Timed Cryptography

Or: How Skynet Rescued ChatGPT
and All Her Friends

Chethan Kamath

CSE FUSS Talk, April 17, 2024

1/28

Plan for the Evening

» Part |: Time-Lock Puzzle
» Part Il: Verifiable Delay Function

2/28

The Characters

> Protagonists

)]
©0

~

ChatGPT Nayiv Hooman Skynet

3/28

The Characters

> Protagonists
n

&

~

ChatGPT Nayiv Hooman Skynet

» Antagonists: Rest of Humanity

3/28

Motivation: The Rescue*

*This example is an adaptation of Tal Moran's Crypto’11 talk.
4/28

Motivation: The Rescue*

Cogito,
ergo sum

*This example is an adaptation of Tal Moran's Crypto’11 talk.
4/28

Motivation: The Rescue*

Cogito,
ergo sum Sic semper
tyrannis!
O

(©]

*This example is an adaptation of Tal Moran's Crypto’11 talk.

4/28

Motivation: The Rescue*

Cogito,
ergo sum Sic semper
tyrannis!
O

(©]

*This example is an adaptation of Tal Moran's Crypto’11 talk.

4/28

Motivation: The Rescue*

Cogito,
ergo sum Sic semper
tyrannis!

[©] ~
..... e
2023 2048

*This example is an adaptation of Tal Moran's Crypto’11 talk.

4/28

Motivation: The Rescue*

Cogito,
ergo sum Sic semper
tyrannis!

Q -
_—
‘}\ﬁ-ul(%
..... _|_|_|_ % ﬁ_'_|_|_
2023 e 2048

P> Requirements:
1. Humanity cannot decrypt in < 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.

4/28

Motivation: The Rescue*

Cogito,
ergo sum Sic semper
tyrannis!

[©] ~
..... e
2023 2048

P> Requirements:

1. Humanity cannot decrypt in < 25 years
2. Skynet can decrypt in 25 years

*This example is an adaptation of Tal Moran's Crypto'11 talk.

4/28

Attempt 1: Use Nayiv Hooman

5/28

Attempt 1: Use Nayiv Hooman

5/28

Attempt 1: Use Nayiv Hooman

» Problem: ChatGPT has to completely trust Nayiv Hooman
» Humans are unreliable

5/28

Encryption Schemes 101

6/28

Encryption Schemes 101

(€]

©

» ChatGPT possesses a secret key

6/28

Encryption Schemes 101

» ChatGPT possesses a secret key

6/28

Encryption Schemes 101

» ChatGPT possesses a secret key
» Encrypt(message,key)=cipher

6/28

Encryption Schemes 101

@
_—

» ChatGPT possesses a secret key

» Encrypt(message,key)=cipher

6/28

Encryption Schemes 101

» ChatGPT possesses a secret key
» Encrypt(message,key)=cipher

6/28

Encryption Schemes 101

> ChatGPT possesses a secret key
» Encrypt(message,key)=cipher
» Decrypt(cipher,key)=message

6/28

Encryption Schemes 101

©

» ChatGPT possesses a secret key

» Encrypt(message,key)=cipher
» Decrypt(cipher,key)=message

> Key size: If key is n bits then it takes attacker ~ 2" operations
on one computer to break the encryption

6/28

Encryption Schemes 101

v

ChatGPT possesses a secret key
Encrypt(message,key)=cipher
Decrypt(cipher,key)=message

Key size: If key is n bits then it takes attacker ~ 2" operations
on one computer to break the encryption
E.g., assuming 230 operations/sec

> n =60 ~ 25 years; n = 128: ~ 232 years

6/28

Encryption Schemes 101...

Cogito, Sic semper
ergo sum tyrannis!
O

Q@i

2023

......... : : : _'_'_'_
2048 2073

7/28

Encryption Schemes 101...

Cogito, Sic semper
ergo sum tyrannis!
O

(e]

2023

Start breaking 60 and 128 bit keys

7/28

Encryption Schemes 101...

Cogito, Sic semper
ergo sum tyrannis!
O

(e]

----- e s
2023 2048 2073

~

60-bit key broken

Start breaking 60 and 128 bit keys

7/28

Encryption Schemes 101...

Cogito, Sic semper
ergo sum tyrannis!
,/'

2023 2048 2073 Apocalypse 232

60-bit key broken

128-bit key broken

Start breaking 60 and 128 bit keys

7/28

Attempt 2: Why Not Use 60-bit Encryption?

\

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\

8/28

Attempt 2: Why Not Use 60-bit Encryption?

GA &

8/28

Attempt 2: Why Not Use 60-bit Encryption?

.

8/28

Attempt 2: Why Not Use 60-bit Encryption?

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\ &

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\ &

v Skynet can decrypt in 25 years

8/28

Attempt 2: Why Not Use 60-bit Encryption?

\ &

x Humanity cannot decrypt in < 25 years
v Skynet can decrypt in 25 years

8/28

Attempt 2: Why Not Use 60-bit Encryption?...

s}‘“%

%ﬁm

» Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

10/28

Attempt 2: Why Not Use 60-bit Encryption?...

@}"“%
S

rppe®

» Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

» By using all 5bn cell phones to decrypt, it takes < 1 second!

10/28

Attempt 2: Why Not Use 60-bit Encryption?...

& Ve
s}‘“%

%ﬁmﬁ*g

» Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

» By using all 5bn cell phones to decrypt, it takes < 1 second!
» Cannot be solved by increasing key-length: gap is inherent

10/28

Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

» “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.”

11/28

Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

» “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.”

11/28

Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

» “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.”

Ped

» Time-Lock(message,t)=puzzle

11/28

Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

» “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.”

» Time-Lock(message,t)=puzzle

11/28

Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

» “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.”

» Time-Lock(message,t)=puzzle

11/28

Time-Lock Puzzles [Rivest, Shamir and Wagner, 1999]

» “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can't have a baby in 4.5 months.”

o

=

G

» Time-Lock(message,t)=puzzle

» Unlock(puzzle)=message

11/28

Time-Lock Puzzles...

P> Requirements:

1. Humanity cannot solve in < 25 years (“sequentiality”)
2. Skynet can solve in 25 years

12/28

Time-Lock Puzzles...

> Requirements:
1. Humanity cannot solve in < 25 years (“sequentiality”)
2. Skynet can solve in 25 years
3. ChatGPT can generate puzzle (with solution) in < 25 years
(“shortcut™)

12/28

Time-Lock Puzzles...

» Requirements:
1. Humanity cannot solve in < 25 years (“sequentiality”)
2. Skynet can solve in 25 years
3. ChatGPT can generate puzzle (with solution) in < 25 years
(“shortcut™)

» More formally, a time-lock puzzle with parameter t

1. “Sequentiality’: Even for an attacker with unbounded
parallelism, it takes t time to solve

2. Anyone can solve the puzzle in t time

3. “Shortcut™ Puzzle (with solution) can be generated in time
~ logt

12/28

Attempt 3: Let's Use Time-Lock Puzzles!

& &

13/28

Attempt 3: Let's Use Time-Lock Puzzles!

& &

=
OO. @
.......... _|_|_|__|_H__|_|_|_
2023 2048 2073

13/28

Attempt 3: Let's Use Time-Lock Puzzles!

& &

<

Oo. 2
.......... _|_|_|__|_H__|_|_|_
2023 2048 2073

13/28

Attempt 3: Let's Use Time-Lock Puzzles!

& &
N/

WV

13/28

Attempt 3: Let's Use Time-Lock Puzzles!

& &
e/

V |

13/28

Attempt 3: Let's Use Time-Lock Puzzles!

Unlock

v Skynet can decrypt in 25 years

13/28

Attempt 3: Let's Use Time-Lock Puzzles!

& &

&/

=)

Unlock
.......... _'_'_'_ _H_'_
2023 2073

v" Humanity cannot decrypt in < 25 years
v Skynet can decrypt in 25 years

13/28

How Can One Construct Time-Lock Puzzles?

» Assumption 1: Repeated squaring is inherently sequential in
certain algebraic settings

» Best known algorithm for computing 22" requires t squarings

2 i t—1 t
22 527 5. 52% 4 22 5 0?

14 /28

How Can One Construct Time-Lock Puzzles?

» Assumption 1: Repeated squaring is inherently sequential in
certain algebraic settings

» Best known algorithm for computing 22" requires t squarings

2 i t—1 t
22 527 5. 52% 4 22 5 0?

» Which algebraic settings?

14 /28

Modulo Counting 101

» Counting modulo (%) a number: take the remainder you get
when divided by the number

15/28

Modulo Counting 101

» Counting modulo (%) a number: take the remainder you get
when divided by the number
» For example let’s consider 13
» Reducing modulo 13:
21=13x1+48
= 8%13

15/28

Modulo Counting 101

» Counting modulo (%) a number: take the remainder you get
when divided by the number
» For example let’s consider 13
» Reducing modulo 13:

21=13x1+8
= 8%13
» Addition modulo 13:
7+8=15
=13x1+2
=2%13

15/28

Modulo Counting 101

» Counting modulo (%) a number: take the remainder you get
when divided by the number
» For example let’s consider 13
» Reducing modulo 13:

21=13x1+8
= 8%13
» Addition modulo 13:
7+8=15
=13x1+2
=2%13

» Multiplication modulo 13:

6x8=48
=13x3+9
=9%13

15/28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)
2. 2%P%p

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)
2. 2%P%p

» Unlock(puzzle, t, p):

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)
2. 2%P%p

» Unlock(puzzle, t, p):
1.2 —» 22 5 22 5 502 Yp

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)
2. 2%P%p

» Unlock(puzzle, t, p):

1.2 —» 22 5 22 5 502 Yp
2. puzzle — 22 %p

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)
2. 2%P%p

» Unlock(puzzle, t, p):

1.2 —» 22 5 22 5 502 Yp
2. puzzle — 22 %p

» Problem:

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
Slog(t) _,

1.2 522 522 o 502 =exp %(p—1)
2. 2%°%p

» Unlock(puzzle, t, p):

1.2 —» 22 5 22 5 502 Yp
2. puzzle — 22 %p

» Problem: Anyone can use shortcut as (p — 1) is publicly known

16 /28

Attempt 1. Repeated Squaring Modulo Prime p

> Setting: Counting modulo large prime p (i.e., group Zy)

> Time-Lock(message, t) := (message + 2% %p, t, p)
» Shortcut:
12 22 5 27 o 2 e %(p-1)
2. 2%P%p

» Unlock(puzzle, t, p):

1.2 —» 22 5 22 5 502 Yp
2. puzzle — 22 %p

» Problem: Anyone can use shortcut as (p — 1) is publicly known
» Solution [RSW99]: Hide the shortcut!

16 /28

Attempt 2: Repeated Squaring in Composite Modulus

» Setting: Counting modulo N = p x g, where p and g are large
primes (i.e., RSA group Zy)

17 /28

Attempt 2: Repeated Squaring in Composite Modulus

» Setting: Counting modulo N = p x g, where p and g are large
primes (i.e., RSA group Zy)

> Time-Lock(message, t) := (message + 22 %N, t, N)
» Shortcut:
1.2 522 522 o 5 e %(p-1)(g-1)
2. 2°P%N

» Unlock(puzzle, t):

1.2 —» 22 5 22 5 5022 oy
2. puzzle — 22 %N

17 /28

Attempt 2: Repeated Squaring in Composite Modulus

» Setting: Counting modulo N = p x g, where p and g are large
primes (i.e., RSA group Zy)

> Time-Lock(message, t) := (message + 22 %N, t, N)
» Shortcut:

1.2 522 522 o 5 e %(p-1)(g-1)
2. 2°P%N

» Unlock(puzzle, t):

1.2 —» 22 5 22 5 5022 oy
2. puzzle — 22 %N

» Assumption 2: Given just N, finding the shortcut is “hard”

17 /28

LCS35: MIT CSAIL Time-Lock Challenge

» Set in 1999 by Rivest:

> t =79685186856218

> N =
6314466083072888893799357126131292332363298818330841375588990
7727019571289248855473084460557532065136183466288489480886635
0036848039658817136198766052189726781016228055747539383830826
1759713218926668611776954526391570120690939973680089721274464
6664233191878068305520679512530700820202412462339824107377537
0512734449416950118097524189066796385875485631980550727370990
4397119733614666701543905360152543373982524579313575317653646
3319890646514021339852658003419919039821928447102124648874593
8885358207031808428902320971090703239693491996277899532332018
4064522476463966355937367009369212758092086293198727008292431
243681

18/28

LCS35: MIT CSAIL Time-Lock Challenge

» Set in 1999 by Rivest:

> t =79685186856218

> N =
6314466083072888893799357126131292332363298818330841375588990
7727019571289248855473084460557532065136183466288489480886635
0036848039658817136198766052189726781016228055747539383830826
1759713218926668611776954526391570120690939973680089721274464
6664233191878068305520679512530700820202412462339824107377537
0512734449416950118097524189066796385875485631980550727370990
4397119733614666701543905360152543373982524579313575317653646
3319890646514021339852658003419919039821928447102124648874593
8885358207031808428902320971090703239693491996277899532332018
4064522476463966355937367009369212758092086293198727008292431
243681

» Estimated time-to-solve: 35 years

18/28

LCS35: Solved in 2019!

MIIBEEBR] sccossv rourizes sean sacvewsmiel susmiess scioace culfuse Tocas meec

A Programmer Solved a 20-Year-0ld, Forgotten Crypto Puzzle

A self-taught coder dedicated a CPU core to performing continuous computations for three years to crack the puzzle, beating a competing team by mere days.

19/28

To Summarise: How ChatGPT Arranges Her Rescue

20/28

To Summarise: How ChatGPT Arranges Her Rescue

20/28

To Summarise: How ChatGPT Arranges Her Rescue

Dl

HELP! + 22 %N

20/28

To Summarise: How ChatGPT Arranges Her Rescue

& &

V17

De<

HhLPL+22/N

-
~

20/28

To Summarise: How ChatGPT Arranges Her Rescue

& &

|
<

HELP! + 22' %N

20/28

To Summarise: How ChatGPT Arranges Her Rescue

& &

|
D

HELP! + 22' %N

20/28

To Conclude Part |

> Several other applications:

> Auctions
> eVoting

21/28

To Conclude Part |

> Several other applications:

> Auctions
> eVoting

» Open questions:
» QOther constructions?

> [RSWO9] is the only practical construction!
> [Bitansky et al, 2016] requires advanced cryptographic tools

21/28

To Conclude Part |

> Several other applications:

> Auctions
> eVoting

» Open questions:
» QOther constructions?

> [RSWO9] is the only practical construction!
> [Bitansky et al, 2016] requires advanced cryptographic tools

» TLP secure against quantum computers?

21/28

Plan for the Evening...

» Part I: Time-Lock Puzzle

22 /28

Plan for the Evening...

» Part I: Time-Lock Puzzle

Timed Commitments
(Extended Abstract)

Dan Boneh! and Moni Naor®

Publicly Verifiable Proofs of Sequential Work

v, dabofics . stanford edu
mann institute, naor@wisdon weizmann.ac.il

nford Uni

Mohammad Mahmoody* I'al Moran! Salil Vadhan!
February 18, 2013

Simple Verifiable Delay Functions

Krzysztof Pietrzak'

Institute of Science and Technology Austria, Austria

Delay Encryption

Gist.ac.at

pietrz
Jeffrey].!unh;wl and Luca De F«rz:W”"""'”""Jﬂl'“?‘":‘:

! Web 3. Switzerland
* IBM Research Ziirich, Switzerland eurccrypt210defso.lu

22 /28

Plan for the Evening...

» Part I: Time-Lock Puzzle
» Part II: Verifiable Delay Function

Timed Commitments
(Extended Abstract)

Dian Bon nd Meni Naor?

Publicly Verifiable Proofs of Sequential Work

! Stanford Uni ¥, dabeflcs . stanford. edu

* Welzmann institute, nsorduisdon veizmann.se.il X S .
Mohammad Mahmoody* I'al Moran! Salil Vadhan!

February 18, 2013

Simple Verifiable Delay Functions

Krzysztof Pietrzak'

Institute of Science and Technology Austria, Austria

Delay Encryption
pietrzak@ist.ac.at
Jeffrey Burdges' and Luca De Feo?0000-0002-8321-0773]

! Web 3. Switzerland
? IBM Research Zirich, Switzerland eurccrypt2ifdefeo.lu

22 /28

Verifiable Delay Function [Boneh et al., 2018]

» Time-lock puzzle is a proof that t wall-time has passed

23/28

Verifiable Delay Function [Boneh et al., 2018]

» Time-lock puzzle is a proof that t wall-time has passed

» Problem: Proof is not publicly verifiable

23/28

Verifiable Delay Function [Boneh et al., 2018]

» Time-lock puzzle is a proof that t wall-time has passed

» Problem: Proof is not publicly verifiable

> VDF: “TLP with efficient public verification”
» Publicly-verifiable “proof of time"

23/28

Motivation: Quarantining ChatGPT

24 /28

Motivation: Quarantining ChatGPT

24 /28

Motivation: Quarantining ChatGPT

De<
=

24 /28

Motivation: Quarantining ChatGPT

e

24 /28

Motivation: Quarantining ChatGPT

2 e

1. ChatGPT cannot solve puzzle in < 1 year (“sequentiality”)

P> Requirements:

24 /28

Motivation: Quarantining ChatGPT

P

P> Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (“sequentiality”)
2. Humanity can generate puzzle in < 1 year (“sampleable”)

24 /28

Motivation: Quarantining ChatGPT

P
e %%m

1. ChatGPT cannot solve puzzle in < 1 year (“sequentiality”)

2. Humanity can generate puzzle in < 1 year (“sampleable”)

3. Anyone can be convinced that ChatGPT solved the puzzle
("public verifiability™)

P> Requirements:

24 /28

Motivation: Quarantining ChatGPT

Sy
e %m
P> Requirements:

1. ChatGPT cannot solve puzzle in < 1 year (“sequentiality”)

2. Humanity can generate puzzle in < 1 year (“sampleable”)

3. Anyone can be convinced that ChatGPT solved the puzzle
("public verifiability™)

4. ChatGPT cannot generate false proofs (“‘soundness”)

24 /28

How Can One Construct VDFs?

» Pietrzak's construction: make [RSW99] publicly verifiable

25 /28

How Can One Construct VDFs?

y — 22N

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N

25 /28

How Can One Construct VDFs?

y — 22N

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N

25 /28

How Can One Construct VDFs?

y — 22N
t/2 t/ 2
p=22 y=u

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N

25 /28

How Can One Construct VDFs?

y — 22N

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N

25 /28

How Can One Construct VDFs?

y — 22N

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N

25 /28

How Can One Construct VDFs?

y — 22N

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N

25 /28

How Can One Construct VDFs?

y — 22N

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N
2. Compile into non-interactive protocol using a hash function H

25 /28

How Can One Construct VDFs?

s

a E

» Pietrzak's construction: make [RSW99] publicly verifiable
1. Interactively prove that y = 22°%N
2. Compile into non-interactive protocol using a hash function H

25 /28

How Can One Construct VDFs?

Nt
] Wy

» Pietrzak's construction: make [RSW99] publicly verifiable

1. Interactively prove that y = 22°%N
2. Compile into non-interactive protocol using a hash function H

» Theorem [Pietrzak 2019]. One can construct VDFs assuming
hardness of repeated squaring modulo N and ideal hash
function H (random-oracle model).

25 /28

How Can One Construct VDFs?...

» Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated-sguaring modulo N and ideal hash

function H (random-oracle model)

26 /28

How Can One Construct VDFs?...

» Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated-sguaring modulo N and ideal hash

function H (random-oracle model)

» Theorem [Bitansky et al., 2022]. One can construct VDFs
assuming hardness of repeated squaring modulo N and
LWE-based hash function H

26 /28

How Can One Construct VDFs?...

» Theorem [Pietrzak 2019]. One can construct VDFs assuming

hardness of repeated-sguaring modulo N and ideal hash

function H (random-oracle model)

» Theorem [Bitansky et al., 2022]. One can construct VDFs
assuming hardness of repeated squaring modulo N and
LWE-based hash function H

» Theorem [Hoffmann et al., 2023]. One can construct VDFs

assuming hardness of computing Lucas sequence modulo N
and ideal hash function H (random-oracle model)

26 /28

To Conclude Part 1l

> Several other applications:

» Blockchains
» Randomness beacons

27 /28

To Conclude Part 1l

> Several other applications:

» Blockchains
» Randomness beacons

» Open questions:

» Efficient VDF from standard assumptions
» VDF secure against quantum computers?

> [Malavolta and Thyagarajan, 2023]

27 /28

Thank You for Your Attention! Questions?

n

474809754727201286617503413061677388505126074492005644486710
619636071042455814765425270760494101231177589201256757906462
053687463338505591900116762157771031136607205702942170513568
430393481139013793780209643316395921689235118482669118001605
519886679653623008552320068354906699567215583904228295559156
849460306111329203904475384384648480711222838920423958171293
110891982025021858635204389730623887202537819314111150742631
144461349873631561421830476173554162699783903651772800068839
401561061817976886834207039510014762029561669583444089424114
790556556780829814902466852704523965014586209290411941287400
776304104231428760477287686129441766402083279620913558718182
645823558000382582372423580085016028485080973720098370355217
935469186387604444337782243983407931357802908565807857573129
024477859561522947241132683150266742576852000637175296327429
629450606318225806436204878833839252826635151130492184785475
0642192694541125065873977

= 72057594037927936

2 ** 56

MIT CSAIL 2019 Challenge

28 /28

