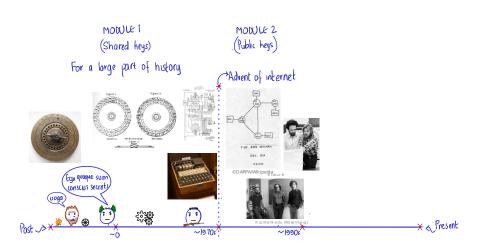


CS409m: Introduction to Cryptography

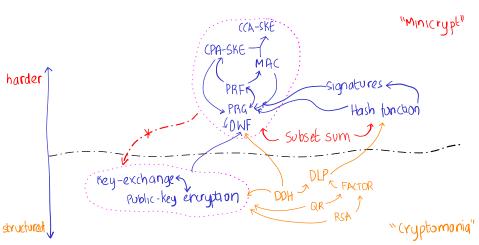
Lecture 18 (17/Oct/25)

Instructor: Chethan Kamath

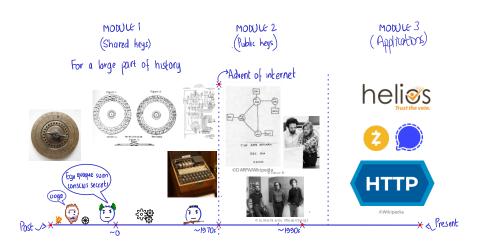
Journey So Far



Journey So Far...



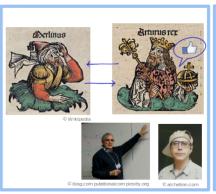
Plan for Module III: Applications!



Plan for Today's Lecture...

Interactive Proof (IP)

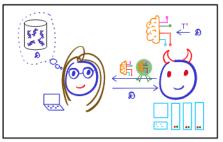
Zero-Knowledge IP



A Main tools: simulation paradigm, Chernoff bound...

(ZK)IPs are Useful!

Applications of IP: Verifiable outsourcing

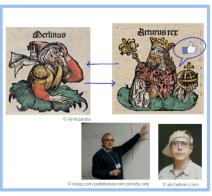


- Applications of ZKP:
 - eVoting: coming up in Lecture 20!
 - Crypto(currencies): prove validity of transaction without revealing details: coming up in Lecture 23!
 - Efficient digital signatures: Schnorr ID protocol

Plan for Today's Lecture...

What really constitutes a proof?

Interactive Proof (IP)

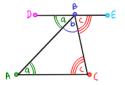


Main tools: simulation paradigm, Chernoff bound...

Traditional "NP" Proof

- Axioms derivation rules theorems=true statements
 - E.g.: Axioms of Euclidean geometry

 Theorem: "Sum of angles of a triangle equals 180°"



- Prover vs. verifier
 - Prover does the heavy lifting: derives the proof
 - 1 Construct a line through B parallel to \overline{AC}
 - $\angle DBA = \angle a$ and $\angle EBC = \angle c$ (alternate interior angles)
 - 3 $2 \Rightarrow \angle a + \angle b + \angle c = \angle DBA + \angle b + \angle EBC = 180^{\circ}$

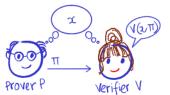
Verifier checks the proof, step by step

Traditional "NP" Proof...

- Corresponds to the class NP
 - A language £ ∈ NP if there exists a polynomial-time deterministic machine V such that

statement
$$\forall x \in \mathcal{L} \exists$$
 "short" $\pi : V(x, \frac{\pi}{\pi}) = 1$

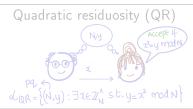
■ NP is the *class* of all such \mathcal{L} s (e.g., Sudoku)



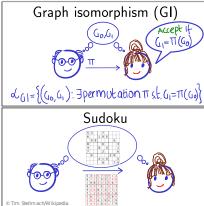
			Ė	8			7	9
	П	П	4	1	9			5
	6					2	8	
7				2				6
4 7			8		3			1
8				6				3
	9	8					6	
6			1	9	5			
5	3			7				

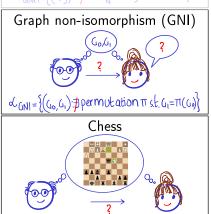
- "Proof system" view of NP
 - Prover P is <u>unbounded</u>: finds short proof π for x (if one exists)
 - Verifier V is efficient: checks proof π against the statement x
 - **Completeness:** $x \in \mathcal{L} \Rightarrow \mathsf{P}$ finds $\pi \Rightarrow \mathsf{V}(x,\pi) = 1$
 - Soundness: $x \notin \mathcal{L} \Rightarrow \not\exists$ "short" π s.t. $V(x, \pi) = 1$

Which Languages have "NP" Proofs?









Interactive Proof (IP)

- △ Difference from NP proofs:
 - (\$) II Verifier V is randomised
 - Prover P and V interact and V accepts/rejects in the end

Definition 1

An interactive protocol (P, V) for a language \mathcal{L} is an interactive proof (IP) system if the following holds: completeness error $\varepsilon_c(n)$.

• Completeness: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle P, V \rangle(x)] \geq 1 - \frac{1}{3}$

- Soundness: for every $x \notin \mathcal{L}$ and malicious prover P^* , $Pr[1 \leftarrow \langle P^*, V \rangle(x)] \leq \frac{1}{3}$ soundness error $\varepsilon_s(n)$

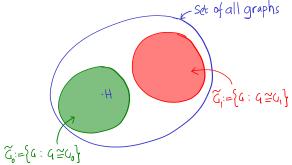
$$\Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] \leq \frac{1/3}{4}$$

Exercise 1 (Definition 1 is robust)

Show that languages captured by Definition 1 doesn't change when $\epsilon_c \le 1/2^{|x|}$ and $\epsilon_s \le 1/2^{|x|}$ (Hint: repeat protocol, use Chernoff bound)

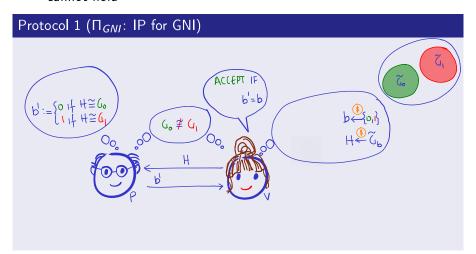
Power of Randomness+Interaction: IP for GNI

Idea: $G_0 \not\cong G_1 \Rightarrow$ for any graph H, $G_0 \cong H$ and $G_1 \cong H$ both cannot hold



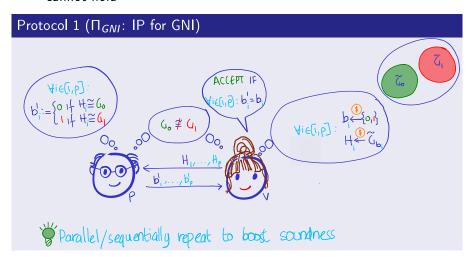
Power of Randomness+Interaction: IP for GNI

Idea: $G_0 \ncong G_1 \Rightarrow$ for any graph H, $G_0 \cong H$ and $G_1 \cong H$ both cannot hold



Power of Randomness+Interaction: IP for GNI

Idea: $G_0 \ncong G_1 \Rightarrow$ for any graph H, $G_0 \cong H$ and $G_1 \cong H$ both cannot hold



Power of Randomness+Interaction: IP for GNI...

Theorem 1

 Π_{GNI} is an IP for \mathcal{L}_{GNI}

Proof.

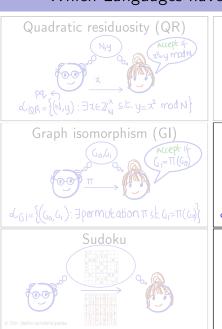
- Completeness:
 - $G_0 \not\cong G_1 \Rightarrow \mathsf{P}$ can recover b_i from H_i with certainty

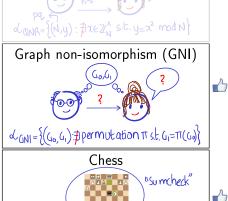
$$\Pr[1 \leftarrow \langle \mathsf{P}, \mathsf{V} \rangle (\textit{G}_0, \textit{G}_1)] = 1 \geq 2/3$$

- Soundness:
 - $G_0 \cong G_1 \Rightarrow H_i$ loses information about bits b_i
 - Hence best P^* can do is guess b_i s

$$\Pr[1 \leftarrow \langle \mathbf{P}^*, \mathsf{V} \rangle (G_0, G_1)] = 1/2^{\rho} < 1/3$$

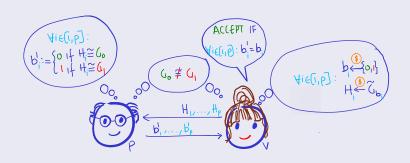
Which Languages have IPs? PSPACE Languages





What About the IP We Saw?

Protocol 1 (Π_{GNI} : IP for GNI)



- Parallel/sequentially repeat to boost soundness
- Seems V gains no knowledge beyond validity of the statement
- We will see that Π_{GNI} is (honest-verifier) zero-knowledge!

How to Capture "V Gains No Knowledge"?

- Knowledge vs. information ~ in the information-theoretic sense
 - Knowledge is computational: e.g., consider NP proof for GI \blacksquare Given (G_0, G_1) , the isomorphism π contains no *information*
 - But when given π , V "gains knowledge" since she couldn't have computed π herself
 - Knowledge pertains to public objects:
 - Flipping a private fair coin b and (later) revealing its outcome leads to V gaining information
 - But V does not gain knowledge: she could herself have tossed the private coin and revealed it

(ther than the validity of x) Intuitively, "V gains no knowledge" if anything V can compute after the interaction, V could have computed without it

Defining Zero Knowledge via Simulators

■ Formalised via "simulation paradigm": $View_V(\langle P,V\rangle(x))$ can be efficiently simulated given only the instance

Definition 2 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$\Pr[\mathsf{D}(\mathit{View}_{\mathsf{V}}(\langle \mathsf{P}, \mathsf{V} \rangle(x))) = 1] - \Pr[\mathsf{D}(\mathsf{Sim}(x)) = 1]$$

Exercise 2

What happens when one invokes the simulator on $x \notin \mathcal{L}$?

Plan for Today's Lecture...

What really constitutes a proof?

Interactive Proof (IP)

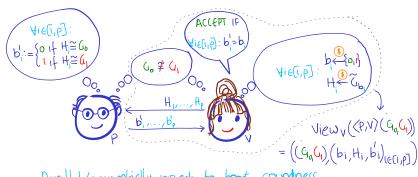
Zero-Knowledge IP

Main tools: simulation paradigm, Chernoff bound...

Π_{GNI} is Honest-Verifier ZK

Theorem 2

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}



Parallel/sequentially repeat to boost soundness

Π_{GNI} is Honest-Verifier ZK

Theorem 2

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}

Proof.

$$\forall \ \mathsf{G}_{0} \not\equiv \mathsf{G}_{1} := (\mathsf{G}_{0}, \mathsf{G}_{1}) (\mathsf{b}_{1}, \mathsf{H}_{1}, \mathsf{b}_{1})_{\mathsf{leff}, \mathsf{p}})$$

$$\forall \ \mathsf{G}_{0} \not\equiv \mathsf{G}_{1} := \mathsf{Hieff}_{\mathsf{p}} : \mathsf{Sample} \ \mathsf{b}_{\mathsf{leff}, \mathsf{p}} := \mathsf{And} \ \mathsf{H}_{\mathsf{leff}, \mathsf{p}} := \mathsf{hieff}_{\mathsf{p}} := \mathsf{hief$$

Exercise 3

- What happens if V is "malicious" and can deviate from protocol?
- 2 Using ideas from Π_{GNI} , build honest-verifier ZKP for \mathcal{L}_{QNR}

Honest-Verifier ZKP for GI

- ₩ Idea for ZK:

 - 2 Prover sends a random $H_{\mathfrak{S}}$ t. $G_1 \cong H_{\mathfrak{S}}$
 - Is Verifier asks to prove $G_0 \stackrel{\checkmark}{\cong} H$ or $G_1 \stackrel{\lor}{\cong} H$ at random

Protocol 2 (Π_{GI} : IP for GI) (ompute $\pi: U_1 = \pi(U_0)$ $T \leftarrow \text{Perm. on (IA)}, H := \tau(G_1)$ ACCEPT IF G₀ ≅ G₁ b+ {01}} (Parallel/sequentially repeat to boost soundness)

~=~~,

Honest-Verifier ZKP for GI...

Theorem 3

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

Proof (Fidea for ZK: out of order sampling).

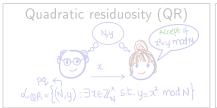
- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \ncong G_1 \Rightarrow$ for any H P^* commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b
- Zero knowledge: $V(G_0,G_1):=(G_0,G_1)(H,b,\psi)$ $V(G_0,G_1):=(G_0,G_1)(H,b,\psi)$

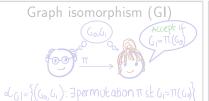
Honest-Verifier ZKP for GI...

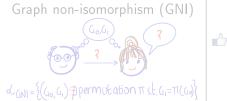
Exercise 4

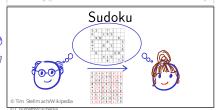
- What happens if V is "malicious" and can deviate from protocol?
- 2 Using ideas from Π_{GI} , build honest-verifier ZKP for \mathcal{L}_{QR}

Which Languages have ZKPs? PSPACE Languages









Are Randomness and Interaction Necessary?

Fact 4

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L$ is "trivial"

Randomness is necessary

Exercise 5

If \mathcal{L} has an IP with deterministic verifier then $\mathcal{L} \in \mathsf{NP}$

Fact 5

If $\mathcal L$ has an ZKP with deterministic verifier then $\mathcal L$ is "trivial"

Recap/Next Lecture

- Traditional "NP" proofs vs interactive proofs
 - IP is more powerful: IP for GNI
- Zero-knowledge proofs
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm
- (Honest-verifier) ZKP for GNI (A5: QNR) and GI (A5: QR)
- Next Lecture:
 - Computational ZKP for all of NP!
 - New cryptographic primitive: commitment schemes
 - Return to ID protocols: zero-knowledge proof of knowledge

References

- [Gol01, Chapter 4] for details of today's lecture
- [GMR89] for definitional and philosophical discussion on ZK
- 3 The ZKPs for GI and GNI are taken from [GMR89, GMW91]
- 4 IP for all of PSPACE is due to [LFKN92, Sha90]. Computational ZKP for all of PSPACE is due to [GMW91].

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

The knowledge complexity of interactive proof systems.

SIAM J. Comput., 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

Oded Goldreich.

The Foundations of Cryptography - Volume 1: Basic Techniques.

Cambridge University Press, 2001.

Carsten Lund. Lance Fortnow, Howard Karloff, and Noam Nisan.

Algebraic methods for interactive proof systems.

J. ACM, 39(4):859-868, October 1992.

Adi Shamir.

IP=PSPACE.

In 31st FOCS, pages 11-15, IEEE Computer Society Press, October 1990.