
CS789: Introduction to
Probabilistic Proof Systems

Lecture 1 (06/Jan/25)

Instructor: Chethan Kamath



Administrivia...

Timing and Venue: Slot 8 (14:00-15:25, Mondays and
Thursdays) in CC101

Contact hours: drop by my office (CC305) any time!

Teaching assistants: TBA

1 / 14



Administrivia...

Timing and Venue: Slot 8 (14:00-15:25, Mondays and
Thursdays) in CC101

Contact hours: drop by my office (CC305) any time!

Teaching assistants: TBA

Resources
Slides and other resources will be posted on course website

cse.iitb.ac.in/∼ckamath/courses/2025s/CS789.html

Announcements/online discussion on Moodle:

moodle.iitb.ac.in/course/view.php?id=5986

1 / 14



Administrivia...

Grading Scheme

Attendance is not mandatory (but encouraged)

1 / 14



Administrivia...

Grading Scheme

Attendance is not mandatory (but encouraged)
Will scrap paper presentation and readjust grades if number of
creditors > 20

1 / 14



Administrivia...

Grading Scheme

Attendance is not mandatory (but encouraged)
Will scrap paper presentation and readjust grades if number of
creditors > 20

Any volunteers for class rep?
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Lecture 1 (06/Jan/25)

Instructor: Chethan Kamath



Traditional (Mathematical) Proofs...

Taught in CS208: Automata Theory and Logic
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Theorem: “Sum of angles of a triangle equals 180�”
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Prover does the heavy lifting: derives the proof

1 Construct a line DE through B, parallel to AC
2 ∠DBA = ∠a and ∠EBC = ∠c (alternate interior angles)
3 2 ⇒ ∠a+ ∠b + ∠c = ∠DBA+ ∠b + ∠EBC =180�

Verifier can check/verify the proof, step by step
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Can be considered to correspond to class NP
A language L ∈ NP if there exists a polynomial-time
deterministic machine V such that

x ∈ L ⇔ ∃w ∈ {0, 1}poly(|x|) : V(x ,w) = 1
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Traditional (Mathematical) Proofs...

Can be considered to correspond to class NP
A language L ∈ NP if there exists a polynomial-time
deterministic machine V such that

x ∈ L ⇔ ∃w ∈ {0, 1}poly(|x|) : V(x ,w) = 1

“Proof system” view of NP
Prover is unbounded: finds witness w for x (if one exists)
Verifier is efficient: checks whether V(x ,w) = 1
Completeness: x ∈ L ⇒ prover finds w ⇒ V(x ,w) = 1

Soundness: x ̸∈ L ⇒ ̸ ∃w ∈ {0, 1}poly(|x|) s.t. V(x ,w) = 1
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Which Languages Have “NP” Proofs?

Graph isomorphism (GI)
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Which Languages Have “NP” Proofs?

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)
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What Are Probabilistic Proofs?

Relaxation of traditional notion of proof

Key differences from traditional proofs:
1 Verifier is randomised

=⇒ Verifier may accept false statements (“soundness error”)

2 Verifier may interact with the prover

=⇒ proof not necessarily a string
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Why Study Probabilistic Proofs?

1 Far more expressive than traditional proofs

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)
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Why Study Probabilistic Proofs?

3 Still an area of active research
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About this Course: What to Expect?

Goal: formally study several types of probabilistic proofs

1 Introduce the formal model (e.g., interactive proof)
2 Construct proof for various problems of interest (e.g., UNSAT)
3 Formally prove its properties (e.g., soundness)

Advanced, theoretical course

Prerequisites: discrete mathematics, probability theory,
familiarity with formal proofs
Soft prerequisites: basic complexity theory and cryptography
Focus on depth

You will enjoy the course if you enjoyed other theory courses
(CS105, CS208, CS760, CS783)

We’ll encounter lots of new tools
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When can we say “this position is winning for black”?

What could a traditional proof for this statement look like?

Seems too big to write down

We will learn how a verifier can interactively check that black
is winning!
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UNSAT, the celebrated Sumcheck Protocol
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Interactive Proof (IP)...

IP is powerful. In this course, we’ll construct IP for:

UNSAT, the celebrated Sumcheck Protocol
TQBF, which captures polynomial-space computations!

Some issues with interactive proof:
Requires interaction

Undesirable in practical applications (latency)

May leak unnecessary information

Undesirable, e.g., when the witness is a secret
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Zero-Knowledge (ZK) IP

NP proof reveals the witness

Can a prover convince the verifier that it knows a witness
without leaking any information about it?

We will learn how this is possible using interaction

Construct ZK IP for GNI and some number-theoretic problems
Study class SZK, which is important for cryptography
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Probabilistically-Checkable Proof (PCP)...

To verify NP proof, verifier must check the whole witness
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Probabilistically-Checkable Proof (PCP)...

To verify NP proof, verifier must check the whole witness

In PCPs, the proof is written such that the verifier needs to
check only a few random parts of the proof!
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Construct PCP for NP (the celebrated PCP Theorem)
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What are Cryptographic Proof Systems?

Probabilistic proofs where certain guarantees (e.g., soundness)
hold only under cryptographic hardness assumptions

E.g.: hardness of factoring integers for probabilistic
polynomial-time algorithms

What is the motivation/necessity?
1 Bypass impossibility results or limitations

E.g.: (Statistical) ZK IP for NP unlikely to exist

2 Bridge from theory to practice, where emphasis is on efficiency

Efficient prover and verifier
Non-interactive
Short proofs (succinctness)

Reasonable to assume all parties (including adversaries) are
bounded in practice
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(Non-Interactive) Computational Zero-Knowledge

Recall: (Statistical) ZK IP for NP unlikely to exist

Under appropriate hardness assumptions, we construct

Computational ZK IP for NP
Non-interactive computational ZK for NP
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Succinct Non-Interactive Arguments (SNArg)

Recall: in NP proof, prover must send whole witness

Can prover send something shorter and still convince verifier?

We will learn how by relaxing to computational soundness

Construction relies on PCP

Useful for verifiable computation
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An Example

Probabilistically Checking Matrix Multiplication
(On whiteboard)
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References

1 For a discussion on NP and mathematical proofs, see [AB09,
�2.7.2]

2 Most of Module I will be based on Alessandro Chiesa’s CS294
(Fall 2020)

3 Module II will largely be based on the above course and
[Gol01, AB09]

4 For Module III we will mostly follow Justin Thaler’s
monograph [Tha22]

5 The description of Freivalds’ algorithm here is from [Mat10,
Miniature 11]

6 More resources can be found on the course website
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