CS789: Introduction to
Probabilistic Proof Systems

Lecture 1 (06/Jan/25)

Instructor: Chethan Kamath



Administrivia

m Timing and Venue: Slot 8 (14:00-15:25, Mondays and
Thursdays) in CC101

m Contact hours: drop by my office (CC305) any time!
m Teaching assistants: TBA
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Thursdays) in CC101

Contact hours: drop by my office (CC305) any time!
Teaching assistants: TBA

Resources
m Slides and other resources will be posted on course website
B cse.iitb.ac.in/~ckamath/courses/2025s/CS789.html

m Announcements/online discussion on Moodle:
m moodle.iitb.ac.in/course/view.php?id=5986
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m Grading Scheme

no

presentation (twa students

Three graded assignments
Class participation
Scribing (~2 lectures per student)

m Attendance is not mandatory (but encouraged)
m Will scrap paper presentation and readjust grades if number of
creditors > 20

m Any volunteers for class rep?
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m Taught in C5208: Automata Theory and Logic

. derivation rules
m Axioms ——————— theorems=true statements

m E.g.: Axioms of Euclidean geometry

I

Theorem: "Sum of angles of a triangle equals 180°"

m Prover vs. verifier
m Prover does the heavy lifting: derives the proof

1 Construct a line DE through B, parallel to AC
2 ZDBA = Za and ZEBC = Zc (alternate interior angles)
3 2= Za+Lb+ Lc=ZLDBA+ Zb+ ZEBC =180°

m Verifier can check/verify the proof, step by step
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Traditional (Mathematical) Proofs...

m Can be considered to correspond to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that

wikness ook
A s 3w € {0,110 s V() = 1

Prover \erifie

m "Proof system” view of NP

m Prover is unbounded: finds witness w for x (if one exists)
Verifier is efficient: checks whether V(x,w) =1
Completeness: x € L = prover finds w = V(x,w) =1
Soundness: x & £ = Aw € {0,117 st V(x,w) =1
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What Are Probabilistic Proofs?

Prover \erifier

m Relaxation of traditional notion of proof
m Key differences from traditional proofs:
1 Verifier is randomised
= Verifier may accept false statements ( “soundness error”)
12 Verifier may interact with the prover
= proof not necessarily a string
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Why Study Probabilistic Proofs?

1 Far more expressive than traditional proofs

Graph isomorphism (GI)
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Why Study Probabilistic Proofs?

2 Extremely useful for real-world applications
m Blockchain applications, verifiable computation etc

Zk-SNARKSs: Under the Hood
@ Vitalik Buterin Fv.zllow
Yask Qe N ® 0

This is the third part of a series of articles explaining how the technology behind
2k-SNARKSs works; the previous articles on quadratic arithmetic programs and
elliptic curve pairings are required reading, and this article will assume knowledge

of both concepts. Basic knowledge of what zk-SNARKs are and what they do is also
assumed. See also Christian Reitwiessner’s article here for another technical

introduction.
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2k-SNARKSs works; the previous articles on quadratic arithmetic programs and
elliptic curve pairings are required reading, and this article will assume knowledge
of both concepts. Basic knowledge of what zk-SNARKs are and what they do is also
assumed. See also Christian Reitwiessner’s article here for another technical

introduction.
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Why Study Probabilistic Proofs?

3 Still an area of active research

“Cl-Quantamacazine

Computer Scientists Combine Two
‘Beautiful’ Proof Methods

Ben Brubaker

Staff Writer

H ow do you prove something is true? For mathematicians, the
answer is simple: Start with some basic assumptions and
proceed, step by step, to the conclusion. QED, proof complete. If
there’s a mistake anywhere, an expert who reads the proof carefully
should be able to spot it. Otherwise, the proof must be valid.
Mathematicians have been following this basic approach for well over

2,000 years.
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m Goal: formally study several types of probabilistic proofs
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About this Course: What to Expect?

m Goal: formally study several types of probabilistic proofs

1 Introduce the formal model (e.g., interactive proof)
2 Construct proof for various problems of interest (e.g., UNSAT)
3 Formally prove its properties (e.g., soundness)

m Advanced, theoretical course
m Prerequisites: discrete mathematics, probability theory,
familiarity with formal proofs
m Soft prerequisites: basic complexity theory and cryptography
m Focus on depth

m You will enjoy the course if you enjoyed other theory courses
(CS105, €S208, CS760, CS783)

m We'll encounter lots of new tools
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1 Module I: Interactive Proof
2 Module Il: Zero Knowledge, Probabilistically-Checkable Proof

3 Module IlI: Proof Systems



Interactive Proof (IP)

Black is
winning

Nerifiet

m When can we say “this position is winning for black”?
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Interactive Proof (IP)

Black is
winning

\erifier

m When can we say “this position is winning for black”?
m What could a traditional proof for this statement look like?
m Seems too big to write down

m We will learn how a verifier can interactively check that black
is winning!
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Interactive Proof (IP)...

m |P is powerful. In this course, we'll construct IP for:

m UNSAT, the celebrated Sumcheck Protocol
m TQBF, which captures polynomial-space computations!
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Interactive Proof (IP)...

m |P is powerful. In this course, we'll construct IP for:

m UNSAT, the celebrated Sumcheck Protocol
m TQBF, which captures polynomial-space computations!
<

m Some issues with interactive proof:
— Requires interaction
m Undesirable in practical applications (latency)
— May leak unnecessary information

m Undesirable, e.g., when the witness is a secret
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This Lecture: An Overview of the Course

2 Module Il: Zero Knowledge, Probabilistically-Checkable Proof



Zero-Knowledge (ZK) IP
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without leaking any information about it?
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Prover \eritie

m NP proof reveals the witness

m Can a prover convince the verifier that it knows a witness
without leaking any information about it?

m We will learn how this is possible using interaction

m Construct ZK IP for GNI and some number-theoretic problems
m Study class SZK, which is important for cryptography
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Probabilistically-Checkable Proof (PCP)
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9/6/1(5[/3|7|2/8|4
2|8/7(4/1|9|6/|3|5
3|4/5(2(8|6]|1|7|9
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Prover \erifier
m To verify NP proof, verifier must check the whole witness

m In PCPs, the proof is written such that the verifier needs to
check only a few random parts of the proof!
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Probabilistically-Checkable Proof (PCP)...

m In this course, we will:
m Construct PCP for NP (the celebrated PCP Theorem)

nature

News | Published: 10 September 2012

Proof claimed for deep connection between primes

Philip Ball

Nature (2012) | Cite this article

7407 Accesses \ 1372 Altmetric \ Metrics

Ifitis true, a solution to the abc conjecture about whole numbers would be an

‘ast ding’ achiev

Mathematician Shinichi Mochizuki of Kyoto University in Japan has released a500-page proof
of the abc conjecture, which proposes a relationship between whole numbers —a
‘Diophantine’ problem.
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What are Cryptographic Proof Systems?

m Probabilistic proofs where certain guarantees (e.g., soundness)
hold only under cryptographic hardness assumptions
m E.g.: hardness of factoring integers for probabilistic
polynomial-time algorithms

m What is the motivation/necessity?
1 Bypass impossibility results or limitations
m E.g.: (Statistical) ZK IP for NP unlikely to exist
2 Bridge from theory to practice, where emphasis is on efficiency

m Efficient prover and verifier
m Non-interactive
m Short proofs (succinctness)

Reasonable to assume all parties (including adversaries) are
bounded in practice
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(Non-Interactive) Computational Zero-Knowledge
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Prover \erifie

m Recall: (Statistical) ZK IP for NP unlikely to exist

m Under appropriate hardness assumptions, we construct

m Computational ZK IP for NP
m Non-interactive computational ZK for NP
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Succinct Non-Interactive Arguments (SNArg)

©
-

|

\ombme\Am‘N

WN\D\IJ}@HO\‘W
solo|=[n]u]o[N]w

[4]6]7]
2 9
8 4
9 6
6 5
3 2
1 3
7 1
5 8

c\\o\l-waNm‘oo

[6]
1
3
7
8
9
5
4
2

)/ A——

Prover \eritier

o N|o|N A |u|w
N|wlo|uo N~

m Recall: in NP proof, prover must send whole witness
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Proverc \feﬁﬁe r
m Recall: in NP proof, prover must send whole witness

m Can prover send something shorter and still convince verifier?
m We will learn how by relaxing to computational soundness

m Construction relies on PCP

m Useful for verifiable computation
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Probabilistically Checking Matrix Multiplication
(On whiteboard)
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References

For a discussion on NP and mathematical proofs, see [AB09,
§2.7.2]

Most of Module | will be based on Alessandro Chiesa’'s C5294
(Fall 2020)

Module Il will largely be based on the above course and
[Gol01, ABO9]

For Module Il we will mostly follow Justin Thaler's
monograph [Tha22]

The description of Freivalds' algorithm here is from [Mat10,
Miniature 11]

More resources can be found on the course website
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