Adaptively-Secure Secret Sharing

Chethan Kamath (Joint work with Zahra Jafargholi, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak and Daniel Wichs)

Overview

Secret Sharing

Definitions Security Definitions What is Known?

Yao's Secret Sharing

Selective Security Pebbling Adaptive Security

The Framework

xkcd.com

1.) Share

1.) Share 2.) Reconstruct

xkcd.com

1.) Share 2.) Reconstruct 3.) Access structure

▶ Share(S) $\rightarrow \Pi_1, \dots, \Pi_n/\mathsf{Reconstruct}(\Pi_{\mathcal{X}}) \rightarrow S$ for $\mathcal{X} \subseteq [n]$

- ▶ Share(S) $\rightarrow \Pi_1, \dots, \Pi_n$ /Reconstruct($\Pi_{\mathcal{X}}$) $\rightarrow S$ for $\mathcal{X} \subseteq [n]$
- ► Access structure: monotone Boolean circuit
 - ▶ input: $\mathbf{1}_{\mathcal{X}} \in \{0,1\}^n$
 - ightharpoonup output: 1 if $\mathcal X$ is qualified, 0 otherwise

- ▶ Share(S) $\rightarrow \Pi_1, \dots, \Pi_n$ /Reconstruct($\Pi_{\mathcal{X}}$) $\rightarrow S$ for $\mathcal{X} \subseteq [n]$
- ► Access structure: monotone Boolean circuit
 - ▶ input: $\mathbf{1}_{\mathcal{X}} \in \{0,1\}^n$
 - ightharpoonup output: 1 if \mathcal{X} is qualified, 0 otherwise

- ▶ Share(S) $\rightarrow \Pi_1, \dots, \Pi_n$ /Reconstruct($\Pi_{\mathcal{X}}$) $\rightarrow S$ for $\mathcal{X} \subseteq [n]$
- ► Access structure: monotone Boolean circuit
 - ▶ input: $\mathbf{1}_{\mathcal{X}} \in \{0,1\}^n$
 - ightharpoonup output: 1 if \mathcal{X} is qualified, 0 otherwise

- ▶ Share(S) $\rightarrow \Pi_1, \dots, \Pi_n/\mathsf{Reconstruct}(\Pi_{\mathcal{X}}) \rightarrow S$ for $\mathcal{X} \subseteq [n]$
- ► Access structure: monotone Boolean circuit
 - ▶ input: $\mathbf{1}_{\mathcal{X}} \in \{0,1\}^n$
 - ightharpoonup output: 1 if \mathcal{X} is qualified, 0 otherwise

Completeness: qualified X can reconstruct

- ▶ Share(S) $\rightarrow \Pi_1, \dots, \Pi_n$ /Reconstruct($\Pi_{\mathcal{X}}$) $\rightarrow S$ for $\mathcal{X} \subseteq [n]$
- ► Access structure: monotone Boolean circuit
 - ▶ input: $\mathbf{1}_{\mathcal{X}} \in \{0,1\}^n$
 - ightharpoonup output: 1 if $\mathcal X$ is qualified, 0 otherwise

- ightharpoonup Completeness: qualified $\mathcal X$ can reconstruct
- ightharpoonup Security: unqualified $\mathcal X$ learns nothing about S

Security...

- Adversary wins if b' = b
- ▶ The secret sharing scheme is ϵ -(selectively/adaptively)-secure if $P[b'=b]<1/2+\epsilon$

Security...

- Adversary wins if b' = b
- ▶ The secret sharing scheme is ϵ -(selectively/adaptively)-secure if $P[b'=b] < 1/2 + \epsilon$
- ► Adversary: computational or unbounded
 - ightharpoonup Computationally-secure: ϵ is negligible for all adversaries
 - ▶ Negligible function: grows slower than any inverse polynomial
 - ▶ Equivalently: G^0 and G^1/H^0 and H^1 are indistinguishable (\leftrightarrow)

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ▶ Guess the participants that the *adaptive* adversary corrupts
 - ▶ Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - ▶ Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - ▶ Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - ▶ Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - ▶ Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - ▶ Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

- ▶ Lemma 1: ϵ -selective security $\implies \epsilon \cdot 2^n$ -adaptive security:
 - ► Guess the participants that the *adaptive* adversary corrupts
 - Abort if guess wrong at any point during the game
 - ▶ Pr. that the guess correct is 2^{-n}

What is Known?

- ► Against *unbounded* adversaries:
 - Threshold [S]Monotone formulas [BL]
 - ▶ Selective security ⇒ adaptive security

What is Known?

- Against unbounded adversaries:
 - Threshold [S]Monotone formulas [BL]
- Against computational adversaries:

 - Monotone circuits assuming symmetric encryption [Y]
 Every monotone access structure assuming "witness selective encryption" for NP [HNY]

What is Known?

- Against unbounded adversaries:
 - Threshold [S]Monotone formulas [BL]
 - ► Selective security ⇒ adaptive security
- Against computational adversaries:
 - Monotone circuits assuming symmetric encryption [Y]
 Every monotone access structure assuming "witness selective
 - encryption" for NP [HNY]
 - Adaptive security harder to achieve:
 - Only known through random guessing

What We Show

▶ The exponential loss *can be* avoided for Yao's scheme

What We Show

- ▶ The exponential loss can be avoided for Yao's scheme
- ▶ Theorem 1: If the encryption is ϵ -secure, then for any access structure described by a Boolean circuit of size s, depth d and fan-in/fan-out δ , Yao's scheme is $\approx \epsilon \cdot (2\delta)^d \cdot s^{\delta \cdot d}$ adaptively-secure

What We Show

- ▶ The exponential loss can be avoided for Yao's scheme
- ▶ Theorem 1: If the encryption is ϵ -secure, then for any access structure described by a Boolean circuit of size s, depth d and fan-in/fan-out δ , Yao's scheme is $\approx \epsilon \cdot (2\delta)^d \cdot s^{\delta \cdot d}$ adaptively-secure
- Corollary 1: For log-depth circuits of constant fan-in/fan-out, quasi-polynomially-secure symmetric encryption implies adaptively-secure secret sharing

Yao's Secret Sharing

- Symmetric encryption scheme (E, D)
 - ▶ Encrypt $E : \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ and decrypt $D : \mathcal{K} \times \mathcal{C} \to \mathcal{M}$

- Symmetric encryption scheme (E, D)
 - ▶ Encrypt E : $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ and decrypt D : $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$
- ► Share: A gate associated with a key; a wire with a label
 - Label o/p wire with the secret S
 - ▶ Labels of the i/p wires given as shares to the resp. participants
 - Label other wires recursively from root

- Symmetric encryption scheme (E, D)
 - ▶ Encrypt E : $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ and decrypt D : $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$
- ▶ Share: A gate associated with a key; a wire with a label
 - ► Label o/p wire with the secret S
 - ▶ Labels of the i/p wires given as shares to the resp. participants
 - Label other wires recursively from root

- Symmetric encryption scheme (E, D)
 - ▶ Encrypt E : $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ and decrypt D : $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$
- ▶ Share: A gate associated with a key; a wire with a label
 - ► Label o/p wire with the secret S
 - ▶ Labels of the i/p wires given as shares to the resp. participants
 - ▶ Label other wires recursively from root

- Symmetric encryption scheme (E, D)
 - ▶ Encrypt E : $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ and decrypt D : $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$
- ▶ Share: A gate associated with a key; a wire with a label
 - ► Label o/p wire with the secret S
 - ▶ Labels of the i/p wires given as shares to the resp. participants
 - Label other wires recursively from root

Reconstruct does the reverse of Share

Reduce to security of encryption

▶ Encryption scheme is ϵ -secure if no PPT adversary can win with pr. greater than $1/2 + \epsilon$: $E_k(m_0) \leftrightarrow E_k(m_1)$

- ▶ Encryption scheme is ϵ -secure if no PPT adversary can win with pr. greater than $1/2 + \epsilon$: $E_k(m_0) \leftrightarrow E_k(m_1)$
- ▶ Theorem 2 [VNS+]: If the encryption is ϵ -secure then for any access structure described by a Boolean circuit of size s the scheme is $\approx \epsilon \cdot s$ -selectively-secure

- ▶ Aim: Show that secure encryption $\implies H^0 \leftrightarrow H^1$
 - ▶ Contapositive: $H^0 \nleftrightarrow H^1 \implies$ encryption not secure

- Replace ciphertexts that the corrupt participants cannot decrypt with a bogus one
- ► Results in a sequence of hybrid games: the extreme games coincide with the original security game
- Show that consecutive hybrids are ϵ -indistinguishable assuming encryption is ϵ -secure: $H_i \leftrightarrow H_{i+1}$

Hybrids can be modelled using a pebbling game on the circuit

▶ Pebble ⇒ bogus ciphertext/no pebble ⇒ real ciphertext

Hybrids can be modelled using a pebbling game on the circuit

- ▶ Pebble ⇒ bogus ciphertext/no pebble ⇒ real ciphertext
- ▶ Pebbling rules: can place/remove a pebble on a gate if

Hybrids can be modelled using a pebbling game on the circuit

- ▶ Pebble ⇒ bogus ciphertext/no pebble ⇒ real ciphertext
- ▶ Pebbling rules: can place/remove a pebble on a gate if
 - gate=V: i) all parent gates are pebbled and ii) all input nodes are not corrupted

Hybrids can be modelled using a pebbling game on the circuit

- ▶ Pebble ⇒ bogus ciphertext/no pebble ⇒ real ciphertext
- ▶ Pebbling rules: can place/remove a pebble on a gate if
 - 1. gate=V: i) all parent gates are pebbled and ii) all input nodes are not corrupted

2. gate=∧: i) one of the parents is pebbled; or ii) one of the input nodes is not corrupted

Hybrids can be modelled using a pebbling game on the circuit

- ▶ Pebble ⇒ bogus ciphertext/no pebble ⇒ real ciphertext
- ▶ Pebbling rules: can place/remove a pebble on a gate if
 - 1. gate=V: i) all parent gates are pebbled and ii) all input nodes are not corrupted

2. gate=∧: i) one of the parents is pebbled; or ii) one of the input nodes is not corrupted

- ▶ Goal: Pebble the sink gate starting from an unpebbled state
- ▶ Pebbling sequence: $P_0, ..., P_\ell$, $P_i \subseteq [s]$

- Any valid pebbling sequence implies a sequence of hybrids!
 - $ightharpoonup P_0, \ldots, P_\ell \Leftrightarrow H^0 = H_0, \ldots, H_\ell = H^1$
 - ► Can play a hybrid game if the pebbled gates in the corresponding configuration are known
 - ▶ Neighbouring hybrids are indistinguishable

- Any valid pebbling sequence implies a sequence of hybrids!
 - $\blacktriangleright P_0,\ldots,P_\ell \Leftrightarrow H^0=H_0,\ldots,H_\ell=H^1$
 - ► Can play a hybrid game if the pebbled gates in the corresponding configuration are known
 - ► Neighbouring hybrids are indistinguishable
- ▶ Corollary: if encryption scheme is ϵ -secure then Yao's scheme is $\epsilon \cdot \ell$ -selectively-secure

Back to Selective Security

▶ Theorem 2 [VNS+]: If the encryption is ϵ -secure then for any access structure described by a Boolean circuit of size s the scheme is $\approx \epsilon \cdot s$ -selectively-secure

Back to Selective Security

- ▶ Theorem 2 [VNS+]: If the encryption is ϵ -secure then for any access structure described by a Boolean circuit of size s the scheme is $\approx \epsilon \cdot s$ -selectively-secure
- Follows from the following pebbling strategy:
 - 1. Pebble level-by-level starting from the input level until o/p gate pebbled (never removing a pebble)
 - 2. Remove pebbles level-by-level in the reverse order
- #moves $\approx 2s$, #pebbles= s

Back to Selective Security

- ▶ Theorem 2 [VNS+]: If the encryption is ϵ -secure then for any access structure described by a Boolean circuit of size s the scheme is $\approx \epsilon \cdot s$ -selectively-secure
- Follows from the following pebbling strategy:
 - 1. Pebble level-by-level starting from the input level until o/p gate pebbled (never removing a pebble)
 - 2. Remove pebbles level-by-level in the reverse order
- #moves $\approx 2s$, #pebbles= s
- ▶ Note: *must* know the corrupt participants

Recap

- ▶ Theorem 2 (\$): Yao's scheme is $\epsilon \cdot s$ -selective-secure
- ▶ Lemma 1 (\$\$\$): ϵ -selective-secure $\implies \epsilon \cdot 2^n$ -adaptive-secure
- ▶ Corollary 2 (\$\$\$): Yao's scheme is $\epsilon \cdot s \cdot 2^n$ -adaptive-secure

▶ Observation: Can play a hybrid game if the pebbled gates in the corresponding configuration are known

- ▶ Observation: Can play a hybrid game if the pebbled gates in the corresponding configuration are known
- ▶ The level-by-level pebbling requires uses too many pebbles!

- ▶ Observation: Can play a hybrid game if the pebbled gates in the corresponding configuration are known
- ▶ The level-by-level pebbling requires uses too many pebbles!
- ▶ Devise a new sequence of hybrids/pebbling sequence
 - ► A pebbling strategy with fewer pebbles requires less information (and hence less guessing)

Lemma 2: A DAG of degree δ and of depth d can be pebbled using $\delta \cdot d$ pebbles and $\approx (2\delta)^d$ moves

► To pebble a vertex, recursively:

- ► To pebble a vertex, recursively:
 - 1. Pebble left parent

- ► To pebble a vertex, recursively:
 - 1. Pebble left parent
 - 2. Pebble right parent

- ► To pebble a vertex, recursively:
 - 1. Pebble left parent
 - 2. Pebble right parent
 - 3. Pebble vertex

- ► To pebble a vertex, recursively:
 - 1. Pebble left parent
 - 2. Pebble right parent
 - 3. Pebble vertex
 - 4. Unpebble right parent

- ► To pebble a vertex, recursively:
 - 1. Pebble left parent
 - 2. Pebble right parent
 - 3. Pebble vertex
 - 4. Unpebble right parent
 - 5. Unpebble left parent

- #moves(d) = #moves $(d-1) \cdot 2\delta$
- #pebbles(d) =#pebbles $(d-1) + \delta$

Lemma 2: A DAG of degree δ and of depth d can be pebbled using $\delta \cdot d$ pebbles and $\approx (2\delta)^d$ moves

- ► To pebble a vertex, recursively:
 - 1. Pebble left parent
 - 2. Pebble right parent
 - 3. Pebble vertex
 - 4. Unpebble right parent
 - 5. Unpebble left parent

• #pebbles(
$$d$$
) = #pebbles($d-1$) + δ

▶ Denoted by $\hat{P}_0, \dots, \hat{P}_\ell$

- $ightharpoonup \hat{P}_0,\ldots,\hat{P}_\ell$ yields partially-selective hybrids $\hat{H}_0,\ldots,\hat{H}_\ell$
 - ► Adversary committed to a pebbling configuration instead of corrupt participants: apply random guessing
 - A pebbling configuration \hat{P}_i has at most $\delta \cdot d$: probability of guessing is $2^{-(\delta \cdot d) \cdot \log s} = s^{-\delta \cdot d}$
- ▶ Theorem 1 (\$\$): If the encryption is ϵ -secure, then for any access structure described by a Boolean circuit of size s, depth d and fan-in/fan-out δ Yao's scheme is $\approx \epsilon \cdot (2\delta)^d \cdot s^{\delta \cdot d}$ adaptively-secure

The Framework

In General

- Consider selective games where adversary commits to some information w
- Challenger checks if w consistent with observed w

In General...

▶ Theorem 3 (main): If the sequence of selective hybrid games $H^0 = H_0, H_1, \dots, H_\ell = H^1$ (with $H_i \leftrightarrow H_{i+1}$) satisfy the condition that $H_i \leftrightarrow H_{i+1}$ uses only $w_i = h_i(w) \in \{0,1\}^m$ then ϵ -selective security implies $\epsilon \cdot \ell \cdot 2^m$ -adaptive security

In General...

▶ Theorem 3 (main): If the sequence of selective hybrid games $H^0 = H_0, H_1, \dots, H_\ell = H^1$ (with $H_i \leftrightarrow H_{i+1}$) satisfy the condition that $H_i \leftrightarrow H_{i+1}$ uses only $w_i = h_i(w) \in \{0,1\}^m$ then ϵ -selective security implies $\epsilon \cdot \ell \cdot 2^m$ -adaptive security

In General...

- ► Theorem 3 (main): If the sequence of selective hybrid games $H^0 = H_0, H_1, \dots, H_\ell = H^1$ (with $H_i \leftrightarrow H_{i+1}$) satisfy the condition that $H_i \leftrightarrow H_{i+1}$ uses only $w_i = h_i(w) \in \{0,1\}^m$ then ϵ -selective security implies $\epsilon \cdot \ell \cdot 2^m$ -adaptive security
- Results captured
 - Generalized selective decryption [P,FJP]
 - Constrained pseudo-random functions [FKPR]
 - Yao's garbled circuits [JW]

Open Questions

- Derive lower bounds from pebbling lower bounds
- ► Find more proofs that fit the framework

References

[FKPR] Fuchsbauer et al.. Adaptive security of constrained PRFs. Asiacrypt'14 [FJP] Fuchsbauer et al.. A quasipolynomial reduction for generalized selective decryption on trees. Crypto'15 [JKK+] Jafargohli et al.. Be Adaptive, Avoid Overcommitting. Crypto'17 [JW] Jafargholi and Wichs. Adaptive security of Yao's garbled circuits. TCC'16 [KNY] Komargodski et al.. Secret-sharing for NP. JoC'17 [P] Panjwani. Tackling adaptive corruptions in multicast encryption protocols. TCC'07 [S] Shamir. How to share a secret. CACM'79. [VNS+] Vinod et al.. On the power of computational secret sharing., Indocrypt'03

[Y] Yao. How to generate and exchange secrets. FOCS'86.

[BL] Benaloh and Lichter. Generalized secret sharing and

monotone functions. Crypto'88

Thank you!