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Notation

X' input set; )V: binary label-set {0, 1}

D: distribution on the input set

X, n: distribution of the noise

C: concept class, c: target concept

R(h): generalisation error for a hypothesis h

R(h) = P (h(x) # c(x))

x~D
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PAC Model

request

x ~D,b=c(x)




PAC Model

» Definition® A concept class C is called PAC-learnable if there
exists an algorithm L and a function qo = qo(€, d) s.t. for any

1. € > 0 (accuracy: approximately correct)
2. 0 > 0 (confidence: probably)

3. distribution D on X

4. target concept c € C

outputs a hypothesis hg € C s.t. for any sample size g > qo:

SFDq(R(hS) <e)>(1-9)

> If L runs in poly(1/e,1/0)-time, C is efficiently PAC-learnable
» Distribution-free

Valiant, 1984



Noisy-PAC Model

request

\

x ~D, b=, c(x)




Noisy-PAC Model

» Definition? A concept class C is efficiently learnable in
presence of random classification noise if there exists an
algorithm L and a function qo = qo(€, d) s.t. for any

1. € > 0 (accuracy: approximately correct)

2. 0 > 0 (confidence: probably)

3. distribution D on X

4. target concept c € C
and fixed noise-rate 7 < 1/2 outputs a hypothesis hs € C s.t.
for any sample size g > qo:

SrIPDq(R(hS) < 6) > (]_ _ 5)

and L runs in poly(1/e,1/9)-time

2Angluin and Laird, 1998



LEARNING PARITY WITH NOISE
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The Parity Function: Definition

Denoted by fs, where s € Z5 determines it

The value of the function is given by the rule
fs(x) == (s,x) (mod 2)
C:={fs:se€Zj}and |C| =2"

Restricted parity function: fg depends on only the first k bits
if all non-zero components of s lies in the first k bits



Learning the Parity Function

request ,

sezi [ L

>

x ~Z5,b=(s,x) (mod 2)

Find s, given

(s,x1) = b1 (mod 2)

(s,xq)-: bg (mod 2)

where s € Z5, x; ~ Z5 (D=uniform), b; € Z, and q € poly(n)

It is possible to learn s using O(n) samples and poly(n) time:
Gaussian elimination

Learning for arbitrary D possible3

3Helmbold et al., 1992



Learning Parity with Noise

request /

sezs [ L

x ~ 73, b=, (s,x) (mod 2)

Find s, given

(s,x4) ~ by (mod 2)

where s € Z3, x; ~ Z5, bj € Z,, q € poly(n) and n < 1/2

Let A, denote this distribution



Hardness of LPN: Intuition

» Consider applying Gaussian elimination to the noisy samples
to find the first bit
» Find S C [q] s.t. > ;cs % = (1,0,...,0)
» But the noise is amplified: solution correct only with
probability 1/2 429"
» Therefore, the procedure needs to be repeated 2°(" times

> Alternative: maximum likelihood estimation of s using O(n)
samples and 2°(" time



Hardness of LPN

» Statistical Query* Model: the learning algorithm has access to
statistical queries, that is instead of the label, it get the
probability of a property holding for the particular example

» C is learnable in SQ-model imples it is learnable in the
Noisy-PAC model

» LPN: Hard to learn efficiently in the SQ-model

*Kearns, 1998



BKW ALGORITHM



Overview

Best known algorithm for LPN
Solves LPN in time O(2"/'08 ")

“Block-wise” Gaussian elimination

Works by iterative “zeroising”

Focus: LPN on uniform distribution; algorithm works for
arbitrary distributions



Setting

» Two parameters: a and b s.t. n > ab

» Each sample is partitioned into a blocks of size b. That is, a
sample, X = x1,...,Xx, € Z5 is split as

X1y---3Xp-- 'Xb(i71)+17 cee 7Xb(i71)+b-- Xk—by---3Xn

block 1 block i block a

» Definition: V;, i-sample
V;: the subspace of 73> consisting of those vectors whose last
i blocks have all bits equal to zero
i-sample of size s: a set of s vectors independently and
uniformly distributed over V;.

Example: 1-sample

X1y ey Xb oo Xp(im1)4+1> -+ - » Xb(i—1)4+b - --0,0,...,0
3 ) (i—1)+1> » Xb(i—1) s Yy 3

block 1 block i block a



Main Theorem

Theorem® LPN can be solved with a sample-size and total

computation time poly((1=5;)*",2°).

Corollary LPN for constant noise-rate n < 1/2 can be solved
with sample-size and total computation time 20(7/logn),

Proof: Plug in a = (logn)/2 and b =2n/logn

®Blum et al., 2003



Zeroising

Input: i-samples x4, ..., X

Output: (i + 1)-samples uy, ..., u,

)

Zeroisej(Xq, . .., Xg).
1. Partition x4, ...,x, based on the values in block a — i
2. For each partition p pick a vector x; at random
3. Zeroise by x; to each of the other vectors in the partition
4. Return the resulting vectors uq, ..., u,
Lemma
1. ug,...,u, are (i + 1)-samples with s’ > s — 2°
2. Each vector in uy,...,u,, is written as the sum of two vectors
in Xy, ..., X,

3. The run-time O(s)



Main Algorithm

Input: s labelled examples (xy, b1), ..., (X, bs)
Output: set S C [s] s.t. > ;csx; = (1,0,...,0)

Solve(xy, . .. ,xs):
1. Fori=1,. — 1, iteratively call Zeroise;(-)
2. Letuy,...,uy be the resulting (a — 1)-samples
3. 1f(1,0,...,0) € {ul, ...,u, } output the index of the 2371
vectors subset of xq,...,X, that resulted in (1,0,...,0)

The first bit of s is: ) ;s bj (mod 2)

Analysis
» If s = a2?, then s’ > 2P
» Probability of output is (1 —1/e)
» Probability that output is correct is > 1/241/2(1 —2n)%
» Repeat poly((1 T )%, b) times to reduce the error probability



Main Algorithm

The rest of the bits of s can be found using Solve(-) on
cycling shifting all the examples.

Thus the effective computation time is poly((ﬁ)f, 2P)
Recall: Restricted parity function depends only on k bits of s
If k = O(log n) then we can learn the parity in O(n)

Leads to separation between SQ-Model (where restricted-LPN
is hard) and the noisy-PAC model



CRYPTOGRAPHY FROM LPN



“In some sense, cryptography is the opposite of learning.”
— Shalev-Schwartz and Ben-David



Cryptography 101

How to build protocols?

1. Assume a "hard” problem 7 (e.g., factorisation, discrete-log)
2. Build a protocol ITon 7
3. Aim: nis hard = [l is not breakable =

I is breakable = = is not hard

Reductions: © < Tl
1. Assume an adversary A against [1 and use it to break m

2. Since 7 is assumed to be hard, this leads to a contradiction.



Recall: LPN

Find s, given

where s € Z3, x;, ~ Z5, bj € Z,, q € poly(n) and n < 1/2



Learning with Errors: LPN for higher moduli

Find s, given

where s € Zp,x; ~ Zp, bj € Z,, q € poly and
X is a probability distribution on Z,

LPN=LWE if p=2and x(0) =1—1n,x(1) =7



Hardness of LWE

» Conjectured to be hard to break
» Lattice problems reduce® to LWE for appropriate choice of p
and y
» Example: p = O(n?), a = O(y/nlogn) and x = V,, discrete
Gaussian on Z, with s.d. ap
» For the above parameters SVP,SIVP < LWE

> SVP: shortest-vector problem
» SIVP: shortest independent vectors problem

» The above parameters used for the encryption scheme

®Regev, 2005



REGEV'S ENCRYPTION SCHEME



Encryption Scheme: Definitions

Consists of three algorithms I = {K,E,D}

Key Generation. K: N — K
(pk, sk) < K(1")

Encryption. E: M — C
c & E(m, pk)

Decryption. D : C - M U{Ll}
m’ < D(c, sk)

Requirements:
1. Correctness: for all (pk, sk) < K(17), m <& M
D(E(pk, m), sk) = m

2. Security: ciphertext ¢ should not leak any information about
the plaintext m



Bit-Encryption from LWE

» Bit-Encryption: M ={0,1}

» Parameters:
1. n € N: the security parameter
2. p: prime modulus of the underlying group (p = O(n?))
3. ¢: length of the public key (¢ = 5n)
4. x = v,



Bit-Encryption from LWE

Key Generation, K(1"):

1. Secret key: sk :=s < Zp
2. Public key: pk := {x;, b;}*_,, where

$ $
X1,.. X < Zp, €1,...,e < x and b := (x;,5) + €

Encryption, E(m, pk):
1. Choose random S C [{]
2 o= {(Ziesxiaz,'es bi) if m=0
(Zies x;, [p/2] + Zies bi) ifm=1

Decryption, D(c,sk): Note that ¢ = (x, b)
L oo 0 if b— (x,s) is closer to 0 than |p/2] (modulo p)
' " |1 otherwise



Correctness

> Intuition: since the noise is sampled from appropriate discrete

Gaussian, it does not drown the message
> Argument
b—{(x,s ifm=20
» Decryption: e:=3% ", ce = { (x,s)

b—(x,s)—|p/2] fm=1

-p/4 0 p/4 p/2 3p/4

» Error in decryption only if e < p/4
» Let's x* denote the distribution of e
» Claim: for x =V,

P (e<p/4) >1— ¢ for some § >0

e~ x*



Security

» Distributions involved:
1. A, . LWE sampling
2. C,,: ciphertext corresponding to encryption of bit m
3. U: uniform distribution on Z7 x Z,

D
» X £ ): denotes that D distinguishes X' from )

> Argument
1. Assume that the ciphertexts are distinguishable

2. JA s.t. CO ?_é Cl —
3. 3A" s.t. Cy §é Z/l [shlftlng + averaging] =

4. 3N sit. As ,é U [Leftover Hash Lemma]



More LWE

» Post-Quantum Cryptosystems

» Fully-Homomorphic Encryption’

"Brakerski and Vaikuntanathan, 2011
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