CS409m: Introduction to Cryptography

Lecture 19 (22/0Oct/25)

Instructor;: Chethan Kamath

Announcements

m Feedback form for course (post mid-sem part) sent out
m Assignment 5 out yesterday (21/Oct)

m Quiz 2 viewing on 24/Oct (Friday), 12:30-14:30

m Submit your cribs online by 29/0ct (next Wednesday)
m Quiz 3 on 29/0ct (next Wednesday)

m 08:25-09:25, in CC103/CC105

m Lab Exercise 4 will be released today (22/Oct)

m Submit flag by 29/0ct EoD (Wednesday)
m Submit write-up by 31/Oct EoD (Friday)

1/18

Recall from Last Lecture

m Interactive proofs vs NP proofs:

m Prover convinces verifier using interaction
m Verifier is random

Interactive Proof (IP) IP for GNI

© Wikipedia

- | il
© blog.com putationalcom plexity.org © alcheton.com ©0ded Goldreich

2/18

Plan for Today's Lecture...

v/, -
9 IP where prover reveals no non-trivial knowledge to the verifier

YT

Wbﬂ Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK){ e

3/18

Plan for Today's Lecture...

v/, -
9 IP where prover reveals no non-trivial knowledge to the verifier

WAL

{100 Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK){ el

?t:::> o, () %%;gé%‘n%

7 Main tools: simulator and extractor ¥

3/18

IP where prover reveals no non-trivial knowledge to the verifier

{’ﬁé\ﬁ} Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)

izl
©0ded Goldreich
S

Main tools: simulator and extractor

3/18

Quadratic residuosity (QR)

oWe:
S, AL
AN

0}

qu X
o{,m:i@,g) 1 J1eZy) 5T y=H wod N}

Quad. non-residuosity (QNR)

pue 1
A\ 4eZe) or 1)

Graph isomorphism (Gl)

Auepk if
=TI

1160,) Iparmkation T S.E,Clﬁﬂ(ﬁu)k

©Tim Stellm ach/W ikipedia

© ChumetyWikipedia

4/18

The NP Proofs We Saw Leaked Information

Quadratic residuosity (QR) Quad. non-residuosity (QNR)
Accepk b

N

Do BH)

P X 2 [a)
digh-{g) 312, S8 y=at wodN] | [L dy): Preag o6 yF modn}

Graph isomorphism (Gl) Sudoku

, G \jﬁ (.GD
7

\

=160 6. Fpermoeaton Tk 6= || o

© Cbumei/W ikipedia

m Verifier gains “non-trivial knowledge” about witness w
m Not desirable, e.g., when x = pk and w = sk (identification)

4/18

But the IP for GNI We Saw Doesn't Seem to

Protocol 1 (Mguy: IP for GNI)

Paralle / cqucﬂ rq)@ak b boof coudness

m Seems V gains no knowledge beyond validity of the statement
m We will show that Mgy is (honest-verifier) zero-knowledge!

5/18

in te information-thedrebic sense

Vi,

Q Knowledge vs. information &
m Knowledge is computational

6/18

Vi,

g Knowledge vs. information
m Knowledge is computational: e.g., consider NP proof for Gl

m Given (Go, G1), the isomorphism 7 contains no information
m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself

6/18

How to Capture “V Gains No Knowledge™

Vi,

'$ Knowledge vs. information
m Knowledge is computational: e.g., consider NP proof for Gl

m Given (Go, G1), the isomorphism 7 contains no information

m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

m But V does not gain knowledge: she could herself have tossed the
private coin and revealed it

6/18

How to Capture “V Gains No Knowledge™

Vi,

'$ Knowledge vs. information
m Knowledge is computational: e.g., consider NP proof for Gl

m Given (Go, G1), the isomorphism 7 contains no information
m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

m But V does not gain knowledge: she could herself have tossed the
private coin and revealed it

N - 0“ . "o .
@ Intuitively, “V gains no knowledge” if anything V can compute after
the interaction, V could have computed without it

6/18

m Formalised via “simulation paradigm”: Viewy((P,V)(x)) can be
efficiently simulated given only the instance

7/18

m Formalised via “simulation paradigm”: Viewy((P,V)(x)) can be
efficiently simulated given only the instance

7/18

m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be .
efficiently simulated given only the instance '

7/18

Defining Zero Knowledge via Simulators
VEe =S Cranstrpt et oing

m Formalised via “simulation paradigm™ Viewy ((P, V>(x)) can be -
effICIently 5|mu|ated glven only the instance

Definition 1 (Honest Vern‘ler Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € £

Pr[D(Viewy (P, V)(x))) = 1] = Pr[D(Sim(x)) = 1]

7/18

Defining Zero Knowledge via Simulators
VEe =S Cranstrpt et oing

m Formalised via “simulation paradigm™ Viewy ((P, V>(x)) can be -
effICIently 5|mu|ated glven only the instance

Definition 1 (Honest Vern‘ler Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € £

Pr[D(Viewy (P, V)(x))) = 1] = Pr[D(Sim(x)) = 1]

Exercise 1
What happens when one invokes the simulator on x & L7

7/18

My is Honest-Verifier ZK

Theorem 1

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

ACLEPT (F
el) b

Parallel / gequeﬂk\aug Vep@ak b bt coundness

8/18

My is Honest-Verifier ZK

Theorem 1

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

ACLEPT PN
CGRs,

;e Qb‘ .

\]\6(“)\](691\0 LQD/C‘LJ)
el j(LC‘D/U‘)/OD‘/Hi/b\)m@,fl>
Para\ke\ / geg{ueﬂ%\dug Yep@a% v PJOD&C coundness

8/18

My is Honest-Verifier ZK

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

\CU)V(<? V?LQ U) ((_(4 \) (b H\/b H,M)

¥ G, ¥

8/18

My is Honest-Verifier ZK

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

Ve (M1 G= () (bt B)

rJ

\‘f C‘Igi (i\'
AESSCIS

8/18

My is Honest-Verifier ZK

Theorem 1

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

Proof.

Viewy @? NI LQO’(@ - (L—C‘D/@/(b iy L;/, L)\f;[t »r“l‘)

CC\‘ é\m@g,(ﬂ =i, p) s(}mplé bedfoly and H%Zb,‘
I (LQ”'QD/G’ LAb ‘)u&(x/fﬂ)
¥ Q%G \}\Cu)v(<P/V7LC(O/Ql>> mmbm\\g Admbuzd & @W\Uto,&(),

8/18

My is Honest-Verifier ZK

Theorem 1

Mgny is honest-verifier perfect zero-knowledge IP for Ly

O

Proof

Yy (NG () (bi 1, b))
¥ G,

17 om QQD,QJ o= 5GMP1@ bQ—éLD\ﬂ] and H%Zb
o ((‘C‘O«Q‘)/(b /H /b) EQ/F}>
V6% G Viewy(EVI(GG) nerbaly dambied b Cm(G.q,)

Exercise 2

What happens if V is “malicious” and can deviate from protocol?

Using ideas from Mgpy, build honest-verifier ZKP for Lonr

8/18

g Idea for ZK: Gy = G1 = if G1 H then Gy gH

9/18

\

N2 m . a 1T

g Idea for ZK: Gp = Gy = if Gi = H then Gy = H
Prover “commits” by sending random H s.t. G &2 H
Verifier challenges to “open” Gy = H or G; = H at random

9/18

\,

g Idea for ZK: Gp = G1 = if G1 H then Gy = m

H Prover “commits” by sendmg random H s.t. o-Gl & H
Verifier challenges to “open” Gg = H or G; = H at random

9/18

Honest-Verifier ZKP for Gl

g ¢~TT
Q Idea for ZK: Gp = G1 = if G; = H then Gy =

H Prover “commits” by sendlng random H s.t. Gl =

A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

9/18

Honest-Verifier ZKP for Gl

g ¢~TT
9 Idea for ZK: Gp = G1 = if G; = H then Gy =

H Prover “commits” by sendlng random H s.t. Gl =

A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

9/18

Honest-Verifier ZKP for Gl

g ¢~TT
9 Idea for ZK: Gp = G1 = if G; = H then Gy =

H Prover “commits” by sendlng random H s.t. Gl =

A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

9/18

Honest-Verifier ZKP for Gl

\

\g Idea for ZK: Gp = L G =>ifG = ~ H then Gy = m

H Prover “commits” by sendlng random H s.t. Gl =
A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

(Omwk v (l‘:ﬂ@‘o
e ferrn.on (=T &)

9/18

Honest-Verifier ZKP for Gl

\

\g Idea for ZK: Gp = L G =>ifG = ~ H then Gy = m

H Prover “commits” by sendlng random H s.t. Gl =
A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

(Omwk v (l‘:ﬂ@‘o
e ferrn.on (=T &)

9/18

9 Idea for ZK: Gp =

H Prover “commits” by sendlng random H s.t. Gl =
A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

Yi=

T

(Omwk v (l‘:ﬂ@‘o

e ferrn.on (=T &)
T E0=0
if b=

Honest-Verifier ZKP for Gl

G1 = if G1

a
[ad

mT
H then Gy =

ACCEPT 7

9/18

Honest-Verifier ZKP for Gl

9 Idea for ZK: Gy = G1 = if Gy

Protocol 2 (Mg;: IP for GI)

Yi=

H Prover “commits” by sendlng random H s.t. Gl =

a
[ad

mT
H then Gy =

A Verifier challenges to “open” Go 2'H or G = & H at random

T

(Omwk v (l‘:ﬂ@‘o

e ferrn.on (=T &)
T E0=0
if b=

e T ()
H‘- T(Q\)

ACCEPT 7

9/18

Honest-Verifier ZKP for Gl =

9 Idea for ZK: Gp = G1 =if G = ~ H then Gy = m

H Prover “commits” by sendlng random H s.t. Gl ~H
A Verifier challenges to “open” Go "H or G = & H at random

Protocol 2 (Mg;: IP for GI)

- ©T ()

Cornpale T G, =1, o
H=0(a

e ferrn.on (=T &)
et do=0
¢ o=t

ACCEPT 7

Yi=

Pam\ \/fequmbag rgp@ak b boof QOLMMJS)

9/18

Honest-Verifier ZKP for Gl...

Mg is honest-verifier perfect zero-knowledge IP for Lg;

9/18

Honest-Verifier ZKP for Gl...

Theorem 2

Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

9/18

Honest-Verifier ZKP for Gl...

Theorem 2
Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge:

Jiewy (N1 (G,G) (Q@(H b#})

iy

\‘l C‘ig; Q).

9/18

Honest-Verifier ZKP for Gl...

Theorem 2
Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

i \
m Zero knowledge: (c,,) ﬁ% icﬂﬂ \\ég/\o
Viewy (M GG) = (& w(“ o9))
T
¥ Q2

9/18

Honest-Verifier ZKP for Gl...

Theorem 2
Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

i \
m Zero knowledge: (c,,) ﬁ% icﬂﬂ \\ég/\o
cnv@m@)= (&, w(“ o))
T
¥ Q2

9/18

Honest-Verifier ZKP for Gl...

Theorem 2
Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge: (&) /
View, (EIEG)= (&, b)(H o

14, ”h mm(ﬁ u) eom})e besol Yep@(m\ﬁa& jon on Cvn)
_ 36t Ho= w(%)
% (@), (ho¥)

¥ 6,2, Vi wv@w?& G) | o\mbm\g dsmbuted b Cim(4,4,) O

9/18

§b=0

> i« o=t

Quadratic residuosity (QR) Quad. non-residuosity (QNR)

oW
Pt ¢ RCLES

L&)
. o |
(e 4 E—
L= i&“"i]1&7/ §E.y=x modN} &w@:i@,g):ﬁi&?ﬁ sy modN}
Graph isomorphism (Gl) Graph non-isomorphism (GNI)
L&)

%oi:i@oﬁ-) Jprmvkaion T ak.opﬂ(oo)]l
Sudoku Chess

©Tim Stellmach/Wikipedia
© CbumetyW ikipedia 10/18

Quadratic re5|du05|ty QR) Quad. non-residuosity (QNR)

ekt
r. 0. D\ %lw S ana e/

@m 7
™ q P 5 -) :
&(1\ &M]167[SL Y= 2 wod C/“‘_QN(IFZ‘Q\LQ).{I-JFLEZA 5. “J:f %Mk
Graph isomorphism (GI) Graph non- |somorph|sm GNI)

o

1= §(Go,6,): Fparmtaton ;k_c;moufz o= i@o/“‘) ﬁpérmxkamﬂ m ékﬁﬁw\(mg

Sudoku Chess

&5

©Tim Stellmach/W ikipedia '
© CbumetyW ikipedia 10/18

Quadratic residuosity (QR) Quad. non-residuosity (QNR)
|
Graph isomorphism (Gl) Graph non-isomorphism (GNI)
Sudoku
L© e
L&) @@ : &)
— i 10/18

Are Randomness and Interaction Necessary?

—

= Interaction is necessary

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”

11/18

Are Randomness and Interaction Necessary?

—

= Interaction is necessary

Fact 3

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”

Randomness is necessary

Exercise 3
If £ has an IP with deterministic verifier then £ € NP

Fact 4
If L has an ZKP with deterministic verifier then L is “trivial”

11/18

IP where prover reveals no non-trivial knowledge to the verifier

{’ﬁé\ﬁ} Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)

izl
©0ded Goldreich
S

Main tools: simulator and extractor

11/18

m Recall ZK IP requirements:

Completeness
Soundness
Zero-knowledge (ZK)

12/18

m Recall ZK IP requirements:

Completeness
Soundness
Zero-knowledge (ZK)

m Sometimes V needs to be convinced that P knows a witness

12/18

Sometimes Stronger Guarantees than ZK Needed

m Recall ZK IP requirements:

Completeness
Soundness
Zero-knowledge (ZK)

m Sometimes V needs to be convinced that P knows a witness

m E.g. Identification for ElGamal PKE in cyclic group G

m Public key is h := g2 and secret key is the discrete log a
m Owner has to prove they possess a (such an a always exists)

‘
/f% [
e

Bob

12/18

m For defining ZK, we only quantified “gain of knowledge”
m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x

13/18

m For defining ZK, we only quantified “gain of knowledge”

m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it

m Formalised via simulator: V's view can be efficiently simulated given
only the instance x

@ How would you quantify “knowledge” itself?

13/18

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x
@ How would you quantify “knowledge” itself?
m For a student: get hold of student, hold viva, extract answers

13/18

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x
@ How would you quantify “knowledge” itself?
m For a student: get hold of student, hold viva, extract answers

75 Ltrm n ()
fr=la)

¢ =0
Y= <L¢ i o=

T

m For Pin MNg?

13/18

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x

@ How would you quantify “knowledge” itself?
m For a student: get hold of student, hold viva, extract answers

- forra.on (1)

W= @u] .
o] \(rbio O (@) N
v= 1% i b= O 8. % @
@P

m For P in Mg ? Should be poééible to efficiently extract isomorphism
7 given access to P
m In general, for NP: should be possible to extract a witness w

13/18

Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

Complete
Zero knowledge

14/18

Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP Ianguage Lisa
zero-knowledge proof of knowledge if itis - 4

Complete "@o
B 0,8
)

Zero knowledge

Knowledge sound:

m 7 expected polynomial-time extractor Ext such that
m V prover P* and instance x:

Pr [wis a witness for x] > Pr[1 < (P*,V)(x)] — ex
w—ExtP” (x)

14/18

Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP Ianguage Lisa
zero-knowledge proof of knowledge if itis - 4

Complete "@o
B 0,8
)

Zero knowledge

Knowledge sound:

m 7 expected polynomial-time extractor Ext such that
m V prover P* and instance x: N knoo\wgc 20

Pr [wis a witness for x] > Pr[1 < (P*,V)(x)] — éx
w—ExtP” (x)

14/18

Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP Ianguage Lisa
zero-knowledge proof of knowledge if itis - 4

Complete "@o
E 0,8
o

Zero knowledge

Knowledge sound:
m 7 expected polynomial-time extractor Ext such that

m V prover P* and instance x: N know\wgc oo ”

Pr [wis a witness for x] > Pr[1 < (P*,V)(x)] — éx
w—ExtP” (x)

R Trivial if we omit either of requirement 2 or 3

)

Ext must do something more than V, e.g. “rewind” P*

14/18

Mg is ZKPoK: How to Extract 77

Mgy is a ZKPoK for L with e, < 1/2

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Te form.on (A= T (&)
e k=0
S iq i o=t

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Bladon ctavegy et Go)G
Diowdke B on (¢, ,G) o dotan

Te form.on (A= T (&)
e k=0
S iq i o=t

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Bladon ctavegy et Go)G
Diowdke B on (¢, ,G) o dotan
2) Cnallerye on 0 0 get Y,

Te form.on (A= T (&)
e k=0
S iq i o=t

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Bladon ctavegy et Go)G
Diowdke B on (¢, ,G) o dotan
2) Cnallerye on 0 0 get Y,

3 Rewsind PEo end o 1)
L s

Te form.on (A= T (&)
e k=0
S iq i o=t

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Bladon ctavegy et Go)G

Diowdke B on (¢, ,G) o dotan
e feron.n () R=T &) 2) Cllenge on 0 © get Y,
1 Eb=0
'\§/'. = i\

¢ ko= 3) Rewoind Pro end o} 1)
leme on\ @ get
Y Ck% Cq\ 4) Callery

—
NN | S
¢ W Gk

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Bladon ctavegy et Go)G

Diowdke B on (¢, ,G) o dotan
e feron.n () R=T &) 2) Cllenge on 0 © get Y,
1 Eb=0
'\§/'. = i\

¢ ko= 3) Rewoind Pro end o} 1)
leme on\ @ get
Y Ck% Cq\ 4) Callery

5) 0P Wi,

—
NN | S
¢ W Gk

15/18

Mg is ZKPoK: How to Extract 77

Theorem 5

Bladon ctavegy et Go)G

Diowdke B on (¢, ,G) o dotan
e feron.n () R=T &) 2) Cllenge on 0 © get Y,
1 Eb=0
'\§/'. = i\

¢ ko= 3) Rewoind Pro end o} 1)
leme on\ @ get
Y Ck% Cq\ 4) Callery

5) 0P Wi,

—
NN | S
¢ W Gk

Vawgrs 2) § 4) > M- (Go) =y () > Gi=W Yo (G)

15/18

ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order G w.r.to S)

m Input:
(G, ¢, g) sampled by a group sampler S(17)
h:= g2 for a < Zy

m Solution: a

16/18

ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order G w.r.to S)

m Input:
(G, ¢, g) sampled by a group sampler S(17)
h:= g2 for a < Zy

m Solution: a

m ElGamal PKE:
m Public key: h:= g°
m Secret key: a

16/18

ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order G w.r.to S)

m Input:
(G, ¢, g) sampled by a group sampler S(17)
h:= g2 for a < Zy

m Solution: a

m ElGamal PKE:
m Public key: h:= g°
m Secret key: a

m In ID protocol for EIGamal PK, the impostor (who doesn’t know a):

m May see several transcripts via Authg, oracle
m Should not be able to fool the verifier into accepting in the protocol

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr's protocol)

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

<2y, set =9
’L&‘Zg /I :5_1[
L=t (mod 1)

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

re~2%
heegper| W-T 2o

<, sek =9

’L&‘ZZ/I~:GE
, o)
Le=14rg (mod 1) Se 1
-
(,_,r
I

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

re~2%
heegper| W-T 2o

m Completeness: ho1- @)r'ﬁf -0 ol qL (by geoup axioms)

16/18

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

reZa
heegper| W-T 2o

<, sek =9

’L&‘ZZ/I~:(3E
, o)
Le=14rg (mod 1) Se 1
-
(,_,r
I

ro {
= Completeness: h - (0) gl - 4™ - gb (by gooop axioMs)
m Honest-verifier ZK: out of order sampling, again

m Allows simulation of transcripts in ID protocol 1618

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

reZa
heegper| W-T 2o

<, sek =9

’L&‘ZZ/I~:(3E
, o)
Le=14rg (mod 1) Se 1
-
(,_,r
I

ro i
= Completeness: h - (0) gl - 4™ - gb (by gooop axioMs)
m Honest-verifier ZK: out of order sampling, again

m Allows simulation of transcripts in ID protocol 1618

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

<, sek =9
' _d
- P ,00@000

L=t+ra (mod 1) =
—

reZa
heegper| W-T 2o

ol _ gt (by yooup axoms)

m Completeness: ho1- (@) 9t-
m Honest-verifier ZK: out of order sampling, again

m Allows simulation of transcripts in ID protocol 1618

ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

<, sek =9
' _d
- P ,00@000

L=t+ra (mod 1) =
—

reZa
heegper| W-T 2o

ol _ gt (by yooup axoms)

m Completeness: ho1- (@) 9t-
m Honest-verifier ZK: out of order sampling, again

pitvboted debally b
ey <@ ME _Kam(nf,c;\)
ﬂLHrf %Lﬂw i (ndam 5’;;

m Allows simulation of transcripts in ID protocol 1618

How to Extract a from P*?

Theorem 6
MpLp is a PoK for Lpp with e < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

17/18

How to Extract a from P*?7

Theorem 6
MpLp is a PoK for Lpp with e < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

ey, 1 =4 btadion stacegy e’ (h)
L=1+ra (mod L

90

Dimvdke P on N to doain I

17/18

How to Extract a from P*7

Theorem 6
MpLp is a PoK for Lpp with e < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

ey, 1 =4 btadion stacegy e’ (h)
L=1+ra (mod L

90

Divdke P on N to dotain I
2) Lha]\mg& on [<Y o 36% L

17 /18

How to Extract a from P*7

Theorem 6
MpLp is a PoK for Lpp with e < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

ey, 1 =4 btadion stacegy e’ (h)
L=1+ra (mod L

90

Divdke P on N to dotain I
2) Lha]\mg& on [<Y o 36% L
3) Rewsind P o 1)

17 /18

How to Extract a from P*7

Theorem 6
MpLp is a PoK for Lpp with e < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

ey, 1 =4 btadion stacegy e’ (h)
L=1+ra (mod L

90

Divdke P on N to dotain I
2) Lha]\mg& on [<Y o 36% L

3) Resind P to V)
2@ (nillenge ON K<=2p to géc Ls

17 /18

How to Extract a from P*7

Theorem 6
MpLp is a PoK for Lpp with e < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

: P
L, L= erbiaicion <toegy e

! Dinvoke P on N o detain I

2) (ndlienge 00 G < to gt L
3 Pevsind P 0)

;) (nillenge ON K<=2p to géc Ls

5) Odkpuc L-k/r-n

L p
V atgpts b eredons 5 g ThT & drorh® o grbo N a2 L ~Lrb
n—L

17/18

How to Extract a from P*7

MpLp is a PoK for Lpp with e, < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

Crbaion Srabegy Ex'(0)

1(—:?{ / I 15_\[
S Dinvoke P on N o detain I

2) (nillenge 00 G < to gt L
3 Reuind P 0)

2@ (nillenge ON K<=2p to géc Ls

) Ovkput L-k/r-n

v 2 _ B
v aaq)is bh €18 dNS =3 g Wi £ gL 1hE = ng Lbjhn n - \fng
Eixaon ereor \/P & Fals rt n;rbdﬁ’ﬁ

17 /18

How to Extract a from P*7

MpLp is a PoK for Lpp with e, < 1/p

Proof (of PoK) Obtain two eqns of form L =/ + ra mod /.

Crbaion Srabegy Ex'(0)

1(—:?{ / I 15_\[
S Dinvoke P on N o detain I

2) (nillenge 00 G < to gt L
3 Reuind P 0)

2@ (nillenge ON K<=2p to géc Ls

) Ovkput L-k/r-n

v 2 _ B
) aaq)is bh ¢ g 0NS =3 ghe Th'1 & gL 1hE = ng L _pi-t - \fng
EYHO(XD(\ exeol \/\g & ?m}g rt nirbdﬁ’r)_ D

17 /18

m ZK IP

m Knowledge vs. information
m Modelled “zero knowledge” via simulator
m (Honest-verifier) ZKP for GNI (A5: QNR) and Gl (A5: QR)

18/18

m ZK IP

m Knowledge vs. information
m Modelled “zero knowledge” via simulator
m (Honest-verifier) ZKP for GNI (A5: QNR) and Gl (A5: QR)

m ZK PoK

m Modelled “knowledge” via extractor
m ZKPoK for GI, DLP

18/18

m ZK IP

m Knowledge vs. information
m Modelled “zero knowledge” via simulator
m (Honest-verifier) ZKP for GNI (A5: QNR) and Gl (A5: QR)

m ZK PoK

m Modelled “knowledge” via extractor
m ZKPoK for GI, DLP

m Next Lecture:

m Application: eVoting
m Tools used: Elgamal PKE, ZK (PoK)

18/18

[Gol01, Chapters 4.3 and 4.7] for details of today’s lecture
[GMR89] for definitional and philosophical discussion on ZK
The ZKPs for Gl and GNI are taken from [GMR89, GMW91]
Computational ZKP for all of PSPACE is due to [GMW091].

18/18

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have
zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems.
J. ACM, 39(4):859-868, October 1992.

Adi Shamir.
IP=PSPACE.
In 31st FOCS, pages 11-15. IEEE Computer Society Press, October 1990.

18/18

	Zero-Knowledge Interactive Proof
	ZK Proof of Knowledge

