DBA+ Zb+ ZEBC =180°
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Traditional “NP" Proof

. derivation rules
m Axioms ——————— theorems=true statements

m E.g.: Axioms of Euclidean geometry

o1

(>Theorem: “Sum of angles of a triangle equals 180

m Prover vs. verifier
Prover does the heavy lifting: derives the proof

Construct a line through B parallel to AC
/DBA = Za and ZEBC = /c (alternate interior angles)
2= /a+/b+ ZLc=/DBA+ Zb+ ZEBC =180°

Verifier checks the proof, step by step

A
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m Corresponds to the class NP
m A language £ € NP if there exists a polynomial-time deterministic

machine V such that
- iness fprook
LT Ny € £ 3 short” 7 1 V(x,m)=1
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m Corresponds to the class NP

m A language £ € NP if there exists a polynomial-time deterministic
machine V such that

wi\:nag/’\xoojf
S%aum“t/\‘VX € L 3 short” 7:V(x,7) =1
m NP is the class of all such Ls (e.g., Sudoku) 2 : 1 ; 5

98 6
8 6 3
4 8 |3 1
7 2 6

6 2.8
419 5
8 7.9

©Tim Stellm ach/W ikipedia
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8 6 3
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oovee P \erifier \
m “Proof system” view of NP

m Prover P is unbounded: finds short proof = for x (if one exists)
m Verifier V is efficient: checks proof 7 against the statement x
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Traditional “NP"” Proof...

m Corresponds to the class NP
m A language £ € NP if there exists a polynomial-time deterministic

machine V such that
| wikness froof
datenett ™ Syx e £ 3 “short” 7 : V(x,7) =1

m NP is the class of all such Ls (e.g., Sudoku) s3[ L7
o8] | 6
8 | | |6 3
4 8 |3]
7 2 6
6 | 2|8 |
419 5
8 79
Tim Stel W ikipedia

peover P \erifier \
m “Proof system” view of NP
m Prover P is unbounded: finds short proof = for x (if one exists)
Verifier V is efficient: checks proof 7 against the statement x
Completeness: x € £L = P finds 7 = V(x,7) =1
Soundness: x & L = A “short” 7 s.t. V(x,7) =1
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Quadratic residuosity (QR)
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)
e //;QZZPE‘;\\J
L0, @) o ) )/
T B
M & ~\ p -
Ligp={(Ny) : I1eZy S Y= vodN| L= {0h) : prezy st y=x wod Ny

Graph isomorphism (Gl)

ogmji@o/ol) JparmpkationT 4&.0‘=T¥(0u)]§
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)

At & ‘
g = &N\J J1eZy, s y= wod r\\[ dgNp= ?@3) baez)) oty rmm?

Graph isomorphism (Gl)

L3006 ): apamukat\onmk 6=
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (Gl) Graph non-isomorphism (GNI)
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (Gl) Graph non-isomorphism (GNI)
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Quadratic residuosity (QR)

Quad. non-residuosity (QNR)

Graph isomorphism (Gl)

Graph non-isomorphism (GNI)
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (Gl) Graph non-isomorphism (GNI)
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A Difference from NP proofs:
Verifier V is randomised : | M%a\\“

“— B Prover P and V interact and
V accepts/rejects in the end
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Interactive Proof (IP)

A Difference from NP proofs:

O
. . . 1%
Verifier V is randomised
P . %—
= B Prover P and V interact and :
e

V accepts/rejects in the end

An interactive protocol (P, V) for a language L is an interactive proof
(IP) system if the following holds:

8/20



Interactive Proof (IP)
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Verifier V is randomised
“— B Prover P and V interact and
V accepts/rejects in the end

An interactive protocol (P, V) for a language L is an interactive proof
(IP) system if the following holds:

m Completeness: for every x € £, Pr[l - (P,V)(x)] >1—-1/3
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A Difference from NP proofs: 90@00

Verifier V is randomised
“— B Prover P and V interact and
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An interactive protocol (P, V) for a language L is an interactive proof
(IP) system if the following holds:

m Completeness: for every x € £, Pr[l - (P,V)(x)] >1—-1/3
m Soundness: for every x & L and malicious prover P*, @
Pr[1 < (P",V)(x)] <1/3
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A Difference from NP proofs: 90@00

Verifier V is randomised
“— B Prover P and V interact and
V accepts/rejects in the end

An interactive protocol (P, V) for a language L is an interactive proof
(IP) system if the following holds: complekeness exvor €. (o)
m Completeness: for every x € £, Pr[1 - (P,V)(x)] >1—-1/3
m Soundness: for every x & L and malicious prover P*,
Pr[1 + (P",V)(x)] < 1/3

CoUNANESS ex(or Lo ()
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Interactive Proof (IP)

A Difference from NP proofs: oo@oo

Verifier V is randomised
“— B Prover P and V interact and
V accepts/rejects in the end

An interactive protocol (P, V) for a language L is an interactive proof
(IP) system if the following holds: complekeness exvor €. (o)
m Completeness: for every x € £, Pr[1 - (P,V)(x)] >1—-1/3
m Soundness: for every x & L and malicious prover P*,
Pr[1 + (P",V)(x)] < 1/3

CoUNANESS ex(or Lo ()

Exercise 1 (Definition 1 is robust)

Show that languages captured by Definition 1 doesn’t change when
ec < 1/2% and 5 < 1/21%1 (Hint: repeat protocol, use Chernoff bound)
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\\é/ldea: Go % G = for any graph H, Go = H and Gi = H both
cannot hold Set of al grths

zliszf\ . q g()ﬂ]
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Power of Randomness+Interaction: IP for GNI

'§ ldea: Gy % Gy = for any graph H, Go = H and Gy 2 H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)
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Power of Randomness+Interaction: IP for GNI
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b=b

Oo,
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Power of Randomness+Interaction: IP for GNI

@/Idea: Go # G1 = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

ACLEPT IF
b=b

Oo,

\
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Power of Randomness+Interaction: IP for GNI

\élldea: Go % G1 = for any graph H, Go = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

ACCEPT IF

\

@ taclleseperialy epat b bt countnes
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Power of Randomness+Interaction: IP for GNI

\élldea: Go % G1 = for any graph H, Go = H and Gy = H both
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Power of Randomness+Interaction: IP for GNI...

I_IGNI is an IP for ,CG/\//
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Power of Randomness+Interaction: IP for GNI...

Theorem 1

I_IGNI is an IP for ,CG/\//

Proof.

m Completeness:
m Gy # G; = P can recover b; from H; with certainty

,@

Pr{1 < (P,V)(Go, Gi)] = 1 > 2/3
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Power of Randomness+Interaction: IP for GNI...

Theorem 1

I_IGNI is an IP for ,CG/\//

Proof.

m Completeness:
m Gy # G; = P can recover b; from H; with certainty

=
(&)

m Soundness:
m Gy = G; = H; loses information about bits b;

m Hence best P* can do is guess b;s

Pr{1 < (P,V)(Go, Gi)] = 1 > 2/3

Pr[1 < (P*,V)(Go, G1)] =1/2° < 1/3

9/20



Quadratic residuosity (QR) Quad. non-residuosity (QNR

[ . 5 1 !
OLQ()\JLQ\\@) 16l [SANEPS modN} &‘&NP\:&‘"‘)) -_’}gl.':z/N sb.y= nmdN}

Graph isomorphism (Gl Graph non-isomorphism (GNI)
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What really constitutes a proof?

2L

Interactive Proof (IP) Zero-Knowledge IP ¢

Arturusrex

00y

© Oded Goldreich

sl

Main tools: simulation paradigm, Chernoff bound...
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Quadratic residuosity (QR)

Quad. non-residuosity (QNR)
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Graph isomorphism (Gl)
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Quadratic residuosity (QR)

Quad. non-residuosity (QNR)

( :: ) Aeepk If N_(e\;k |Jr
P G, 4@\‘ O@o \ ()or%()
ORI & m |
o e maT T
&,Qa:i@;g):i\le?/\l sk, Y=o mod N} °¢®N(’\=iﬁ*/3)1?1€7/u ¢k. 9:1 wod N}

Graph isomorphism (Gl)

%\:i@o,ﬁ- ). Iparmkason ek, («pﬂ(cu)k

Sudoku

©Tim Stellmach/W ikipedia

© Chumew/Wikipedia

m Verifier gains “non-trivial knowledge” about witness w

m Not desirable, e.g., when x = pk and w = sk (identification)
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What About the IP We Saw?

Protocol 1 (Mguy: IP for GNI)

Parzille| /fequeﬂba y repegt b boof, soumdness
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Protocol 1 (Mguy: IP for GNI)
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m Seems V gains no knowledge beyond validity of the statement
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What About the IP We Saw?

Protocol 1 (Mguy: IP for GNI)

Pocallel /sequencially vepeat & bt coondness

m Seems V gains no knowledge beyond validity of the statement
m We will see that Mgy is (honest-verifier) zero-knowledge!

12/20



. : in the nformation-thedrebic sense
m Knowledge vs. information -~ " ¢ format

m Knowledge is computational
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, , in the information-thedrebic sense
m Knowledge vs. information -~ " ¢ format

I Knowledge is computational: e.g., consider NP proof for Gl

0.3 W Given (Go, G1), the isomorphism 7 contains no information

@W . :W(Q) m But when given 7, V “gains knowledge” since she couldn’t have
" computed 7 herself
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How to Capture “V Gains No Knowledge™

m Knowledge vs. information oo information thextte <ene

I Knowledge is computational: e.g., consider NP proof for Gl

o—0,. @ ® Given (Go, G1), the isomorphism 7 contains no information
@W . W(G) R\ But when given 7, V “gains knowledge” since she couldn’t have
= o/
computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

) m But V does not gain knowledge: she could herself have tossed the

private coin and revealed it
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How to Capture “V Gains No Knowledge™

m Knowledge vs. information o information thextte <ene

I Knowledge is computational: e.g., consider NP proof for Gl

0.3 W Given (Go, G1), the isomorphism 7 contains no information
@W . :W(G) 3\‘ But when given 7, V “gains knowledge” since she couldn’t have
X computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

) m But V does not gain knowledge: she could herself have tossed the

private coin and revealed it

(chec thon the validily o}
& Intuitively, “V gains no knowledge” if anything V can compute after
the interaction, V could have computed without it

13/20



m Formalised via “simulation paradigm”: Viewy((P,V)(x)) can be
efficiently simulated given only the instance

63<:::>Cb }ggl!::;lb)
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Defining Zero Knowledge via Simulators
VENTEW =2 Lansapt e £ (oins
m Formalised via “simulation paradigm”: Viewy({P,V)(x)) can be
efficiently simulated given only the instance :

Definition 2 (Hones—Verifie Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € L, the following is zero

Pr[D(Viewy((P,V)(x))) = 1] — Pr[D(Sim(x)) = 1]
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Defining Zero Knowledge via Simulators
VENTEW =2 Lansapt e £ (oins
m Formalised via “simulation paradigm™ Viewy ((P, V>(x)) can be
effICIently 5|mu|ated glven only the instance ‘

Definition 2 (Honest Verifier Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € L, the following is zero

Pr[D(Viewy((P,V)(x))) = 1] — Pr[D(Sim(x)) = 1]

Exercise 2
What happens when one invokes the simulator on x & L7
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What really constitutes a proof?
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Interactive Proof (IP) Zero-Knowledge IP ¢

Arturusrex
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My is Honest-Verifier ZK

Theorem 2

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

Nie,p):

Pacallel /sequanialy repeat b boof. couness
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My is Honest-Verifier ZK

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

Viewy (N o= (G0 (b1 i b1 )

¥ Gt
ﬁgam@w5:<3

o)
(VD
\ b
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My is Honest-Verifier ZK

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

Viewy (M G)= ((G,0) (ki i b))

¥GEG

[ﬁ!\ Gimn (Goly ) = el ) : sompe o and ke Gy,
) (LQO, (b H b))
¥ GG Viewy (GN1(G,0) erbaly dsnbuted b Sim(G,4,).
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My is Honest-Verifier ZK

Theorem 2

Mgny is honest-verifier perfect zero-knowledge IP for Ly

Proof
View (@M1 (G0):= (6,6 (b i, b))
Cinn Lﬁo,@ = gompl@ bedoy and Hez‘b

o (G (b1, h b))
VGG Viewy(@(G,) inechaally dgonboted b Cim(4,4,).

Exercise 3

What happens if V is “malicious” and can deviate from protocol?

Using ideas from Mgpy, build honest-verifier ZKP for Lonr
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3 Idea for ZK

1 Go_G1:>|fG1Nchen GO:GH
Prover sends a random I-{rs t. G =
Verifier asks to prove Gy = H or G

H
£

H at random

16 /20



Honest-Verifier ZKP for Gl

%) Idea for ZK a’;—a\

(1] Go—G1:>IfGl chen GO
Prover sends a random H st. Gl
B Verifier asks to prove Gy = A Hor G & H at random

c

Protocol 2 (Mg;: IP for GI)
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Honest-Verifier ZKP for Gl

%) Idea for ZK =G
(1] Go—G1:>IfGl chen GO
Prover sends a random H st. Gl
B Verifier asks to prove Gy = A Hor G & H at random

c

Protocol 2 (Mg;: IP for GI)
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5
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Honest-Verifier ZKP for Gl

%) Idea for ZK a’;—a\

TuT(
1 Go—G1:>IfGl chen Gy =
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%) Idea for ZK a’;—a
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Prover sends a random H TsTt G = G
B Verifier asks to prove Gg = H or Gy & H at random

Protocol 2 (Mg;: IP for GI)
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Mg is honest-verifier perfect zero-knowledge IP for Lg;
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Honest-Verifier ZKP for Gl...

Theorem 3

Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (¢ idea for ZK: out of order sampling).

m Completeness: Gyp = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % Gy = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b
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Proof (¢ idea for ZK: out of order sampling).
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Honest-Verifier ZKP for Gl...

Exercise 4

What happens if V is “malicious” and can deviate from protocol?
Using ideas from [g;, build honest-verifier ZKP for Lgg
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G5

Quadratic residuosity (QR)
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Are Randomness and Interaction Necessary?

—

= Interaction is necessary

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”
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Are Randomness and Interaction Necessary?

—

= Interaction is necessary

Fact 4

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”

Randomness is necessary

Exercise 5
If £ has an IP with deterministic verifier then £ € NP

Fact 5
If L has an ZKP with deterministic verifier then L is “trivial”
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m Traditional “NP” proofs vs interactive proofs
m IP is more powerful: IP for GNI
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m Traditional “NP” proofs vs interactive proofs
m IP is more powerful: IP for GNI
m Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm

m (Honest-verifier) ZKP for GNI (A5: QNR) and Gl (A5: QR)
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Recap/Next Lecture

Traditional “NP” proofs vs interactive proofs
m IP is more powerful: IP for GNI
Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm

(Honest-verifier) ZKP for GNI (A5: QNR) and Gl (A5: QR)

Next Lecture:
m Computational ZKP for all of NP!
m New cryptographic primitive: commitment schemes
m Return to ID protocols: zero-knowledge proof of knowledge
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