
Learning with Errors

Chethan Kamath

IST Austria

April 22, 2015

Table of contents

Background
PAC Model
Noisy-PAC

Learning Parity with Noise
The Parity Function
Learning Parity with Noise
BKW Algorithm

Cryptography from LPN
Background/LWE
Bit-Encryption from LWE
Security

BACKGROUND

Notation

I X : input set; Y : binary label-set {0, 1}
I D: distribution on the input set

I χ, η: distribution of the noise

I C : concept class, c: target concept

I R(h): generalisation error for a hypothesis h

R(h) := P
x∼D

(h(x) 6= c(x))

PAC Model

D, c ∈ C L

request

x ∼ D, b = c(x)

hS

PAC Model

I Definition1 A concept class C is called PAC-learnable if there
exists an algorithm L and a function q0 = q0(ε, δ) s.t. for any

1. ε > 0 (accuracy: approximately correct)
2. δ > 0 (confidence: probably)
3. distribution D on X
4. target concept c ∈ C

outputs a hypothesis hS ∈ C s.t. for any sample size q ≥ q0:

P
S∼Dq

(R(hS) ≤ ε) ≥ (1− δ)

I If L runs in poly(1/ε, 1/δ)-time, C is efficiently PAC-learnable

I Distribution-free

1Valiant, 1984

Noisy-PAC Model

D, c, η L

request

x ∼ D, b ≈η c(x)

hS

Noisy-PAC Model

I Definition2 A concept class C is efficiently learnable in
presence of random classification noise if there exists an
algorithm L and a function q0 = q0(ε, δ) s.t. for any

1. ε > 0 (accuracy: approximately correct)
2. δ > 0 (confidence: probably)
3. distribution D on X
4. target concept c ∈ C

and fixed noise-rate η < 1/2 outputs a hypothesis hS ∈ C s.t.
for any sample size q ≥ q0:

P
S∼Dq

(R(hS) ≤ ε) ≥ (1− δ)

and L runs in poly(1/ε, 1/δ)-time

2Angluin and Laird, 1998

LEARNING PARITY WITH NOISE

The Parity Function: Definition

I Denoted by fs , where s ∈ Zn
2 determines it

I The value of the function is given by the rule

fs(x) := 〈s, x〉 (mod 2)

I C := {fs : s ∈ Zn
2} and |C | = 2n

I Restricted parity function: fs depends on only the first k bits
if all non-zero components of s lies in the first k bits

Learning the Parity Function

s ∈ Zn
2 L

request

x ∼ Zn
2, b = 〈s, x〉 (mod 2)

s′

Find s, given

〈s, x1〉 = b1 (mod 2)

...

〈s, xq〉 = bq (mod 2)

where s ∈ Zn
2, xi ∼ Zn

2 (D=uniform), bi ∈ Z2 and q ∈ poly(n)

It is possible to learn s using O(n) samples and poly(n) time:
Gaussian elimination

Learning for arbitrary D possible3

3Helmbold et al ., 1992

Learning Parity with Noise

s ∈ Zn
2 L

request

x ∼ Zn
2, b ≈η 〈s, x〉 (mod 2)

s′

Find s, given

〈s, x1〉 ≈η b1 (mod 2)

〈s, x2〉 ≈η b2 (mod 2)

...

〈s, xq〉 ≈η bq (mod 2)

where s ∈ Zn
2, xi ∼ Zn

2, bi ∈ Z2, q ∈ poly(n) and η < 1/2

Let As,χ denote this distribution

Hardness of LPN: Intuition

I Consider applying Gaussian elimination to the noisy samples
to find the first bit

I Find S ⊂ [q] s.t.
∑

i∈S xi = (1, 0, . . . , 0)
I But the noise is amplified: solution correct only with

probability 1/2 + 2−Θ(n)

I Therefore, the procedure needs to be repeated 2Θ(n) times

I Alternative: maximum likelihood estimation of s using O(n)
samples and 2O(n) time

Hardness of LPN

I Statistical Query4 Model: the learning algorithm has access to
statistical queries, that is instead of the label, it get the
probability of a property holding for the particular example

I C is learnable in SQ-model imples it is learnable in the
Noisy-PAC model

I LPN: Hard to learn efficiently in the SQ-model

4Kearns, 1998

BKW ALGORITHM

Overview

I Best known algorithm for LPN

I Solves LPN in time O(2n/ log n)

I “Block-wise” Gaussian elimination

I Works by iterative “zeroising”

I Focus: LPN on uniform distribution; algorithm works for
arbitrary distributions

Setting

I Two parameters: a and b s.t. n ≥ ab

I Each sample is partitioned into a blocks of size b. That is, a
sample, x = x1, . . . , xn ∈ Zn

2 is split as

x1, . . . , xb︸ ︷︷ ︸
block 1

. . . xb(i−1)+1, . . . , xb(i−1)+b︸ ︷︷ ︸
block i

. . . xk−b, . . . , xn︸ ︷︷ ︸
block a

I Definition: Vi , i-sample

Vi : the subspace of Zab
2 consisting of those vectors whose last

i blocks have all bits equal to zero
i-sample of size s: a set of s vectors independently and
uniformly distributed over Vi .

Example: 1-sample

x1, . . . , xb︸ ︷︷ ︸
block 1

. . . xb(i−1)+1, . . . , xb(i−1)+b︸ ︷︷ ︸
block i

. . . 0, 0, . . . , 0︸ ︷︷ ︸
block a

Main Theorem

Theorem5 LPN can be solved with a sample-size and total
computation time poly((1

1−2η)2a , 2b).

Corollary LPN for constant noise-rate η < 1/2 can be solved
with sample-size and total computation time 2O(n/ log n).

Proof: Plug in a = (log n)/2 and b = 2n/ log n

5Blum et al ., 2003

Zeroising

Input: i-samples x1, . . . , xs
Output: (i + 1)-samples u1, . . . ,us′

Zeroisei (x1, . . . , xs).

1. Partition x1, . . . , xs based on the values in block a− i
2. For each partition p pick a vector xjp at random
3. Zeroise by xjp to each of the other vectors in the partition
4. Return the resulting vectors u1, . . . ,us′

Lemma

1. u1, . . . ,us′ are (i + 1)-samples with s ′ ≥ s − 2b

2. Each vector in u1, . . . ,us′ is written as the sum of two vectors
in x1, . . . , xs

3. The run-time O(s)

Main Algorithm

Input: s labelled examples (x1, b1), . . . , (xs , bs)

Output: set S ⊂ [s] s.t.
∑

i∈S xi = (1, 0, . . . , 0)

Solve(x1, . . . , xs):

1. For i = 1, . . . , a− 1, iteratively call Zeroisei (·)
2. Let u1, . . . ,us′ be the resulting (a− 1)-samples
3. If (1, 0, . . . , 0) ∈ {u1, . . . ,us′} output the index of the 2a−1

vectors subset of x1, . . . , xs that resulted in (1, 0, . . . , 0)

The first bit of s is:
∑

i∈S bi (mod 2)

Analysis
I If s = a2b, then s ′ ≥ 2b

I Probability of output is (1− 1/e)
I Probability that output is correct is ≥ 1/2 + 1/2(1− 2η)2a−1

I Repeat poly((1
1−2η)2a

, b) times to reduce the error probability

Main Algorithm

I The rest of the bits of s can be found using Solve(·) on
cycling shifting all the examples.

I Thus the effective computation time is poly((1
1−2η)2a , 2b)

I Recall: Restricted parity function depends only on k bits of s

I If k = O(log n) then we can learn the parity in O(n)

I Leads to separation between SQ-Model (where restricted-LPN
is hard) and the noisy-PAC model

CRYPTOGRAPHY FROM LPN

“In some sense, cryptography is the opposite of learning.”

– Shalev-Schwartz and Ben-David

Cryptography 101

How to build protocols?

1. Assume a “hard” problem π (e.g ., factorisation, discrete-log)
2. Build a protocol Π on π
3. Aim: η is hard =⇒ Π is not breakable ≡

Π is breakable =⇒ π is not hard

Reductions: π ≤ Π

1. Assume an adversary A against Π and use it to break π

C
π

B
π Π

A
Π

2. Since η is assumed to be hard, this leads to a contradiction.

Recall: LPN

Find s, given

〈s, x1〉 ≈η b1 (mod 2)

〈s, x2〉 ≈η b2 (mod 2)

...

〈s, xq〉 ≈η bq (mod 2)

where s ∈ Zn
2, xi ∼ Zn

2, bi ∈ Z2, q ∈ poly(n) and η < 1/2

Learning with Errors: LPN for higher moduli

Find s, given

〈s, x1〉 ≈χ b1 (mod p)

〈s, x2〉 ≈χ b2 (mod p)

...

〈s, xq〉 ≈χ bq (mod p)

where s ∈ Zn
p, xi ∼ Zn

p, bi ∈ Zp, q ∈ poly and

χ is a probability distribution on Zp

LPN=LWE if p = 2 and χ(0) = 1− η, χ(1) = η

Hardness of LWE

I Conjectured to be hard to break
I Lattice problems reduce6 to LWE for appropriate choice of p

and χ
I Example: p = O(n2), α = O(

√
n log n) and χ = Ψ̄α, discrete

Gaussian on Zp with s.d. αp
I For the above parameters SVP,SIVP ≤ LWE

I SVP: shortest-vector problem
I SIVP: shortest independent vectors problem

I The above parameters used for the encryption scheme

6Regev, 2005

REGEV’S ENCRYPTION SCHEME

Encryption Scheme: Definitions

Consists of three algorithms Π = {K,E,D}

Key Generation. K : N → K
(pk, sk)

$←− K(1n)

Encryption. E :M→ C
c

$←− E(m, pk)

Decryption. D : C →M ∪ {⊥}
m′ ← D(c , sk)

Requirements:

1. Correctness: for all (pk, sk)
$←− K(1n), m

$←−M

D(E(pk,m), sk) = m

2. Security: ciphertext c should not leak any information about
the plaintext m

Bit-Encryption from LWE

I Bit-Encryption: M = {0, 1}

I Parameters:

1. n ∈ N: the security parameter
2. p: prime modulus of the underlying group (p = O(n2))
3. `: length of the public key (` = 5n)
4. χ = Ψ̄α

Bit-Encryption from LWE

Key Generation, K(1n):

1. Secret key: sk := s
$←− Zn

p

2. Public key: pk := {xi , bi}`i=1, where

x1, . . . , x`
$←− Zn

p, e1, . . . , e`
$←− χ and bi := 〈xi , s〉+ ei

Encryption, E(m, pk):

1. Choose random S ⊂ [`]

2. c :=

{
(
∑

i∈S xi ,
∑

i∈S bi) if m = 0

(
∑

i∈S xi , bp/2c+
∑

i∈S bi) if m = 1

Decryption, D(c , sk): Note that c = (x, b)

1. m′ :=

{
0 if b − 〈x, s〉 is closer to 0 than bp/2c (modulo p)

1 otherwise

Correctness

I Intuition: since the noise is sampled from appropriate discrete
Gaussian, it does not drown the message

I Argument

I Decryption: e :=
∑

i∈S ei =

{
b − 〈x, s〉 if m = 0

b − 〈x, s〉 − bp/2c if m = 1

m = 0 m = 1
· · · · ·
−p/4 0 p/4 p/2 3p/4

I Error in decryption only if e < p/4
I Let’s χ∗ denote the distribution of e
I Claim: for χ = Ψ̄α

P
e∼χ∗

(e < p/4) > 1− δ for some δ > 0

Security

I Distributions involved:

1. As,η: LWE sampling
2. Cm: ciphertext corresponding to encryption of bit m
3. U : uniform distribution on Zn

p × Zp

I X 6
D
≡ Y : denotes that D distinguishes X from Y

I Argument

1. Assume that the ciphertexts are distinguishable

2. ∃A s.t. C0 6
A
≡ C1 =⇒

3. ∃A′ s.t. C0 6
A′

≡ U [shifting + averaging] =⇒

4. ∃A
′′
s.t. As,η 6

A
′′

≡ U [Leftover Hash Lemma]

More LWE

I Post-Quantum Cryptosystems

I Fully-Homomorphic Encryption7

7Brakerski and Vaikuntanathan, 2011

Sources

Mohri et al .– Foundations of Machine Learning

Shalev-Schwartz and Ben-David – Understanding Machine
Learning

Regev – On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography

Blum et al .– Noise-Tolerant Learning, the Parity Problem and
the SQ Model

THANK YOU!

	Background
	PAC Model
	Noisy-PAC

	Learning Parity with Noise
	The Parity Function
	Learning Parity with Noise
	BKW Algorithm

	Cryptography from LPN
	Background/LWE
	Bit-Encryption from LWE
	Security

