CS409m: Introduction to Cryptography

Lecture 19 (22/0Oct/25)

Instructor;: Chethan Kamath



Announcements

m Feedback form for course (post mid-sem part) sent out
m Assignment 5 out yesterday (21/Oct)

m Quiz 2 viewing on 24/Oct (Friday), 12:30-14:30

m Submit your cribs online by 29/0ct (next Wednesday)
m Quiz 3 on 29/0ct (next Wednesday)

m 08:25-09:25, in CC103/CC105

m Lab Exercise 4 will be released today (22/Oct)

m Submit flag by 29/0ct EoD (Wednesday)
m Submit write-up by 31/Oct EoD (Friday)
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Recall from Last Lecture

m Interactive proofs vs NP proofs:

m Prover convinces verifier using interaction
m Verifier is random

Interactive Proof (IP) IP for GNI

© Wikipedia

- | il
© blog.com putationalcom plexity.org  © alcheton.com ©0ded Goldreich
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Plan for Today's Lecture...

v/, -
9 IP where prover reveals no non-trivial knowledge to the verifier

YT

Wbﬂ Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK){ e
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IP where prover reveals no non-trivial knowledge to the verifier

{’ﬁé\ﬁ} Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)
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©0ded Goldreich
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Main tools: simulator and extractor
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Quadratic residuosity (QR)

oWe:
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Quad. non-residuosity (QNR)
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Graph isomorphism (Gl)
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The NP Proofs We Saw Leaked Information

Quadratic residuosity (QR) Quad. non-residuosity (QNR)
Accepk b

N

Do BH)

P X 2 [a )
digh-{g) 312, S8 y=at wodN] | [ L dy): Preag o6 yF modn}

Graph isomorphism (Gl) Sudoku

, G \jﬁ (.GD
7

\

=160 6. Fpermoeaton Tk 6= || o

© Cbumei/W ikipedia

m Verifier gains “non-trivial knowledge” about witness w
m Not desirable, e.g., when x = pk and w = sk (identification)
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But the IP for GNI We Saw Doesn't Seem to

Protocol 1 (Mguy: IP for GNI)

Paralle / cqucﬂ rq)@ak b boof coudness

m Seems V gains no knowledge beyond validity of the statement
m We will show that Mgy is (honest-verifier) zero-knowledge!

5/18



in te information-thedrebic sense

Vi,

Q Knowledge vs. information &
m Knowledge is computational
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Vi,

g Knowledge vs. information
m Knowledge is computational: e.g., consider NP proof for Gl

m Given (Go, G1), the isomorphism 7 contains no information
m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself
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How to Capture “V Gains No Knowledge™

Vi,

'$ Knowledge vs. information
m Knowledge is computational: e.g., consider NP proof for Gl

m Given (Go, G1), the isomorphism 7 contains no information

m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

m But V does not gain knowledge: she could herself have tossed the
private coin and revealed it
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How to Capture “V Gains No Knowledge™

Vi,

'$ Knowledge vs. information
m Knowledge is computational: e.g., consider NP proof for Gl

m Given (Go, G1), the isomorphism 7 contains no information
m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself

m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome leads
to V gaining information

m But V does not gain knowledge: she could herself have tossed the
private coin and revealed it

N - 0“ . "o .
@ Intuitively, “V gains no knowledge” if anything V can compute after
the interaction, V could have computed without it
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m Formalised via “simulation paradigm”: Viewy((P,V)(x)) can be
efficiently simulated given only the instance
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Defining Zero Knowledge via Simulators
VEe =S Cranstrpt et oing

m Formalised via “simulation paradigm™ Viewy ((P, V>(x)) can be -
effICIently 5|mu|ated glven only the instance

Definition 1 (Honest Vern‘ler Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € £

Pr[D(Viewy (P, V)(x))) = 1] = Pr[D(Sim(x)) = 1]
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Defining Zero Knowledge via Simulators
VEe =S Cranstrpt et oing

m Formalised via “simulation paradigm™ Viewy ((P, V>(x)) can be -
effICIently 5|mu|ated glven only the instance

Definition 1 (Honest Vern‘ler Perfect ZK)

An IP I is honest-verifier perfect ZK if there exists a PPT simulator Sim
such that for all distinguishers D and all x € £

Pr[D(Viewy (P, V)(x))) = 1] = Pr[D(Sim(x)) = 1]

Exercise 1
What happens when one invokes the simulator on x & L7
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My is Honest-Verifier ZK

Theorem 1

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

ACLEPT (F
el ) b

Parallel / gequeﬂk\aug Vep@ak b bt coundness
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My is Honest-Verifier ZK

Theorem 1

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

ACLEPT PN
CGRs,

;e Qb‘ .

\]\6(“)\](691\0 LQD/C‘LJ)
el j(LC‘D/U‘)/OD‘/Hi/b\)m@,fl>
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My is Honest-Verifier ZK

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

\CU)V(<? V?LQ U) ((_(4 \) (b H\/b H,M)
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Meny is honest-verifier perfect zero-knowledge IP for Lgpy
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My is Honest-Verifier ZK

Theorem 1

Meny is honest-verifier perfect zero-knowledge IP for Lgpy

Proof.

Viewy @? NI LQO’(@ - (L—C‘D/@/(b iy L;/, L)\f;[t »r“l‘)

CC\‘ é\m@g,(ﬂ =i, p) s(}mplé bedfoly and H%Zb,‘
I (LQ”'QD/G’ LAb ‘)u&(x/fﬂ)
¥ Q%G \}\Cu)v(<P/V7LC(O/Ql>> mmbm\\g Admbuzd & @W\Uto,&(),
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My is Honest-Verifier ZK

Theorem 1

Mgny is honest-verifier perfect zero-knowledge IP for Ly

O

Proof

Yy (NG () (bi 1, b))
¥ G,

17 om QQD,QJ o= 5GMP1@ bQ—éLD\ﬂ] and H%Zb
o ((‘C‘O«Q‘)/(b /H /b ) EQ/F}>
V6% G Viewy(EVI(GG) nerbaly dambied b Cm(G.q,)

Exercise 2

What happens if V is “malicious” and can deviate from protocol?

Using ideas from Mgpy, build honest-verifier ZKP for Lonr
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g Idea for ZK: Gy = G1 = if G1 H then Gy gH
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\

N2 m . a 1T

g Idea for ZK: Gp = Gy = if Gi = H then Gy = H
Prover “commits” by sending random H s.t. G &2 H
Verifier challenges to “open” Gy = H or G; = H at random
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\,

g Idea for ZK: Gp = G1 = if G1 H then Gy = m

H Prover “commits” by sendmg random H s.t. o-Gl & H
Verifier challenges to “open” Gg = H or G; = H at random
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Honest-Verifier ZKP for Gl

g ¢~TT
Q Idea for ZK: Gp = G1 = if G; = H then Gy =

H Prover “commits” by sendlng random H s.t. Gl =

A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)
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9 Idea for ZK: Gp =

H Prover “commits” by sendlng random H s.t. Gl =
A Verifier challenges to “open” Go 2'H or G = & H at random

Protocol 2 (Mg;: IP for GI)

Yi=

T
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Honest-Verifier ZKP for Gl
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Honest-Verifier ZKP for Gl

9 Idea for ZK: Gy = G1 = if Gy

Protocol 2 (Mg;: IP for GI)

Yi=

H Prover “commits” by sendlng random H s.t. Gl =

a
[ad

mT
H then Gy =

A Verifier challenges to “open” Go 2'H or G = & H at random

T
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Honest-Verifier ZKP for Gl =

9 Idea for ZK: Gp = G1 =if G = ~ H then Gy = m

H Prover “commits” by sendlng random H s.t. Gl ~H
A Verifier challenges to “open” Go "H or G = & H at random

Protocol 2 (Mg;: IP for GI)

- ©T ()

Cornpale T G, =1, o
H=0(a

e ferrn.on (=T &)
et do=0
¢ o=t

ACCEPT 7

Yi=

Pam\ \/fequmbag rgp@ak b boof QOLMMJS)
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Honest-Verifier ZKP for Gl...

Mg is honest-verifier perfect zero-knowledge IP for Lg;
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Honest-Verifier ZKP for Gl...

Theorem 2

Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b
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m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge:

Jiewy (N1 (G,G) (Q@(H b#})

iy
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Honest-Verifier ZKP for Gl...

Theorem 2
Mg is honest-verifier perfect zero-knowledge IP for Lg;
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Honest-Verifier ZKP for Gl...

Theorem 2
Mg is honest-verifier perfect zero-knowledge IP for Lg;

Proof (Jidea for ZK: out of order sampling).

m Completeness: Gop = G; = P can answer both challenges = V
always accepts

m Soundness: Gy % G; = for any H P* commits to, Gy = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge: (&) /
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Quadratic residuosity (QR) Quad. non-residuosity (QNR)
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Quadratic re5|du05|ty QR) Quad. non-residuosity (QNR)
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Are Randomness and Interaction Necessary?

—

= Interaction is necessary

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”
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Are Randomness and Interaction Necessary?

—

= Interaction is necessary

Fact 3

If L has a non-interactive (i.e, one-message) ZKP then L is “trivial”

Randomness is necessary

Exercise 3
If £ has an IP with deterministic verifier then £ € NP

Fact 4
If L has an ZKP with deterministic verifier then L is “trivial”
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IP where prover reveals no non-trivial knowledge to the verifier

{’ﬁé\ﬁ} Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)

izl
©0ded Goldreich
S

Main tools: simulator and extractor
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m Recall ZK IP requirements:

Completeness
Soundness
Zero-knowledge (ZK)
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Sometimes Stronger Guarantees than ZK Needed

m Recall ZK IP requirements:

Completeness
Soundness
Zero-knowledge (ZK)

m Sometimes V needs to be convinced that P knows a witness

m E.g. Identification for ElGamal PKE in cyclic group G

m Public key is h := g2 and secret key is the discrete log a
m Owner has to prove they possess a (such an a always exists)

‘
/f% [
e

Bob
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m For defining ZK, we only quantified “gain of knowledge”
m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x
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interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x
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How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m "V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via simulator: V's view can be efficiently simulated given
only the instance x

@ How would you quantify “knowledge” itself?
m For a student: get hold of student, hold viva, extract answers

- forra.on (1)

W= @u] .
o] \(rbio O (@) N
v= 1% i b= O 8. % @
@P

m For P in Mg ? Should be poééible to efficiently extract isomorphism
7 given access to P
m In general, for NP: should be possible to extract a witness w
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Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

Complete
Zero knowledge
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Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP Ianguage Lisa
zero-knowledge proof of knowledge if itis - 4

Complete "@o
B 0,8
)

Zero knowledge

Knowledge sound:

m 7 expected polynomial-time extractor Ext such that
m V prover P* and instance x:

Pr  [wis a witness for x] > Pr[1 < (P*,V)(x)] — ex
w—ExtP” (x)
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Let’s Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP Ianguage Lisa
zero-knowledge proof of knowledge if itis - 4

Complete "@o
E 0,8
o

Zero knowledge

Knowledge sound:
m 7 expected polynomial-time extractor Ext such that

m V prover P* and instance x: N know\wgc oo ”

Pr  [wis a witness for x] > Pr[1 < (P*,V)(x)] — éx
w—ExtP” (x)

R Trivial if we omit either of requirement 2 or 3

)

Ext must do something more than V, e.g. “rewind” P*
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Mg is ZKPoK: How to Extract 77

Mgy is a ZKPoK for L with e, < 1/2
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ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order G w.r.to S)

m Input:
(G, ¢, g) sampled by a group sampler S(17)
h:= g2 for a < Zy

m Solution: a
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ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order G w.r.to S)

m Input:
(G, ¢, g) sampled by a group sampler S(17)
h:= g2 for a < Zy

m Solution: a

m ElGamal PKE:
m Public key: h:= g°
m Secret key: a

m In ID protocol for EIGamal PK, the impostor (who doesn’t know a):

m May see several transcripts via Authg, oracle
m Should not be able to fool the verifier into accepting in the protocol
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ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr's protocol)
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ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

<2y, set =9
’L&‘Zg /I :5_1[
L=t (mod 1)
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ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

re~2%
heegper| W-T 2o

<, sek =9

’L&‘ZZ/I~:GE
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ZKPoK for DLog: Schnorr’s Protocol...

Protocol 3 (Mpyp: Schnorr’s protocol)

re~2%
heegper| W-T 2o

m Completeness: ho1- @)r'ﬁf -0 ol qL (by geoup axioms)
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m Knowledge vs. information
m Modelled “zero knowledge” via simulator
m (Honest-verifier) ZKP for GNI (A5: QNR) and Gl (A5: QR)

m ZK PoK

m Modelled “knowledge” via extractor
m ZKPoK for GI, DLP

m Next Lecture:

m Application: eVoting
m Tools used: Elgamal PKE, ZK (PoK)
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[Gol01, Chapters 4.3 and 4.7] for details of today’s lecture
[GMR89] for definitional and philosophical discussion on ZK
The ZKPs for Gl and GNI are taken from [GMR89, GMW91]
Computational ZKP for all of PSPACE is due to [GMW091].
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