
CS789: Introduction to Probabilistic Proof Systems Spring 2025

Assignment 2
February 14, 2025

Instructor: Chethan Kamath

Assignment Policy:

1. The deadline for submitting solutions is 06/March, midnight. (But it is advisable
to attempt them before the mid-sem exam, since the questions there may be based
on the problems here.)

2. Please use LATEX to typeset up your solutions.

3. You are free to collaborate with others to solve the problems. But in the end you
must write up the solutions on your own. Please list the persons you collaborated
with on each problem.

In Lecture 07, we encountered pair-wise independent hash functions and saw a construc-
tion based on matrices. In the following problem, we will see an alternative construction
based on polynomials over finite fields.

Problem 1 ((3+3=6 points)). Recall that a family of functions H := {hK}K∈K, where
hK : Fp → Fp for a prime p and K is some key-space, is said to be pair-wise independent
if for every distinct x1, x2 ∈ Fp and any y1, y2 ∈ Fp,

Pr
K←K

[hK(x1) = y1, hK(x2) = y2] = 1/p2.

1. Show that H := {ha1,a0}a1,a0∈Fp
where ha1,a0(x) := a1x+ a0 (over Fp) constitutes a

family of pair-wise independent hash functions.

Next, let’s extend the above definition: a family H := {hK}K∈K as above is said to be
k-wise independent if for every pair-wise distinct x1, . . . , xk ∈ Fp and any y1, . . . , yk ∈ Fp,

Pr
K←K

[hK(x1) = y1, . . . , hK(xk) = yk] = 1/pk.

2. Show that H := {hak,...,a1}ak,...,a1∈Fp
where hak,...,a1 :=

∑k
i=1 aix

i−1 (over Fp) consti-
tutes a family of k-wise independent hash functions.

Notice the similarity between the above construction and Reed-Solomon encoding.

In Lecture 07 we also saw the set lower-bound protocol, which allows a prover to convince
a verifier that a certifiable set S is of size at least 2k. Recall that S is certifiable if
membership in S can be checked efficiently (either through an oracle or a witness). In
the problem below, we will solve the converse task.
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Problem 2 ((4+2=6 points)).

1. Using pairwise-independent hash function, design a set upper-bound protocol. That
is, given an instance (S, k), where S is a certifiable set and k ∈ N, your protocol
needs to satisfy the following properties:

(a) Completeness: if |S| ≤ 2k then the verifier accepts with overwhelming proba-
bility (say 1).

(b) Soundness: if |S| > 2k+1 then the verifier rejects with noticeable probability
(say 1/2).

(Hint: You may assume it is possible to efficiently sample randomly from S.)

2. Does your protocol satisfy some form of ZK? If not, can you tweak it to get ZK?
Describe your simulator and argue why it works.

Set upper bound protocol (in conjunction with set lower bound protocol) was used in
[For87] to show that NP is unlikely to be contained in PZK (i.e., SAT, e.g., is unlikely
to have perfect zero-knowledge proof (ZKP)).

Recall that a language L is in the class BPP (bounded-error probabilistic polynomial-
time) if there exists a probabilistic polynomial-time decider D such that:

� ∀x ∈ L: Pr[D(x) = 1] ≥ 2/3

� ∀x ̸∈ L: Pr[D(x) = 1] ≤ 1/3,

where the probabilities are over random coins of D. Note that BPP has a trivial (perfect)
ZKP: the prover sends nothing and the verifier simply decides the membership of an
instance x in L on her own. In the following problem, we will show that for some
restricted cases, ZKP can only hold trivially as above.

Problem 3 (3+2=5 points).

1. If a language L has a non-interactive (NI) perfect ZKP (i.e., the prover sends a
single message a1 to the verifier) then L ∈ BPP. Show that the same holds when
relaxing to statistical ZKP. (Hint: Analyse what happens when your run the verifier
on the simulated transcript.)

2. If a language L has a ZKP with deterministic verifier then L ∈ BPP. (Hint:
Reduce to the above case.)

In Lecture 08, we saw a honest-verifier zero-knowledge protocol (HV-ZKP) ΠGNI = (P,V)
for graph non-isomorphism (GNI). In the following problem, we will figure out how a
malicious verifier (MV) can break zero-knowledge of ΠGNI and then try to fix the protocol.

Problem 4 ((2+2+2+2=8 points)).

1. Describe a MV strategy V∗ that gains non-trivial knowledge when interacting with
the honest prover P. Point out exactly what the non-trivial knowledge is.
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2. Next, design an MV-ZKP Π̃GNI = (P̃, Ṽ) for GNI. Formally describe your interactive
protocol. (Hint: you will need to use the ZKP for graph isomorphism somehow.)

3. First show that Π̃GNI is HV-ZKP: you only need to argue on a high level why it is
complete and sound, but ZK needs to be argued formally (in particular, describe
the simulator formally).

4. Then show that Π̃GNI is MV-ZKP. Describe your simulator formally, and then argue
why it works.

In Lecture 12 we saw an explicit error-correcting code (ECC) in the form of Walsh-
Hadamard code. In the problem below, we will learn two more explicit ECCs: Reed-
Solomon code and Reed-Muller code. In the following, Fp is a finite field of prime order
p.

Problem 5 ((3+2=5 points)).

1. For parameters n < m < p ∈ N and parsing ā as (a1, . . . , an), the Reed-Solomon
code ERS : Fn

p → Fm
p is defined as

ERS(ā) := fā(0), . . . , fā(m− 1),

where fā(x) :=
∑n

i=1 aix
i−1 is the (n−1)-degree univariate polynomial that encodes

ā. Thus it is a restricted Reed-Solomon encoding, which we saw in Lecture 02. Show
that ERS is an ECC with distance 1− n/m. (Hint: Exploit linearity again.)

2. For parameters d < p ∈ N and v ∈ N, and parsing ā as (ai1,...,iv)i1+...+iv≤d, the
Reed-Muller code

ERM(ā) : F(
v+d
d )

p → Fpv

p

is defined as
ERM(ā) := (fā(i1, . . . , iv))i1+...+iv≤d

where
fā(x1, . . . , xv) :=

∑
i1+...+iv≤d

ai1,...,ivx
i1
1 · · ·xiv

v

is the d-degree v-variate polynomial that encodes ā. Show that ERS is an ECC
with distance 1− d/p. (Hint: You need to invoke Schwartz-Zippel Lemma.)

Finally, a bonus problem about ZKP for you to ponder on.

Problem 6 (3 points). In the puzzle Where’s Wally, you are given a large (physical)
poster with lots going on in which Wally (highlighted in picture below) is craftily hidden.
Think of how you (the prover) can convince your friend (the verifier) that you have found
out where Wally is without revealing the location. You are free to use whatever real-world
tool you wish to. Describe the simulator for your physical protocol.
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Image credit: http://waldo.wikia.com
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