
CS789: Introduction to Probabilistic Proof Systems Spring 2025

Lecture 02
09/Jan/25

Instructor: Chethan Kamath Scribe: Priyanshu Singh

1 Recap

In the last lecture, we discussed the difference between traditional “NP” proof systems and
probabilistic proof systems: traditional NP proofs are “perfect”, deterministic verification
systems, while probabilistic proof systems like IP, ZK, PCP, NIZK, and SNARKs relax
this requirement. An example of power of such relaxation is demonstrated by Freivalds’
algorithm: an efficient randomised checker for matrix multiplication, which runs in O(n2)
time but with a one-sided error. Note that this is asymptotically faster than the fastest
known algorithm for computing matrix multiplication [VXXZ24].

2 Plan for Today’s Lecture

We will cover the following topics in today’s lecture:

� Finite Fields and polynomials over finite fields

� A “Reed-Solomon” view of Freivalds’ algorithm

� Schwartz-Zippel Lemma, a fact about multivariate polynomials that we will use
throughout the course

3 Finite Fields and Polynomials over Finite Fields

Finite fields can be regarded as finite abstractions of real numbers. Thus they inherit most
desirable properties of real number but – being finite – they are convenient to represent
on computers.

Definition 1 (Finite Field). A field F is a set F with two operations + and × satisfying
the following properties:

1. (F ,+) is an additive abelian group with identity 0

2. (F \ {0},×) is a multiplicative abelian group with identity 1

3. × is distributive over +, i.e., a× (b+ c) = a× b+ a× c for all a, b, c ∈ F

For a finite field, the order |F| is finite.

� Examples of non-finite fields: R, C, Q

� (Zp,+,×), for a prime p, is a finite field
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� (Zn,+,×), for a composite integer n, is not a finite field

Fact 1. The order of a finite field is always of the form q = pk, where p is a prime and
k is an integer ≥ 1.

Notation 1. We will denote a finite field of order q by Fq

Notation 2 (Polynomials over Finite Fields). For a finite field Fq:

� Univariate polynomials over Fq are denoted as Fq[x], representing all polynomials
with coefficients from Fq and a single variable x.

� m-variate polynomials over Fq are denoted as Fq[x1, x2, . . . , xm], representing all
polynomials with coefficients from Fq and m variables.

Fact 2. For any two degree-d polynomials p1(x) and p2(x) ∈ Fq[x], p1(a) = p2(a) for at
most d values of a ∈ Fq.

Fact 3. Any non-zero degree-d polynomial (univariate) p(x) ∈ Fq[x] has at most d distinct
roots.

Homework 1 (Fact 3⇒ Fact 2). Show that if any non-zero degree-d polynomial p(x) ∈
Fq[x] has at most d distinct roots (Fact 3), then for any two degree-d polynomials p1(x)
and p2(x) ∈ Fq[x], p1(a) = p2(a) for at most d values of a ∈ Fq (Fact 2). (Hint : Consider
the polynomial p1(x)− p2(x).)

Homework 2 (Prove Fact 3). Prove that any non-zero degree-d polynomial p(x) ∈ Fq[x]
has at most d distinct roots. (Hints:

� Use induction on the degree d

� For the base case, consider d = 0 (constant polynomials)

� For the inductive step:

– If a is a root of p(x), then (x− a) divides p(x)

– Consider the polynomial p(x)/(x− a) and its degree.)

4 Freivalds’ Algorithm: A Reed-Solomon View

A slight variant of Frievalds’ algorithm, tailored for prime-order field Fp, is described in
Algorithm 1. Observe that the main difference from the algorithm discussed in Lecture 01
is that x̄ is a structured vector constructed from a single r ← Fp. The intuition for why
this works will become clear in Section 4.2, but let’s first analyse its soundness.
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Algorithm 1 Freivalds’ Algorithm

Require: Matrices Ā, B̄, C̄ ∈ Fn×n
p

1: Verifier chooses r ∈ Fp uniformly at random
2: Construct vector x̄ = [1, r, r2, . . . , rn−1]⊤

3: Compute ȳ1 = B̄x
4: Compute ȳ2 = Āȳ1 and ȳ3 = C̄x
5: Accept if ȳ2 = ȳ3; reject otherwise

4.1 Analysis

The completeness of Freivalds’ algorithm is straightforward: if C̄∗ = C̄ := ĀB̄, then for
any choice of r ∈ Fp the following holds

Ā(B̄x̄) = (ĀB̄)x̄ = C̄∗x̄.

Therefore, the verifier always accepts. In the claim below, we focus on soundness.

Claim 1. If C̄∗ ̸= ĀB̄, then:

Pr
r←Fp

[V rejects] ≥ 1− n− 1

p

Proof. Since C∗ ̸= AB, they must differ in at least one row. Let i be such a row.

C̄∗x̄ =

...

c∗i1 c∗i2 · · · c∗in
...




1
r

r2

...

rn−1





C̄x̄ = ...
ci1 ci2 · · · cin
...




1
r

r2

...

rn−1




Looking at the i-th entries of C̄∗x̄ and C̄x̄, we get two polynomials:

p1(x) = (C̄∗i∗)x =
n∑

k=1

c∗ikx
k−1

p2(x) = (C̄i∗)x =
n∑

k=1

cikx
k−1

Since C̄∗ ̸= C̄, we know that p1(x) ̸= p2(x). By Fact 2, p1(a) = p2(a) for at most n − 1
values of a ∈ Fp. Therefore:

Pr
r←Fp

[V accepts] ≤ n− 1

p
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Hence:

Pr
r←Fp

[V rejects] ≥ 1− n− 1

p

4.2 Reed-Solomon Encoding

The above test can be seen through the lens of Reed-Solomon encoding, defined below.

Definition 2 (Reed-Solomon Encoding). Let p be a prime. For a message vector ā =
(a1, a2, . . . , an) ∈ Fn

p, the Reed-Solomon encoding is defined as:

(p(0), p(1), . . . , p(p− 1))

where p(x) is the polynomial:

p(x) =
n∑

i=1

aix
n−i

This encoding transforms an n-dimensional vector into a q-dimensional vector by
evaluating the associated polynomial at all points in the field Fp: see Figure 1 (which is
adapted from [Tha22, Chapter 2]). Thus the encoding can be considered to be a very
long Reed-Solomon codeword of ā.

Now, let’s try to understand why Algorithm 1 works. Since p(x) has degree at most
n−1, the Reed-Solomon encodings p(x) and p′(x) of any two message vectors ā ̸= ā′ ∈ Fn

p

(even if they only differ at only one index), can agree at at most n−1 out of the p entries.
This is due to Fact 2. Thus the verifier can catch a cheating prover by probing the
encoding at a random index r ← Fp, who will be caught with overwhelming probability
if p≫ n.

5 The Schwartz-Zippel Lemma

Finally, we state and prove Schwartz-Zippel Lemma, a multivariate version of Fact 3,
which will be useful in later lectures. It states that the number of roots of a non-zero
m-variate polynomial of total degree d over Fq is at most d · qm−1. Below, in Theorem 1,
we state it in a slightly different way.

Theorem 1 (Schwartz-Zippel Lemma). For any non-zero m-variate polynomial p(x1, . . . , xm) ∈
Fq[x1, . . . , xm] of total degree at most d:

Pr
(a1,...,am)←Fm

q

[p(a1, . . . , am) = 0] ≤ d

q

Proof. We prove by induction on the number of variables m.

� Base Case (m = 1): This reduces to the univariate case, which follows from Fact 3

� Induction hypothesis : For any non-zero (m − 1)-variate polynomial p′(x2, . . . , xm)
of total degree at most d′:

Pr
(a2,...,am)←Fm−1

q

[p′(a2, . . . , am) = 0] ≤ d′

q
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Figure 1: Reed-Solomon encoding example showing the encoding of vectors a = (2, 1, 1)
and b = (2, 1, 0) over F11.
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� Induction: Write p(x1, . . . , xm) as:

p(x1, . . . , xm) =
d∑

i=0

xi
1 · p′i(x2, . . . , xm)

Since P ̸= 0, there exists some p′i ̸= 0. Let i∗ be the largest such i ∈ [0, d].

– Degree of p′i∗(x2, . . . , xm) ≤ d− i∗

– By inductive hypothesis:

Pr
(a2,...,am)

[p′i∗(a2, . . . , am) = 0] ≤ d− i∗

q

– When p′i∗(a2, . . . , am) ̸= 0, p(x1, a2, . . . , am) is a non-zero univariate polynomial
of degree i∗

– By Fact 3:

Pr
a1
[p(a1, . . . , am) = 0 | p′i∗(a2, . . . , am) ̸= 0] ≤ i∗

q

Let A denote the event p(a1, . . . , am) = 0 and B denote p′i∗(a2, . . . , am) = 0. Then:

Pr[A] = Pr[A,B] + Pr[A, B̄]

= Pr[A|B] Pr[B] + Pr[A|B̄] Pr[B̄]

≤ Pr[B] + Pr[A|B̄]

≤ d− i∗

q
+

i∗

q
=

d

q

Corollary 1. The number of roots of a non-zero m-variate polynomial of total degree d
over Fq is at most d · qm−1.

6 Solutions to Homework Problems

6.1 Preliminaries: Factor Theorem for Fields

Theorem 2 (Factor Theorem for Fields). Let p(x) ∈ Fq[x]. An element a ∈ F is a root
of p(x) if and only if (x− a) divides p(x).

Proof. Let p(x) ∈ Fq[x] and a ∈ F.

� (⇒) If (x− a) | p(x), then ∃q(x) ∈ Fq[x] such that:

p(x) = (x− a) · q(x)⇒ p(a) = (a− a) · q(a) = 0

Therefore, a is a root of p(x).

� (⇐) If a is a root of p(x), then:
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– p(a) = 0

– (x− a) is a monic polynomial

– By polynomial long division, ∃q(x), r(x) such that:

p(x) = (x− a) · q(x) + r(x)

where degree of r(x) < degree of (x− a)

– Therefore, r(x) is constant

– 0 = p(a) = 0 + r(a) = r(a) = r(x)

– Thus, p(x) = q(x) · (x− a) and (x− a) | p(x)

6.2 Solution to Homework 1

Proof. Let p1(x) ̸= p2(x) ∈ Fq[x]. Define q(x) = p1(x)− p2(x). Since the degree of both
p1 and p2(x) is d, the degree of q(x) is also d. By Fact 3, q(x) has at most d roots. For
any a ∈ Fq:

a is a root of q(x)⇔ q(a) = p1(a)− p2(a) = 0

⇔ p1(a) = p2(a)

Therefore, p1(a) = p2(a) for at most d values of a ∈ Fq.

6.3 Solution to Homework 2

Proof. Let Fq be a field and p(x) ∈ Fq[x] be a non-zero polynomial of degree n ≥ 0. We
prove by induction over n.

� Base Case: For n = 0, p(x) is a nonzero constant and thus has zero roots.

� Inductive Hypothesis: For any non-zero (m − 1)-variate polynomial p′(x2, . . . , xm)
of total degree at most d′:

Pr
(a2,...,am)←Fm−1

q

[p′(a2, . . . , am) = 0] ≤ d′

q

� Induction: Let p(x) ∈ Fq[x] be of degree (n+ 1).

– If p(x) has 0 roots, the result holds trivially.

– If p(x) has a root a ∈ Fq, then by the Factor Theorem, ∃q(x) ∈ Fq[x] such
that:

p(x) = q(x) · (x− a)

– q(x) is of degree ≤ n, so by our hypothesis, q(x) has ≤ n roots

– Any root of q(x) is a root of p(x), and any b ∈ Fq ̸= a that is a root of p(x)
must be a root of q(x)

– Therefore, the number of roots in p(x) is ≤ (n+ 1)

By the principle of mathematical induction, the statement holds for all n ≥ 0.
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