

CS409m: Introduction to Cryptography

Lecture 19 (22/Oct/25)

Instructor: Chethan Kamath

Announcements

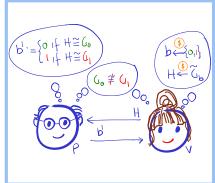
- Feedback form for course (post mid-sem part) sent out
- Assignment 5 out yesterday (21/Oct)
- Quiz 2 viewing on 24/Oct (Friday), 12:30-14:30
 - Submit your cribs online by 29/Oct (next Wednesday)
- Quiz 3 on 29/Oct (next Wednesday)
 - 08:25-09:25, in CC103/CC105
- Lab Exercise 4 will be released today (22/Oct)
 - Submit flag by 29/Oct EoD (Wednesday)
 - Submit write-up by 31/Oct EoD (Friday)

Recall from Last Lecture

- Interactive proofs vs NP proofs:
 - Prover convinces verifier using *interaction*
 - Verifier is random

Interactive Proof (IP)

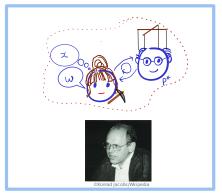
IP for GNI



Plan for Today's Lecture...

IP where prover reveals no non-trivial knowledge to the verifier

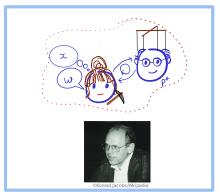
Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)



Plan for Today's Lecture...

IP where prover reveals no non-trivial knowledge to the verifier

Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)





Main tools: simulator and extractor

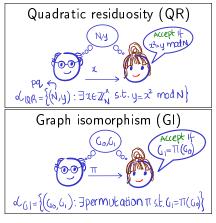
Plan for Today's Lecture...

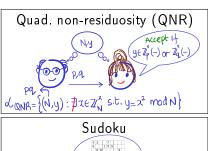
IP where prover reveals no non-trivial knowledge to the verifier

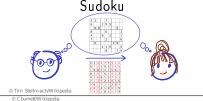
Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)

Main tools: simulator and extractor

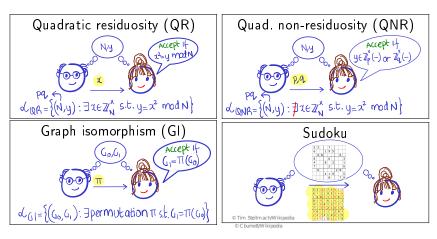
The NP Proofs We Saw Leaked Information





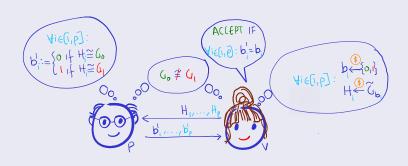


The NP Proofs We Saw Leaked Information



- Verifier gains "non-trivial knowledge" about witness w
 - Not desirable, e.g., when x = pk and w = sk (identification)

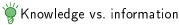
But the IP for GNI We Saw Doesn't Seem to



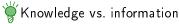
- Parallel/sequentially repeat to boost soundness
- Seems V gains no knowledge beyond validity of the statement
- We will show that Π_{GNI} is (honest-verifier) zero-knowledge!

Knowledge vs. information in the information-theoretic sense

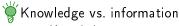
Knowledge is computational



- Knowledge is computational: e.g., consider NP proof for GI
 - Given (G_0, G_1) , the isomorphism π contains no information
 - But when given π , V "gains knowledge" since she couldn't have computed π herself



- Knowledge is computational: e.g., consider NP proof for GI
 - Given (G_0, G_1) , the isomorphism π contains no information
 - But when given π , V "gains knowledge" since she couldn't have computed π herself
- Knowledge pertains to public objects:
 - Flipping a private fair coin b and (later) revealing its outcome leads to V gaining information
 - But V does not gain knowledge: she could herself have tossed the private coin and revealed it



- Knowledge is computational: e.g., consider NP proof for GI
 - Given (G_0, G_1) , the isomorphism π contains no information
 - But when given π , V "gains knowledge" since she couldn't have computed π herself
- Knowledge pertains to public objects:
 - Flipping a private fair coin b and (later) revealing its outcome leads to V gaining information
 - But V does not gain knowledge: she could herself have tossed the private coin and revealed it

Intuitively, "V gains no knowledge" if anything V can compute after the interaction, V could have computed without it

■ Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be efficiently simulated given only the instance

■ Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be efficiently simulated given only the instance

■ Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be

efficiently simulated given only the instance

View (/D V/(x)) can be

Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be efficiently simulated given only the instance

Definition 1 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$

$$\Pr[\mathsf{D}(\mathit{View}_{\mathsf{V}}(\langle \mathsf{P}, \mathsf{V} \rangle(x))) = 1] = \Pr[\mathsf{D}(\mathsf{Sim}(x)) = 1]$$

> V's "view"=x+ transcript o + coins

Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be efficiently simulated given only the instance

Definition 1 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$

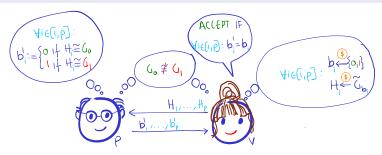
$$\Pr[\mathsf{D}(\mathit{View}_{\mathsf{V}}(\langle \mathsf{P},\mathsf{V}\rangle(x))) = 1] = \Pr[\mathsf{D}(\mathsf{Sim}(x)) = 1]$$

Exercise 1

What happens when one invokes the simulator on $x \notin \mathcal{L}$?

Theorem 1

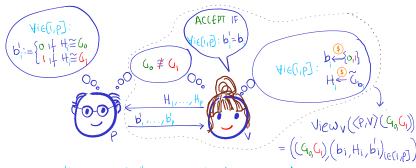
 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}



Parallel/sequentially repeat to boost soundness

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}



Parallel/sequentially repeat to boost soundness

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}

Proof.

$$\forall i \in \mathcal{W}_{V}(\langle P, V \rangle (G_{o_{i}}G_{i})) := ((G_{o_{i}}G_{i})_{(b_{i}, H_{i}, b_{i})}(b_{i}, H_{i}, b_{i})_{(e(i, p))})$$

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}

Proof.

$$\forall \, \mathsf{G}_{\mathsf{o}} \not\cong \, \mathsf{G}_{\mathsf{o}} := \underbrace{\left(\left(\mathsf{G}_{\mathsf{o}_{\mathsf{o}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{i}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{i}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}} \mathsf{G}_{\mathsf{o}_{\mathsf{i}}}$$

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}

Proof.

$$\forall \ \mathsf{G}_{\mathsf{o}} \not \equiv \mathsf{G}_{\mathsf{i}} \colon \\ \forall \ \mathsf{G}_{\mathsf{o}} \not \equiv \mathsf{G}_{\mathsf{i}} \colon \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}}) \colon \\ \forall \ \mathsf{G}_{\mathsf{o}} \not \equiv \mathsf{G}_{\mathsf{i}} \colon \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}}) \quad \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}} : \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}}) \quad \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}} : \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}}) \quad \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}} : \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}}) \quad \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}} : \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}} : \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}}) \quad \forall \ \mathsf{G}_{\mathsf{o}} \not \in \mathsf{G}_{\mathsf{o}} : \forall \ \mathsf{G}_{\mathsf{o}} : \forall \$$

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}

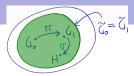
Proof.

$$\forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{i} : \\ \forall \ G_{o} \not \sharp \ G_{o} : \\ \forall \ G_{o} \not \sharp \ G_{o} : \\ \forall \ G_{o} \not \sharp \ G_{o} : \\ \forall \ G_{o} \not G_{o} : \\ \forall \ G_{o} : \\ \forall \$$

Exercise 2

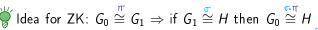
- What happens if V is "malicious" and can deviate from protocol?
- 2 Using ideas from Π_{GNI} , build honest-verifier ZKP for \mathcal{L}_{QNR}

 $\text{ Idea for ZK: } G_0 \overset{\pi}{\cong} G_1 \Rightarrow \text{if } G_1 \overset{\sigma}{\cong} H \text{ then } G_0 \overset{\sigma\pi}{\cong} H$

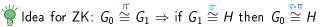


Idea for ZK: $G_0\stackrel{\pi}{\cong} G_1\Rightarrow$ if $G_1\stackrel{\sigma}{\cong} H$ then $G_0\stackrel{\sigma\cdot\pi}{\cong} H$

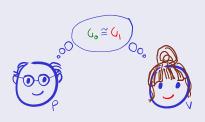
- 1 Prover "commits" by sending random H s.t. $G_1 \cong H$
- Verifier challenges to "open" $G_0 \cong H$ or $G_1 \cong H$ at random

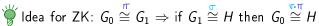


- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\circ}{\cong} H$
- 2 Verifier challenges to "open" $G_0 \stackrel{\text{gu}}{\simeq} H$ or $G_1 \stackrel{\text{gu}}{\simeq} H$ at random

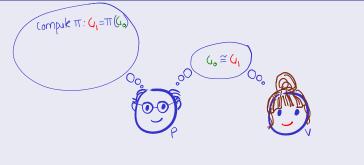


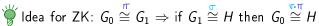
- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\mathcal{G}}{\cong} H$
- Verifier challenges to "open" $G_0 \stackrel{\text{def}}{=} H$ or $G_1 \stackrel{\text{def}}{=} H$ at random



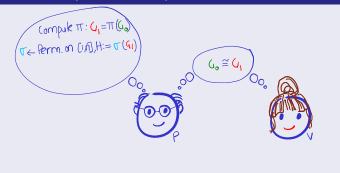


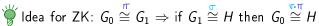
- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- Verifier challenges to "open" $G_0 \stackrel{\text{def}}{=} H$ or $G_1 \stackrel{\text{def}}{=} H$ at random



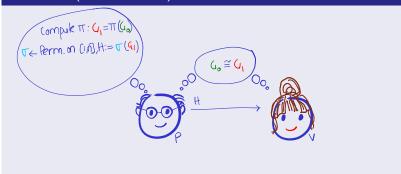


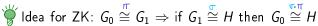
- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- Verifier challenges to "open" $G_0 \stackrel{\cong}{=} H$ or $G_1 \stackrel{\cong}{=} H$ at random



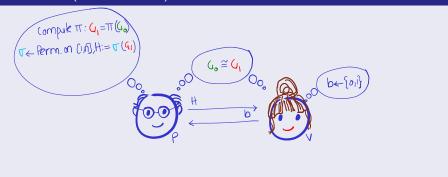


- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- Verifier challenges to "open" $G_0 \stackrel{\boxtimes}{\cong} H$ or $G_1 \stackrel{\boxtimes}{\cong} H$ at random



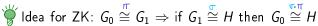


- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- 2 Verifier challenges to "open" $G_0 \stackrel{\cong}{=} H$ or $G_1 \stackrel{\cong}{=} H$ at random

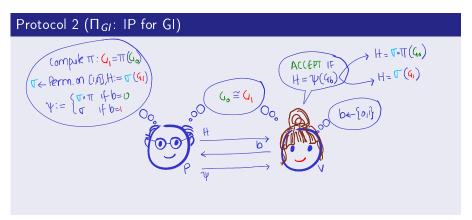


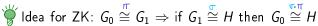
- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- Verifier challenges to "open" $G_0 \stackrel{\text{def}}{=} H$ or $G_1 \stackrel{\text{def}}{=} H$ at random

Protocol 2 (Π_{GI} : IP for GI) (ompuk T: (1=T(6)) T← Perm. on (1,1),H:=T(41) G. ≅ G.

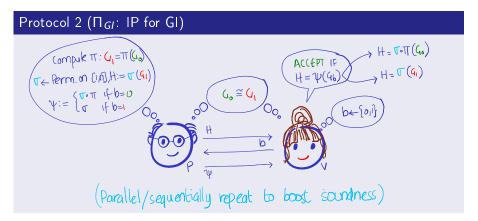


- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- 2 Verifier challenges to "open" $G_0 \stackrel{\cong}{\cong} H$ or $G_1 \stackrel{\cong}{\cong} H$ at random





- 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
- 2 Verifier challenges to "open" $G_0 \stackrel{\cong}{=} H$ or $G_1 \stackrel{\subseteq}{=} H$ at random



~= ~,

Theorem 2

 $\Pi_{\textit{GI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

Theorem 2

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H P^* commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b

Theorem 2

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H P^* commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b
- Zero knowledge:

where
$$\mathbf{G}_{0}$$
 is $\mathbf{G}_{0}(\mathbf{G}_{0},\mathbf{G}_{0}):=\left(\left(\mathbf{G}_{0},\mathbf{G}_{0}\right)_{0},\left(\mathbf{H}_{0},\mathbf{h}_{0}\right)_{0}\right)$

Theorem 2

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H P^* commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b
- Zero knowledge: $\sqrt{(P,V)(G_0,G_1)} := (G_0,G_1)(H,b,\psi)$ $\sqrt{(P,V)(G_0,G_1)} := (G_0,G_1)(H,b,\psi)$

Theorem 2

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any $H \ \mathsf{P}^*$ commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b
- Zero knowledge:

He cannot both hold
$$\Rightarrow$$
 best P^* can do is guess by the substitution of the substit

Theorem 2

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

Proof (idea for ZK: out of order sampling).

- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H P^* commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b
- Zero knowledge:

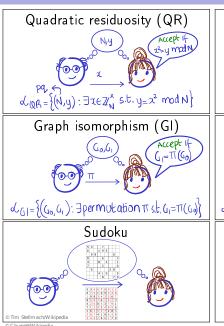
owledge:

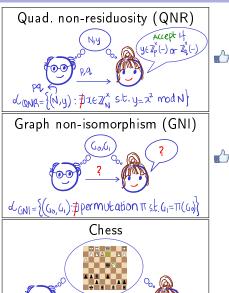
$$\forall G_0 \stackrel{\pi}{=} G_1$$
: Sim (G_0,G_1) : Sample be $\{G_0,G_1\}$, ψ = permutation on G_0,G_1

set $H := \psi(G_0)$
 $\forall G_0 \stackrel{\pi}{=} G_1$: G_0,G_1
 $\forall G_0 \stackrel{\pi}{=} G_1$: G_0,G_1
 G_0,G_1

y Go ≈ G: View ((PN)(Go,G)) identically distributed to Sim(Go,G). □

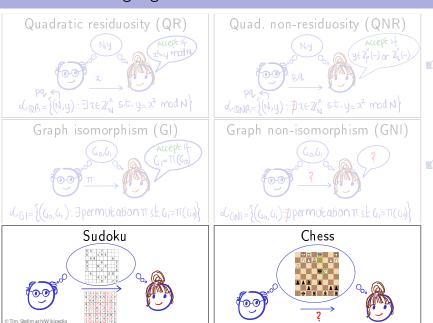
Which Languages have ZKPs?



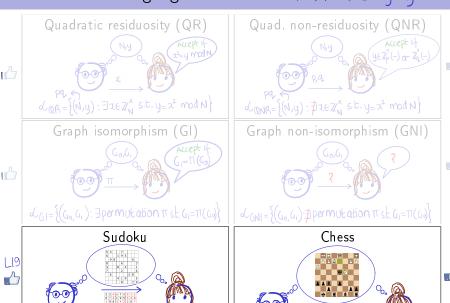


Which Languages have ZKPs?

ı



Which Languages have ZKPs? PSPACE Languages



10 / 18

Are Randomness and Interaction Necessary?

≒ Interaction is necessary

Fact 3

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L$ is "trivial"

Are Randomness and Interaction Necessary?

Fact 3

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L$ is "trivial"

(§) Randomness is necessary

Exercise 3

If $\mathcal L$ has an IP with deterministic verifier then $\mathcal L \in \mathsf{NP}$

Fact 4

If $\mathcal L$ has an ZKP with deterministic verifier then $\mathcal L$ is "trivial"

Plan for Today's Lecture...

IP where prover reveals no non-trivial knowledge to the verifier

Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)

Main tools: simulator and extractor

Sometimes Stronger Guarantees than ZK Needed

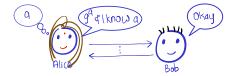
- Recall ZK IP requirements:
 - 1 Completeness
 - **2** Soundness
 - Zero-knowledge (ZK)

Sometimes Stronger Guarantees than ZK Needed

- Recall ZK IP requirements:
 - 1 Completeness
 - 2 Soundness
 - Zero-knowledge (ZK)
- Sometimes V needs to be convinced that P knows a witness

Sometimes Stronger Guarantees than ZK Needed

- Recall ZK IP requirements:
 - 1 Completeness
 - 2 Soundness
 - Zero-knowledge (ZK)
- Sometimes V needs to be convinced that P knows a witness
- E.g. Identification for ElGamal PKE in cyclic group G
 - Public key is $h := g^a$ and secret key is the discrete log a
 - Owner has to prove they possess a (such an a always exists)

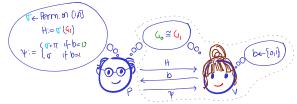


- For defining ZK, we only quantified "gain of knowledge"
 - "V gains no knowledge" if anything V can compute after the interaction with P, it could have computed without it
 - Formalised via simulator: V's view can be *efficiently simulated* given only the instance x

- For defining ZK, we only quantified "gain of knowledge"
 - "V gains no knowledge" if anything V can compute after the interaction with P, it could have computed without it
 - Formalised via simulator: V's view can be *efficiently simulated* given only the instance x
- ? How would you quantify "knowledge" itself?

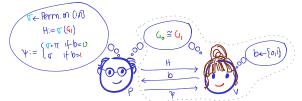
- For defining ZK, we only quantified "gain of knowledge"
 - "V gains no knowledge" if anything V can compute after the interaction with P, it could have computed without it
 - Formalised via simulator: V's view can be *efficiently simulated* given only the instance x
- ? How would you quantify "knowledge" itself?
 - For a student: get hold of student, hold viva, extract answers

- For defining ZK, we only quantified "gain of knowledge"
 - "V gains no knowledge" if anything V can compute after the interaction with P, it could have computed without it
 - Formalised via simulator: V's view can be *efficiently simulated* given only the instance x
- ? How would you quantify "knowledge" itself?
 - For a student: get hold of student, hold viva, extract answers



■ For P in Π_{GI} ?

- For defining ZK, we only quantified "gain of knowledge"
 - "V gains no knowledge" if anything V can compute after the interaction with P, it could have computed without it
 - Formalised via simulator: V's view can be *efficiently simulated* given only the instance x
- Ohow would you quantify "knowledge" itself?
 - For a student: get hold of student, hold viva, extract answers



- For P in Π_{GI} ? Should be possible to *efficiently extract* isomorphism π given access to P
- In general, for NP: should be possible to extract a witness w

Definition 2 (ZKPoK)

An interactive protocol $\Pi=(P,V)$ for an NP language $\mathcal L$ is a zero-knowledge proof of knowledge if it is

- Complete
- Zero knowledge

Definition 2 (ZKPoK)

An interactive protocol $\Pi = (P, V)$ for an NP language \mathcal{L} is a

- zero-knowledge proof of knowledge if it is
 - Complete
 - Zero knowledge
 - 3 Knowledge sound:
 - ∃ expected polynomial-time *extractor* Ext such that
 - \blacksquare \forall prover P* and instance x:

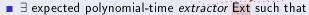
$$\Pr_{w \leftarrow \mathsf{Ext}^{\mathsf{P}^*}(x)}[w \text{ is a witness for } x] \ge \Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] - \epsilon_k$$

Definition 2 (ZKPoK)

An interactive protocol $\Pi = (P, V)$ for an NP language \mathcal{L} is a

zero-knowledge proof of knowledge if it is

- Complete
- Zero knowledge
- Knowledge sound:



 \blacksquare \forall prover P* and instance x:

over P* and instance
$$x$$
:

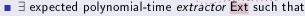
 $\Pr_{w \leftarrow \operatorname{Ext}^{P^*}(x)}[w \text{ is a witness for } x] \geq \Pr[1 \leftarrow \langle P^*, V \rangle(x)] - \frac{1}{\epsilon_k}$

Definition 2 (ZKPoK)

An interactive protocol $\Pi = (P, V)$ for an NP language \mathcal{L} is a

zero-knowledge proof of knowledge if it is

- Complete
- Zero knowledge
- Knowledge sound:



 \blacksquare \forall prover P* and instance x:

Prover P* and instance
$$x$$
:

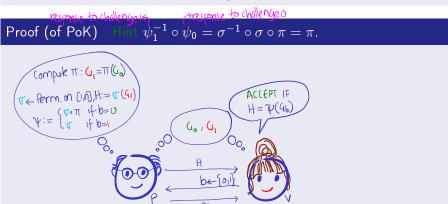
 $\Pr_{w \leftarrow \operatorname{Ext}^{\mathbf{P}^*}(x)}[w \text{ is a witness for } x] \geq \Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] - \epsilon_k$

Trivial if we omit either of requirement 2 or 3

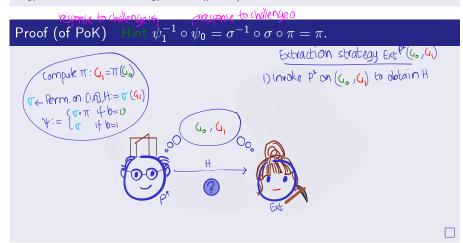
Ext must do something more than V, e.g. "rewind" P*

Theorem 5

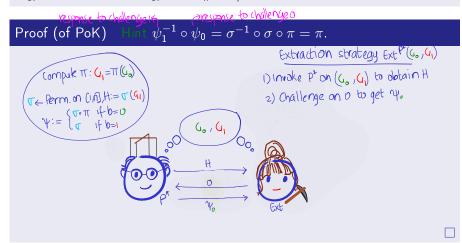
Theorem 5



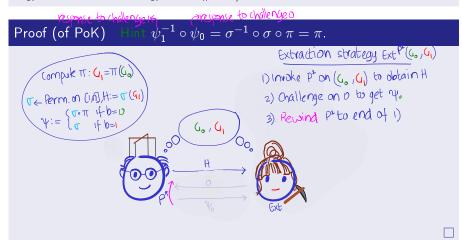
Theorem 5



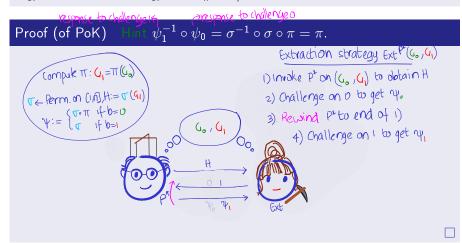
Theorem 5



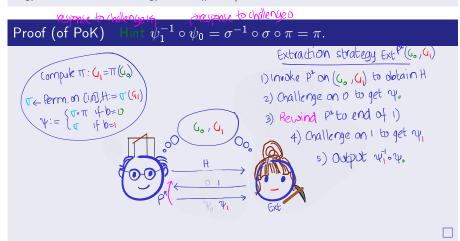
Theorem 5



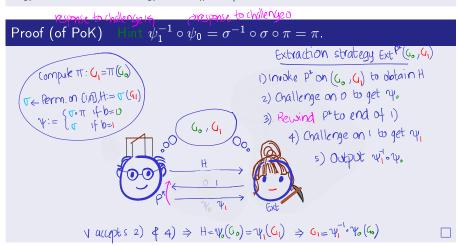
Theorem 5



Theorem 5



Theorem 5



ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order \mathbb{G} w.r.to S)

- Input:
 - (\mathbb{G},ℓ,g) sampled by a group sampler $\mathsf{S}(1^n)$
 - 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_\ell$
- Solution: a

ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order \mathbb{G} w.r.to S)

- Input:
 - **1** (\mathbb{G}, ℓ, g) sampled by a group sampler $\mathsf{S}(1^n)$
 - 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_\ell$
- Solution: a

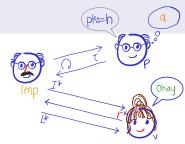
- ElGamal PKE:
 - Public key: $h := g^a$
 - Secret key: a

ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order \$\mathbb{G}\$ w.r.to \$S\$)

- Input:
 - 1 (\mathbb{G}, ℓ, g) sampled by a group sampler $\mathsf{S}(1^n)$
 - 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_\ell$
- Solution: a

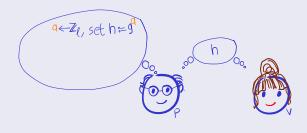
- ElGamal PKE:
 - Public key: $h := g^a$
 - Secret key: a



- In ID protocol for ElGamal PK, the impostor (who doesn't know a):
 - \blacksquare May see several transcripts via Auth_{sk} oracle
 - Should not be able to fool the verifier into accepting in the protocol

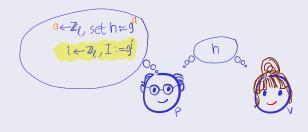
ZKPoK for DLog: Schnorr's Protocol...

Protocol 3 (Π_{DLP} : Schnorr's protocol)

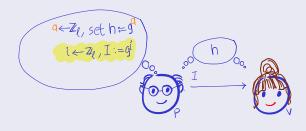


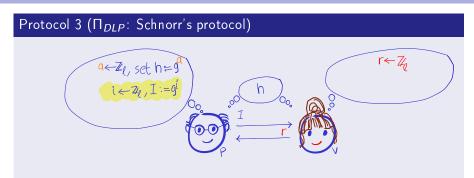
ZKPoK for DLog: Schnorr's Protocol...

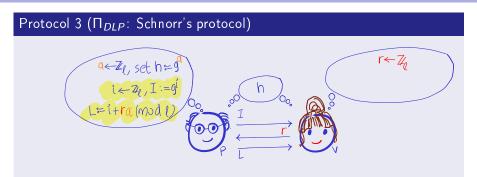
Protocol 3 (Π_{DLP} : Schnorr's protocol)



Protocol 3 (Π_{DLP} : Schnorr's protocol)

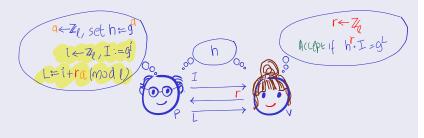






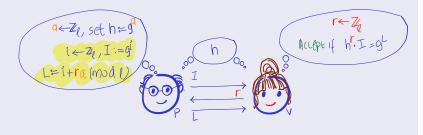
Protocol 3 (Π_{DLP} : Schnorr's protocol) $q \leftarrow \mathbb{Z}_{\ell}, \text{ set } h \rightleftharpoons g^{\dagger}$ $i \leftarrow \mathbb{Z}_{\ell}, \mathbb{I} \models g^{\dagger}$ $\downarrow i \leftarrow \mathbb{Z}_{\ell}, \mathbb$

Protocol 3 (Π_{DLP} : Schnorr's protocol)

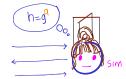


■ Completeness: $h^{r} \cdot I = (g^{6})^{r} \cdot g^{i} = g^{ar+i} = g^{L}$ (by group axioms)

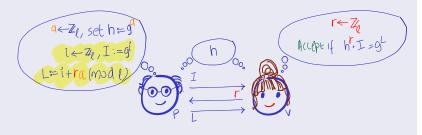
Protocol 3 (Π_{DLP} : Schnorr's protocol)



- Completeness: $h' \cdot I = (g^6)^r \cdot g^i = g^{ar+i} = g^L$ (by group axioms)
- Honest-verifier ZK: out of order sampling, again

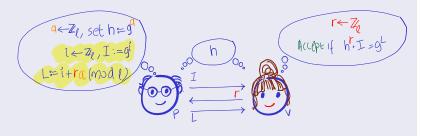


Protocol 3 (Π_{DLP} : Schnorr's protocol)



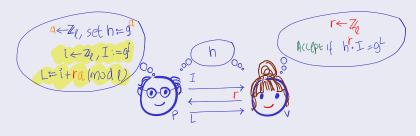
- Completeness: $h^r \cdot I = (g^6)^r \cdot g^6 = g^{ar+6} = g^L$ (by group axioms)
- Honest-verifier ZK: out of order sampling, again

Protocol 3 (Π_{DLP} : Schnorr's protocol)



- Completeness: $h^r \cdot I = (g^6)^r \cdot g^1 = g^{ar+1} = g^L$ (by group axioms)
- Honest-verifier ZK: out of order sampling, again

Protocol 3 (Π_{DLP} : Schnorr's protocol)



- Completeness: $h^r \cdot I = (g^6)^r \cdot g^1 = g^{ar+1} = g^L$ (by group axioms)
- Honest-verifier ZK: out of order sampling, again

Distributed identically to View since
$$g = g^{-1} = g^{-1}$$
 is random

 $I = g^{-1} = g^{-1}$

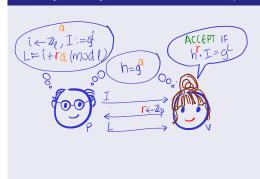
Simple $I = g^{-1} = g^{-1}$

Simple $I = g^{-1} = g^{-1}$

Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Hint Obtain two egns of form $L = I + ra \mod \ell$.



Theorem 6

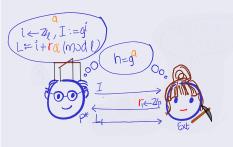
 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Him Obtain two egns of form $L = I + ra \mod \ell$.

Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Him Obtain two eqns of form $L = I + ra \mod \ell$.



Extraction strategy ExtP(h)

- Dinvoke P* on h to obtain I
- 2) Challenge on re- to get L

Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Him Obtain two egns of form $L = I + ra \mod \ell$.

Extraction strategy ExtP(h)

- Dinvoke P* on h to obtain I
- 2) Challenge on re- to get Li
- 3) Rewind P to 1)

Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Hint Obtain two egns of form $L = I + ra \mod \ell$.

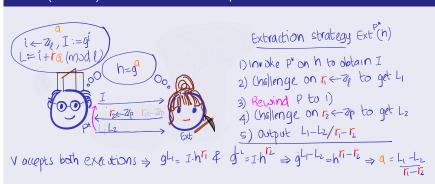
Extraction strategy ExtP(h)

- Dinvoke P* on h to obtain I
- 2) Challenge on re- to get L
- 3) Rewind P to 1)
 4) (hallenge on r2←2p to get L2

Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

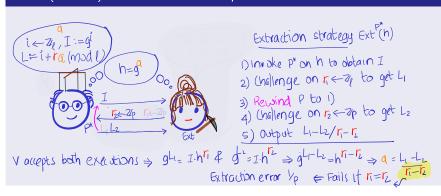
Proof (of PoK) Hint Obtain two egns of form $L = I + ra \mod \ell$.



Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

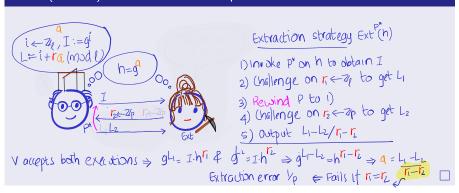
Proof (of PoK) Him Obtain two egns of form $L = I + ra \mod \ell$.



Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Him Obtain two egns of form $L = I + ra \mod \ell$.



Recap/Next Lecture

- ZK IP
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulator
 - (Honest-verifier) ZKP for GNI (A5: QNR) and GI (A5: QR)

Recap/Next Lecture

- ZK IP
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulator
 - (Honest-verifier) ZKP for GNI (A5: QNR) and GI (A5: QR)
- ZK PoK
 - Modelled "knowledge" via extractor
 - ZKPoK for GI, DLP

Recap/Next Lecture

- ZK IP
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulator
 - (Honest-verifier) ZKP for GNI (A5: QNR) and GI (A5: QR)
- ZK PoK
 - Modelled "knowledge" via extractor
 - ZKPoK for GI, DLP
- Next Lecture:
 - Application: eVoting
 - Tools used: Elgamal PKE, ZK (PoK)

References

- [Gol01, Chapters 4.3 and 4.7] for details of today's lecture
- [GMR89] for definitional and philosophical discussion on ZK
- 3 The ZKPs for GI and GNI are taken from [GMR89, GMW91]
- Computational ZKP for all of PSPACE is due to [GMW91].

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

The knowledge complexity of interactive proof systems.

SIAM J. Comput., 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

Oded Goldreich.

The Foundations of Cryptography - Volume 1: Basic Techniques.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.

Algebraic methods for interactive proof systems.

J. ACM, 39(4):859-868, October 1992.

Adi Shamir.

IP=PSPACE.

In 31st FOCS, pages 11-15. IEEE Computer Society Press, October 1990.