

CS409m: Introduction to Cryptography

Lecture 19 (22/Oct/25)

Instructor: Chethan Kamath

Announcements

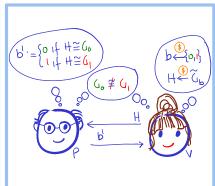
- Feedback form for course (post mid-sem part) sent out
- Assignment 5 out yesterday (21/Oct)
- Quiz 2 viewing on 24/Oct (Friday), 12:30-14:30
 - Submit your cribs online by 29/Oct (next Wednesday)
- Quiz 3 on 29/Oct (next Wednesday)
 - 08:25-09:25, in CC103/CC105
- Lab Exercise 4 will be released today (22/Oct)
 - Submit flag by 29/Oct EoD (Wednesday)
 - Submit write-up by 31/Oct EoD (Friday)

Recall from Last Lecture

- Interactive proofs vs NP proofs:
 - Prover convinces verifier using interaction
 - Verifier is random

Interactive Proof (IP)

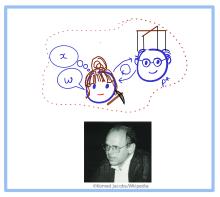
IP for GNI



Plan for Today's Lecture...

IP where prover reveals no non-trivial knowledge to the verifier

Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK)



Main tools: simulator and extractor

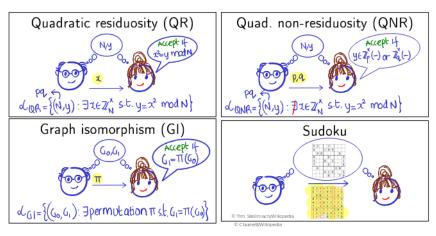
Plan for Today's Lecture...

IP where prover reveals *no non-trivial knowledge* to the verifier

Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK) 💹

Main tools: simulator and extractor

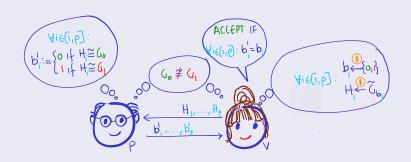
The NP Proofs We Saw Leaked Information



- Verifier gains "non-trivial knowledge" about witness w
 - Not desirable, e.g., when x = pk and w = sk (identification)

But the IP for GNI We Saw Doesn't Seem to

Protocol 1 (Π_{GNI} : IP for GNI)



Parallel/sequentially repeat to boost soundness

- Seems V gains no knowledge beyond validity of the statement
- We will show that Π_{GNI} is (honest-verifier) zero-knowledge!

Defining Zero Knowledge via Simulators

> V's "view"=x+ transcript o + coins

Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be efficiently simulated given only the instance

Definition 1 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$

$$Pr[D(View_V(\langle P, V \rangle(x))) = 1] = Pr[D(Sim(x)) = 1]$$

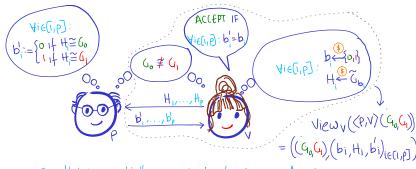
Exercise 1

What happens when one invokes the simulator on $x \notin \mathcal{L}$?

Π_{GNI} is Honest-Verifier ZK

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}



Parallel/sequentially repeat to boost soundness

Π_{GNI} is Honest-Verifier ZK

Theorem 1

 Π_{GNI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GNI}

Proof.

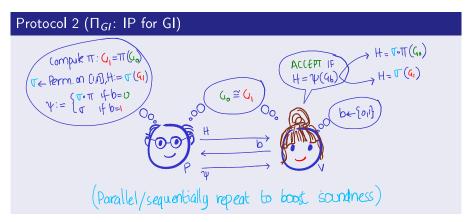
$$\forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{i} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{i} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{i} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{i} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{i} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \not \models \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \downarrow \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \downarrow \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \downarrow \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \downarrow \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \downarrow \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} \not \downarrow \ \mathsf{G}_{o} : \\ \forall \ \mathsf{G}_{o} :$$

Exercise 2

- What happens if V is "malicious" and can deviate from protocol?
- 2 Using ideas from Π_{GNI} , build honest-verifier ZKP for \mathcal{L}_{QNR}

Honest-Verifier ZKP for GI

- - 1 Prover "commits" by sending random H s.t. $G_1 \stackrel{\sigma}{\cong} H$
 - Verifier challenges to "open" $G_0 \stackrel{\text{eff}}{=} H$ or $G_1 \stackrel{\text{eff}}{=} H$ at random



~= ~,\

Honest-Verifier ZKP for GI...

Theorem 2

 Π_{GI} is honest-verifier perfect zero-knowledge IP for \mathcal{L}_{GI}

Proof (\(\forall \)idea for ZK: out of order sampling).

- Completeness: $G_0 \cong G_1 \Rightarrow P$ can answer both challenges $\Rightarrow V$ always accepts
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any $H \ \mathsf{P}^*$ commits to, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess b
- Zero knowledge:

owledge:

$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0}) \\
\nabla(G_{0}) \\
\nabla(G_{0})
\end{array}$$

owledge:

$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0}) \\
\nabla(G_{0})
\end{array}$$

$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0})$$

$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0})
\end{array}$$

$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0})$$

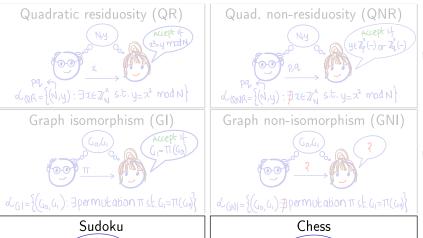
$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0})
\end{array}$$

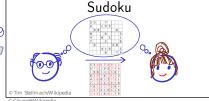
$$\begin{array}{c}
\nabla(G_{0}) \\
\nabla(G_{0}
\end{array}$$

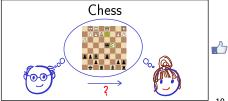
$$\begin{array}{c}
\nabla(G_{0} \\
\nabla$$

4 Go ≃ G: View ((PN)(Go,G)) identically distributed to Sim(Go,G). □

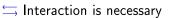
Which Languages have ZKPs? PSPACE Languages







Are Randomness and Interaction Necessary?



Fact 3

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L$ is "trivial"

§ Randomness is necessary

Exercise 3

If \mathcal{L} has an IP with deterministic verifier then $\mathcal{L} \in \mathsf{NP}$

Fact 4

If \mathcal{L} has an ZKP with deterministic verifier then \mathcal{L} is "trivial"

Plan for Today's Lecture...

IP where prover reveals *no non-trivial knowledge* to the verifier

Zero-knowledge (ZK) IP ZK Proof of Knowledge (PoK) 💹

Main tools: simulator and extractor

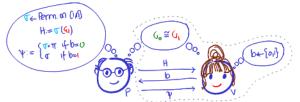
Sometimes Stronger Guarantees than ZK Needed

- Recall ZK IP requirements:
 - Completeness
 - 2 Soundness
 - Zero-knowledge (ZK)
- Sometimes V needs to be convinced that P knows a witness
- E.g. Identification for ElGamal PKE in cyclic group G
 - Public key is $h := g^a$ and secret key is the discrete log a
 - Owner has to prove they possess a (such an a always exists)



How to Quantify Knowledge?

- For defining ZK, we only quantified "gain of knowledge"
 - "V gains no knowledge" if anything V can compute after the interaction with P, it could have computed without it
 - Formalised via simulator: V's view can be efficiently simulated given only the instance x
- Ohow would you quantify "knowledge" itself?
 - For a student: get hold of student, hold viva, extract answers



- For P in Π_{GI} ? Should be possible to *efficiently extract* isomorphism π given access to P
- In general, for NP: should be possible to extract a witness w

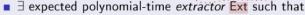
Let's Define ZK Proof of Knowledge

Definition 2 (ZKPoK)

An interactive protocol $\Pi = (P, V)$ for an NP language \mathcal{L} is a

zero-knowledge proof of knowledge if it is

- Complete
- Zero knowledge
- Knowledge sound:



■ ∀ prover P* and instance x:

over P* and instance
$$x$$
:

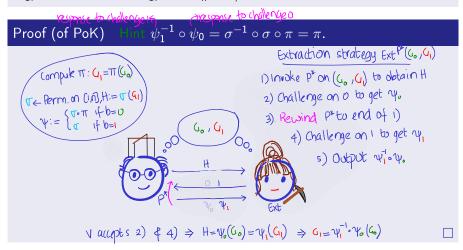
 $\Pr_{w \leftarrow \operatorname{Ext}^{\mathsf{P}^*}(x)}[w \text{ is a witness for } x] \geq \Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] - \frac{1}{\epsilon_k}$

 Trivial if we omit either of requirement 2 or 3 Ext must do something more than V, e.g. "rewind" P*

Π_{GI} is ZKPoK: How to Extract π ?

Theorem 5

 Π_{GI} is a ZKPoK for \mathcal{L}_{GI} with $\epsilon_k \leq 1/2$

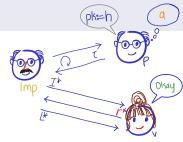


ZKPoK for DLP: Schnorr's Protocol

Definition 3 (Lecture 12, DLP in prime-order G w.r.to S)

- Input:
 - **1** (\mathbb{G}, ℓ, g) sampled by a group sampler $\mathsf{S}(1^n)$
 - 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_\ell$
- Solution: a

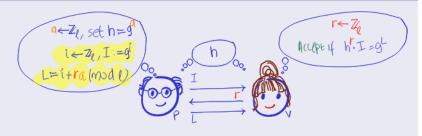
- ElGamal PKE:
 - Public key: $h := g^a$
 - Secret key: a



- In ID protocol for ElGamal PK, the impostor (who doesn't know a):
 - May see several transcripts via Auth_{sk} oracle
 - Should not be able to fool the verifier into accepting in the protocol

ZKPoK for DLog: Schnorr's Protocol...

Protocol 3 (Π_{DLP} : Schnorr's protocol)



- Completeness: $h^{\prime} \cdot I = (g^{6})^{\prime} \cdot g^{i} = g^{ar+i} = g^{L}$ (by group axioms)
- Honest-verifier ZK: out of order sampling, again

Distributed identically to View since
$$g = g^{-ar}$$
 is rondom

 $I = g^{-ar}$
 $I = g^{-ar}$

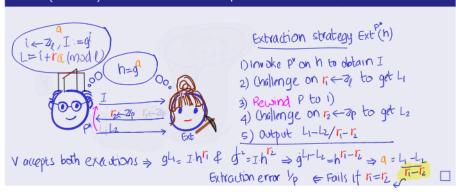
Allows simulation of transcripts in ID protocol

How to Extract a from P^* ?

Theorem 6

 Π_{DLP} is a PoK for \mathcal{L}_{DLP} with $\epsilon_k \leq 1/p$

Proof (of PoK) Hint Obtain two egns of form $L = I + ra \mod \ell$.



Recap/Next Lecture

- ZK IP
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulator
 - (Honest-verifier) ZKP for GNI (A5: QNR) and GI (A5: QR)
- ZK PoK
 - Modelled "knowledge" via extractor
 - ZKPoK for GI, DLP
- Next Lecture:
 - Application: eVoting
 - Tools used: Elgamal PKE, ZK (PoK)

References

- [Gol01, Chapters 4.3 and 4.7] for details of today's lecture
- [GMR89] for definitional and philosophical discussion on ZK
- 3 The ZKPs for GI and GNI are taken from [GMR89, GMW91]
- 4 Computational ZKP for all of PSPACE is due to [GMW91].

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

The knowledge complexity of interactive proof systems.

SIAM J. Comput., 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

Oded Goldreich.

The Foundations of Cryptography - Volume 1: Basic Techniques.

Cambridge University Press, 2001.

Carsten Lund. Lance Fortnow, Howard Karloff, and Noam Nisan.

Algebraic methods for interactive proof systems.

J. ACM, 39(4):859-868, October 1992.

Adi Shamir.

IP=PSPACE.

In 31st FOCS, pages 11-15. IEEE Computer Society Press, October 1990.