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CS409m: Introduction to Cryptography

Lecture 18 (17/Oct/25)

Instructor; Chethan Kamath
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The Cryptographic Landscape
hRE “Minicrypt!

ﬁm—sx«e —(

MRC

hacder PRF wmw
PRG l—\as\n foncon
. 6owF
e C sobsek sven~’ >
R ety =TT -
D

ﬁ@,lj m\nange B LPR FACTOR
pobhic - ke3 mnPOn L/‘“\DOH A }
.......................... S %
dvuctvred  Legpbornoni’

1/20



MOMULE MODULE 2 MODULE 3

(Shaed heys) V@ubk ) (ﬁw\i@hﬁ)

For 4 lorge pét of htory (Avent of kernet
. ¥

:. | helies

Tego qoaue som)
onsous searet!

: :
R &@@ @; S L ¢ Fresat

2/20



1/, .
é What really constitutes a proof?

i@; Interactive Proof (IP) Zero-Knowledge IP {Na\l;*

O Wikipedia

&y R

© blog.cam puatcnalcom plexity.og ©alchetron.com ©0ded Goldeich

7 Main tools: simulation paradigm, Chernoff bound...
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m Applications of IP: Verifiable outsourcing

ﬁﬂ

'.~

D
DD

m eVoting: coming up in Lecture 20! hellhgs
m Crypto(currencies): prove validity of transaction without revealing
9 details: coming up in Lecture 23!

m Efficient digital signatures: Schnorr ID protocol
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What really constitutes a proof?

{iféd Interactive Proof (IP) Zero-Knowledge IP

-~

© blog.com puaBonalcom plexity.og

Main tools: simulation paradigm, Chernoff bound...
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. derivation rules
m Axioms —————— theorems=true statements

m E.g.: Axioms of Euclidean geometry

o1t

Theorem: “Sum of angles of a triangle equals 180

of

m Prover vs. verifier
@ Prover does the heavy lifting: derives the proof

Construct a line through B parallel to AC
/DBA = Za and ZEBC = Zc (alternate interior angles)
2= La+ /b+ Zc = /ZDBA + /b + ZEBC =180°

Verifier checks the proof, step by step
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m Corresponds to the class NP
m A language £ € NP if there exists a polynomial-time deterministic
machine V such that

wikness fproof
ateet ™ Sy e £ 3 “short” 7 : Vi(x, %) = 1
m NP is the class of all such Ls (e.g., Sudoku) s3I

9 8 6
8 6 3
4 |8l |3 1
7 2 6

6 28
4|1|9 5
) 8 79

©Tim Seiim achV Ikipedia

pover P Verifies \
m “Proof system” view of NP
m Prover P is unbounded: finds short proof 7 for x (if one exists)
m Verifier V is efficient: checks proof 7 against the statement x
m Completeness: x € £L = P finds 7 = V(x,7) =1
m Soundness: x ¢ L = A“short” 7 s.t. V(x,7) =1
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (Gl) Graph non-isomorphism (GNI)

O(,GFK(,Q‘(J,); Jpermukation o G.—-ﬂ(ou)k
Sudoku

@“’%@

©Tim Stellm ach\W ikipedia
© Cbumett/W ikipedia
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Interactive Proof (IP)

A Difference from NP proofs: 01 )
Verifier V is randomised g — 0
i Prover P and V interact and ;
5 |

V accepts/rejects in the end

An interactive protocol (P, V) for a language L is an interactive proof
(IP) system if the following holds: compléceness exvr € (n)

m Completeness: for every x € L, Pr[1 + (P,V)(x)] >1—-1/3
m Soundness: for every x € £ and malicious prover P~,
Pr[1 « (P*,V)(x)] < 1/3¢

SoUNANESS exvor &)

Exercise 1 (Definition 1 is robust)

Show that languages captured by Definition 1 doesn’t change when
ec <1/2% and €5 < 1/2% (Hint: repeat protocol, use Chernoff bound)
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\\;’/’ldea: Go % G1 = for any graph H, Go = H and G = H both
cannot hold Sek of all gm(ahs

G=f6: aza)

=56 420,
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Power of Randomness+Interaction: IP for GNI

\élldea: Go % G1 = for any graph H, Go = H and G, = H both
cannot hold

Protocol 1 (Mgp;: IP for GNI)

ACLEPT IF @

b=b
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Power of Randomness+Interaction: IP for GNI

éﬁlldea: Go % G1 = for any graph H, Go = H and G, = H both
cannot hold

Protocol 1 (Mgp;: IP for GNI)

‘@'PMH@\ / geg{u@ﬁ%\a\lg repeak b b coodness
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Power of Randomness+Interaction: IP for GNI...

Theorem 1

FIGN, is an IP fOI’ [fGNI

Proof.

m Completeness:
m Go 2 G; = P can recover b; from H; with certainty

‘@ Pr[l « (P,V
m Soundness:
m Gy = G; = H; loses information about bits b;

m Hence best P* can do is guess b;s

)(Go, G1)] =12>2/3

Pr[1 < (P*,V)(Go, Gy)] = 1/2° < 1/3
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)
Graph isomorphism (GI) Graph non-isomorphism (GNI)
L&]
Sudoku
L&)
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What About the IP We Saw?

Protocol 1 (Mgps: IP for GNI)

Dam\\e\/geg{umbal\g repeat b boof coundness

m Seems V gains no knowledge beyond validity of the statement
m We will see that Mgy is (honest-verifier) zero-knowledge!
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. . i information-thexebic sense
m Knowledge vs. information &« " the Informat

l Knowledge is computational: e.g., consider NP proof for Gl
m Given (Go, G1), the isomorphism 7 contains no information
@“ (‘I‘"&@I But when given m, V “gains knowledge” since she couldn’t have
computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

m But V does not gain knowledge: she could herself have tossed the
private coin and revealed it

’ (cthec thon the \lahdlh) Dh(,)
% Intuitively, "V gains no knowledge” if anything V can compute after
the interaction, V could have computed without it
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Defining Zero Knowledge via Simulators
VENVIRW =+ Tansiapte £ (oins
m Formalised via “simulation paradigm”: Viewy ((P,V)(x)) can be
efficiently simulated given only the instance

() Y
00| 5T
=)
_l ' ; 0 D '.-‘

. Sim

Definition 2 (Hones—Verifier Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € L, the following is zero

Pr{D(Viewy((P, V)(x))) = 1] — Pr[D(Sim(x)) = 1]

Exercise 2
What happens when one invokes the simulator on x & £7?
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What really constitutes a proof?

gul//%

Interactive Proof (IP) Zero-Knowledge IP #j@i

o\/\d

drrusrer
o2 ede

©Oded Goldreich

Main tools: simulation paradigm, Chernoff bound...
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Meny is Honest-Verifier ZK

Theorem 2
Meny is honest-verifier perfect zero-knowledge IP for Ly

\C[\ P]

ey @w @,@.))

<LQ”'Q> (b‘ H‘/ VieQ p])
Paralle /gequmba repea& o boof. coundness
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Mgy is Honest-Verifier ZK

Theorem 2

Mgni is honest-verifier perfect zero-knowledge IP for Ly

Proof

u\‘l@QVQ<P/V7 (,Qo,(‘zj)?: ((_Qo,(il)/o:’ ,H /b,) p >

' cinn (G, <J> %MP@ bsdoy and HeG,
) ol (Wl (b Kb )
¥ G2 G Viewy (V1(GG) by ddmbuted b Sim(4,4,)

Exercise 3

What happens if V is “malicious” and can deviate from protocol?

Using ideas from Mgy, build honest-verifier ZKP for Lonr
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Honest-Verifier ZKP for Gl

9 Idea for ZK =G
.GO_G1:>|fG1 chenGo ]
H Prover sends a random I-(T st. G = J
B Verifier asks to prove Gy = H or G; = H at random

Protocol 2 (Mg: IP for Gl)

Ho T (Ge)

(omlx\t T G, =T,

Te Brm.on 0A = (&) H=0 )
R

(Dara\\@\/ggqueﬂ%\a“ﬂ r@peak b boof EO&M%)
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Honest-Verifier ZKP for Gl...

Theorem 3
Mg is honest-verifier perfect zero-knowledge IP for L

Proof (§idea for ZK: out of order sampling).

m Completeness: Gy = Gy = P can answer both challenges = V
always accepts

m Soundness: Gy % Gy = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge: (@) /yb‘* <t 7 db=0
T o=
Viewy (@M G G)= (&, (,))(H b >
¢ C‘ G i (GyG) sample beoid Y peronotation on 01
q set H=v(Gy)
i NN
¥ 6,2, v@w@e,v?@op)) mmt\caig ly ddnbuted & Cm(4og). 1,




Honest-Verifier ZKP for Gl...

Exercise 4

What happens if V is “malicious” and can deviate from protocol?

Using ideas from MM, build honest-verifier ZKP for Log
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L9

Quadratic residuosity (QR)

Quad. non-residuosity (QNR)

Graph isomorphism (GlI)

Graph non-isomorphism (GNI)

©Tim Stellmach/W ikipedia

TTHUmeqWKipedia
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Are Randomness and Interaction Necessary?

—

S Interaction is necessary

Fact 4

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”

Randomness is necessary

Exercise 5

If £ has an IP with deterministic verifier then £ € NP

If L has an ZKP with deterministic verifier then L is “trivial”
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Recap/Next Lecture

Traditional “NP” proofs vs interactive proofs
m |P is more powerful: IP for GNI
Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm

(Honest-verifier) ZKP for GNI (A5: QNR) and GI (A5: QR)

Next Lecture:
m Computational ZKP for all of NP!
m New cryptographic primitive: commitment schemes
m Return to ID protocols: zero-knowledge proof of knowledge
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[Gol01, Chapter 4] for details of today’s lecture
[GMR89] for definitional and philosophical discussion on ZK
The ZKPs for Gl and GNI are taken from [GMR89, GMW91]

IP for all of PSPACE is due to [LFKN92, Sha90]. Computational
ZKP for all of PSPACE is due to [GMW91].
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E:| Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186-208, 1989.

@ Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have
zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

[0 Oded Goldreich.

The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.

@ Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems.
J. ACM, 39(4):859-868, October 1992.

@ Adi Shamir.
IP=PSPACE.
In 31st FOCS, pages 11-15. IEEE Computer Society Press, October 1990.
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