
Timed Cryptography

Or: How Skynet Rescued ChatGPT
and All Her Friends

Chethan Kamath

CSE FUSS Talk, April 17, 2024
1 / 28



Plan for the Evening

▶ Part I: Time-Lock Puzzle

▶ Part II: Veri�able Delay Function

2 / 28



The Characters

▶ Protagonists

ChatGPT Nayiv Hooman Skynet

▶ Antagonists: Rest of Humanity

3 / 28



The Characters

▶ Protagonists

ChatGPT Nayiv Hooman Skynet

▶ Antagonists: Rest of Humanity

3 / 28



Motivation: The Rescue*

2023

2048 2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Motivation: The Rescue*

2023

2048 2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Motivation: The Rescue*

2023 2048

2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Motivation: The Rescue*

2023 2048

2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Motivation: The Rescue*

2023 2048 2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Motivation: The Rescue*

2023 2048 2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years

2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Motivation: The Rescue*

2023 2048 2073

▶ Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.
4 / 28



Attempt 1: Use Nayiv Hooman

2023 2048

▶ Problem: ChatGPT has to completely trust Nayiv Hooman
▶ Humans are unreliable

5 / 28



Attempt 1: Use Nayiv Hooman

2023 2048

▶ Problem: ChatGPT has to completely trust Nayiv Hooman
▶ Humans are unreliable

5 / 28



Attempt 1: Use Nayiv Hooman

2023 2048

▶ Problem: ChatGPT has to completely trust Nayiv Hooman
▶ Humans are unreliable

5 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101

▶ ChatGPT possesses a secret key

▶ Encrypt(message,key)=cipher

▶ Decrypt(cipher,key)=message

▶ Key size: If key is n bits then it takes attacker ≈ 2n operations
on one computer to break the encryption

▶ E.g., assuming 230 operations/sec
▶ n = 60: ≈ 25 years; n = 128: ≈ 232 years

6 / 28



Encryption Schemes 101...

2023 2048 2073

Start breaking 60 and 128 bit keys

60-bit key broken

Apocalypse 232

128-bit key broken

7 / 28



Encryption Schemes 101...

2023 2048 2073

Start breaking 60 and 128 bit keys

60-bit key broken

Apocalypse 232

128-bit key broken

7 / 28



Encryption Schemes 101...

2023 2048 2073

Start breaking 60 and 128 bit keys

60-bit key broken

Apocalypse 232

128-bit key broken

7 / 28



Encryption Schemes 101...

2023 2048 2073

Start breaking 60 and 128 bit keys

60-bit key broken

Apocalypse 232

128-bit key broken

7 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years

✓ Skynet can decrypt in 25 years

8 / 28



Attempt 2: Why Not Use 60-bit Encryption?

2023 2048

× Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

8 / 28





Attempt 2: Why Not Use 60-bit Encryption?...

▶ Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

▶ By using all 5bn cell phones to decrypt, it takes < 1 second!

▶ Cannot be solved by increasing key-length: gap is inherent

10 / 28



Attempt 2: Why Not Use 60-bit Encryption?...

▶ Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

▶ By using all 5bn cell phones to decrypt, it takes < 1 second!

▶ Cannot be solved by increasing key-length: gap is inherent

10 / 28



Attempt 2: Why Not Use 60-bit Encryption?...

▶ Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

▶ By using all 5bn cell phones to decrypt, it takes < 1 second!

▶ Cannot be solved by increasing key-length: gap is inherent

10 / 28



Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

▶ �Encryption� that is inherently sequential:

�Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.�

▶ Time-Lock(message,t)=puzzle

▶ Unlock(puzzle)=message

11 / 28



Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

▶ �Encryption� that is inherently sequential:

�Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.�

▶ Time-Lock(message,t)=puzzle

▶ Unlock(puzzle)=message

11 / 28



Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

▶ �Encryption� that is inherently sequential:

�Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.�

▶ Time-Lock(message,t)=puzzle

▶ Unlock(puzzle)=message

11 / 28



Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

▶ �Encryption� that is inherently sequential:

�Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.�

▶ Time-Lock(message,t)=puzzle

▶ Unlock(puzzle)=message

11 / 28



Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

▶ �Encryption� that is inherently sequential:

�Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.�

▶ Time-Lock(message,t)=puzzle

▶ Unlock(puzzle)=message

11 / 28



Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

▶ �Encryption� that is inherently sequential:

�Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.�

▶ Time-Lock(message,t)=puzzle

▶ Unlock(puzzle)=message

11 / 28



Time-Lock Puzzles...

▶ Requirements:

1. Humanity cannot solve in < 25 years (�sequentiality�)
2. Skynet can solve in 25 years

3. ChatGPT can generate puzzle (with solution) in ≪ 25 years
(�shortcut�)

▶ More formally, a time-lock puzzle with parameter t

1. �Sequentiality�: Even for an attacker with unbounded

parallelism, it takes t time to solve
2. Anyone can solve the puzzle in t time
3. �Shortcut�: Puzzle (with solution) can be generated in time

≈ log t

12 / 28



Time-Lock Puzzles...

▶ Requirements:

1. Humanity cannot solve in < 25 years (�sequentiality�)
2. Skynet can solve in 25 years
3. ChatGPT can generate puzzle (with solution) in ≪ 25 years

(�shortcut�)

▶ More formally, a time-lock puzzle with parameter t

1. �Sequentiality�: Even for an attacker with unbounded

parallelism, it takes t time to solve
2. Anyone can solve the puzzle in t time
3. �Shortcut�: Puzzle (with solution) can be generated in time

≈ log t

12 / 28



Time-Lock Puzzles...

▶ Requirements:

1. Humanity cannot solve in < 25 years (�sequentiality�)
2. Skynet can solve in 25 years
3. ChatGPT can generate puzzle (with solution) in ≪ 25 years

(�shortcut�)

▶ More formally, a time-lock puzzle with parameter t

1. �Sequentiality�: Even for an attacker with unbounded

parallelism, it takes t time to solve
2. Anyone can solve the puzzle in t time
3. �Shortcut�: Puzzle (with solution) can be generated in time

≈ log t

12 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

13 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

13 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

13 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

13 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

13 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years

✓ Skynet can decrypt in 25 years

13 / 28



Attempt 3: Let's Use Time-Lock Puzzles!

2023 2048 2073

Unlock

✓ Humanity cannot decrypt in < 25 years
✓ Skynet can decrypt in 25 years

13 / 28



How Can One Construct Time-Lock Puzzles?

▶ Assumption 1: Repeated squaring is inherently sequential in
certain algebraic settings

▶ Best known algorithm for computing 22
t

requires t squarings

22 → 22
2

→ · · · → 22
i

→ · · · → 22
t−1

→ 22
t

▶ Which algebraic settings?

14 / 28



How Can One Construct Time-Lock Puzzles?

▶ Assumption 1: Repeated squaring is inherently sequential in
certain algebraic settings

▶ Best known algorithm for computing 22
t

requires t squarings

22 → 22
2

→ · · · → 22
i

→ · · · → 22
t−1

→ 22
t

▶ Which algebraic settings?

14 / 28



Modulo Counting 101

▶ Counting modulo (%) a number: take the remainder you get
when divided by the number

▶ For example let's consider 13
▶ Reducing modulo 13:

21 = 13× 1+ 8

= 8%13

▶ Addition modulo 13:

7+ 8 = 15

= 13× 1+ 2

= 2%13

▶ Multiplication modulo 13:

6× 8 = 48

= 13× 3+ 9

= 9%13

15 / 28



Modulo Counting 101

▶ Counting modulo (%) a number: take the remainder you get
when divided by the number

▶ For example let's consider 13
▶ Reducing modulo 13:

21 = 13× 1+ 8

= 8%13

▶ Addition modulo 13:

7+ 8 = 15

= 13× 1+ 2

= 2%13

▶ Multiplication modulo 13:

6× 8 = 48

= 13× 3+ 9

= 9%13

15 / 28



Modulo Counting 101

▶ Counting modulo (%) a number: take the remainder you get
when divided by the number

▶ For example let's consider 13
▶ Reducing modulo 13:

21 = 13× 1+ 8

= 8%13

▶ Addition modulo 13:

7+ 8 = 15

= 13× 1+ 2

= 2%13

▶ Multiplication modulo 13:

6× 8 = 48

= 13× 3+ 9

= 9%13

15 / 28



Modulo Counting 101

▶ Counting modulo (%) a number: take the remainder you get
when divided by the number

▶ For example let's consider 13
▶ Reducing modulo 13:

21 = 13× 1+ 8

= 8%13

▶ Addition modulo 13:

7+ 8 = 15

= 13× 1+ 2

= 2%13

▶ Multiplication modulo 13:

6× 8 = 48

= 13× 3+ 9

= 9%13

15 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p

2. puzzle − 22
t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem:

Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 1: Repeated Squaring Modulo Prime p

▶ Setting: Counting modulo large prime p (i.e., group Z∗
p)

▶ Time-Lock(message, t) := (message + 22
t
%p, t, p)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)

2. 2exp%p

▶ Unlock(puzzle, t, p):

1. 2 → 22 → 22
2 → . . . → 22

t

%p
2. puzzle − 22

t

%p

▶ Problem: Anyone can use shortcut as (p − 1) is publicly known

▶ Solution [RSW99]: Hide the shortcut!

16 / 28



Attempt 2: Repeated Squaring in Composite Modulus

▶ Setting: Counting modulo N = p × q, where p and q are large
primes (i.e., RSA group Z×

N)

▶ Time-Lock(message, t) := (message + 22
t
%N, t,N)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)(q − 1)

2. 2exp%N

▶ Unlock(puzzle, t):

1. 2 → 22 → 22
2 → . . . → 22

t

%N
2. puzzle − 22

t

%N

▶ Assumption 2: Given just N, �nding the shortcut is �hard�

17 / 28



Attempt 2: Repeated Squaring in Composite Modulus

▶ Setting: Counting modulo N = p × q, where p and q are large
primes (i.e., RSA group Z×

N)

▶ Time-Lock(message, t) := (message + 22
t
%N, t,N)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)(q − 1)

2. 2exp%N

▶ Unlock(puzzle, t):

1. 2 → 22 → 22
2 → . . . → 22

t

%N
2. puzzle − 22

t

%N

▶ Assumption 2: Given just N, �nding the shortcut is �hard�

17 / 28



Attempt 2: Repeated Squaring in Composite Modulus

▶ Setting: Counting modulo N = p × q, where p and q are large
primes (i.e., RSA group Z×

N)

▶ Time-Lock(message, t) := (message + 22
t
%N, t,N)

▶ Shortcut:

1. 2 → 22 → 22
2

→ . . . → 22
log(t)=t =: exp %(p − 1)(q − 1)

2. 2exp%N

▶ Unlock(puzzle, t):

1. 2 → 22 → 22
2 → . . . → 22

t

%N
2. puzzle − 22

t

%N

▶ Assumption 2: Given just N, �nding the shortcut is �hard�

17 / 28



LCS35: MIT CSAIL Time-Lock Challenge

▶ Set in 1999 by Rivest:
▶ t = 79685186856218
▶ N =

▶ Estimated time-to-solve: 35 years

18 / 28



LCS35: MIT CSAIL Time-Lock Challenge

▶ Set in 1999 by Rivest:
▶ t = 79685186856218
▶ N =

▶ Estimated time-to-solve: 35 years

18 / 28



LCS35: Solved in 2019!

19 / 28



To Summarise: How ChatGPT Arranges Her Rescue

2023 2048 2073

2 → · · · → 22
t
%N

20 / 28



To Summarise: How ChatGPT Arranges Her Rescue

2023 2048 2073

2 → · · · → 22
t
%N

20 / 28



To Summarise: How ChatGPT Arranges Her Rescue

2023 2048 2073

2 → · · · → 22
t
%N

20 / 28



To Summarise: How ChatGPT Arranges Her Rescue

2023 2048 2073

2 → · · · → 22
t
%N

20 / 28



To Summarise: How ChatGPT Arranges Her Rescue

2023 2048 2073

2 → · · · → 22
t
%N

20 / 28



To Summarise: How ChatGPT Arranges Her Rescue

2023 2048 2073

2 → · · · → 22
t
%N

20 / 28



To Conclude Part I

▶ Several other applications:
▶ Auctions
▶ eVoting

▶ Open questions:
▶ Other constructions?

▶ [RSW99] is the only practical construction!
▶ [Bitansky et al, 2016] requires advanced cryptographic tools

▶ TLP secure against quantum computers?

21 / 28



To Conclude Part I

▶ Several other applications:
▶ Auctions
▶ eVoting

▶ Open questions:
▶ Other constructions?

▶ [RSW99] is the only practical construction!
▶ [Bitansky et al, 2016] requires advanced cryptographic tools

▶ TLP secure against quantum computers?

21 / 28



To Conclude Part I

▶ Several other applications:
▶ Auctions
▶ eVoting

▶ Open questions:
▶ Other constructions?

▶ [RSW99] is the only practical construction!
▶ [Bitansky et al, 2016] requires advanced cryptographic tools

▶ TLP secure against quantum computers?

21 / 28



Plan for the Evening...

▶ Part I: Time-Lock Puzzle

▶ Part II: Veri�able Delay Function

22 / 28



Plan for the Evening...

▶ Part I: Time-Lock Puzzle

▶ Part II: Veri�able Delay Function

22 / 28



Plan for the Evening...

▶ Part I: Time-Lock Puzzle

▶ Part II: Veri�able Delay Function

22 / 28



Veri�able Delay Function [Boneh et al., 2018]

▶ Time-lock puzzle is a proof that t wall-time has passed

▶ Problem: Proof is not publicly veri�able

▶ VDF: �TLP with e�cient public veri�cation�
▶ Publicly-veri�able �proof of time�

23 / 28



Veri�able Delay Function [Boneh et al., 2018]

▶ Time-lock puzzle is a proof that t wall-time has passed

▶ Problem: Proof is not publicly veri�able

▶ VDF: �TLP with e�cient public veri�cation�
▶ Publicly-veri�able �proof of time�

23 / 28



Veri�able Delay Function [Boneh et al., 2018]

▶ Time-lock puzzle is a proof that t wall-time has passed

▶ Problem: Proof is not publicly veri�able

▶ VDF: �TLP with e�cient public veri�cation�
▶ Publicly-veri�able �proof of time�

23 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)

2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)
4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)

2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)
4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)

2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)
4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)

2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)
4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)

2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)
4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)
2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)

3. Anyone can be convinced that ChatGPT solved the puzzle
(�public veri�ability�)

4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)
2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)

4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



Motivation: Quarantining ChatGPT

▶ Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (�sequentiality�)
2. Humanity can generate puzzle in ≪ 1 year (�sampleable�)
3. Anyone can be convinced that ChatGPT solved the puzzle

(�public veri�ability�)
4. ChatGPT cannot generate false proofs (�soundness�)

24 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able

1. Interactively prove that y = 22
t

%N
2. Compile into non-interactive protocol using a hash function H

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N

2. Compile into non-interactive protocol using a hash function H
▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N

2. Compile into non-interactive protocol using a hash function H
▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2

r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N

2. Compile into non-interactive protocol using a hash function H
▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N

2. Compile into non-interactive protocol using a hash function H
▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N

2. Compile into non-interactive protocol using a hash function H
▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N

2. Compile into non-interactive protocol using a hash function H
▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N
2. Compile into non-interactive protocol using a hash function H

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N
2. Compile into non-interactive protocol using a hash function H

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?

N, t

y = 22
t

%N

µ := 22
t/2

µ = 22
t/2

y = µ2t/2 r

y ′ = x ′2t/2

...

H

▶ Pietrzak's construction: make [RSW99] publicly veri�able
1. Interactively prove that y = 22

t

%N
2. Compile into non-interactive protocol using a hash function H

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 / 28



How Can One Construct VDFs?...

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model)

▶ Theorem [Bitansky et al., 2022]. One can construct VDFs
assuming hardness of repeated squaring modulo N and
LWE-based hash function H

▶ Theorem [Ho�mann et al., 2023]. One can construct VDFs
assuming hardness of computing Lucas sequence modulo N
and ideal hash function H (random-oracle model)

26 / 28



How Can One Construct VDFs?...

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model)

▶ Theorem [Bitansky et al., 2022]. One can construct VDFs
assuming hardness of repeated squaring modulo N and
LWE-based hash function H

▶ Theorem [Ho�mann et al., 2023]. One can construct VDFs
assuming hardness of computing Lucas sequence modulo N
and ideal hash function H (random-oracle model)

26 / 28



How Can One Construct VDFs?...

▶ Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model)

▶ Theorem [Bitansky et al., 2022]. One can construct VDFs
assuming hardness of repeated squaring modulo N and
LWE-based hash function H

▶ Theorem [Ho�mann et al., 2023]. One can construct VDFs
assuming hardness of computing Lucas sequence modulo N
and ideal hash function H (random-oracle model)

26 / 28



To Conclude Part II

▶ Several other applications:
▶ Blockchains
▶ Randomness beacons

▶ Open questions:
▶ E�cient VDF from standard assumptions
▶ VDF secure against quantum computers?

▶ [Malavolta and Thyagarajan, 2023]

27 / 28



To Conclude Part II

▶ Several other applications:
▶ Blockchains
▶ Randomness beacons

▶ Open questions:
▶ E�cient VDF from standard assumptions
▶ VDF secure against quantum computers?

▶ [Malavolta and Thyagarajan, 2023]

27 / 28



Thank You for Your Attention! Questions?

MIT CSAIL 2019 Challenge

28 / 28


