
Space-Time Trade-offs.∗

Chethan Kamath

03.07.2017

1 Motivation

An important question in the study of computation is how to best use the reg-

isters in a CPU. In most cases, the amount of registers available is not sufficient

to hold all the data pertaining to a computation. Even though an increase in

the number of registers could lead to a decrease in the computation time, it is

costly to include more registers in the CPU. Therefore it is interesting to study

how space can be traded off for time in computations. But how does one even

approach such a question? It turns out that the key is to come up with the right

abstraction: for studying space-time trade-offs, one relies on pebbling games on

directed acyclic graphs (DAGs). Bounds on the complexity of the pebbling games

translate, roughly, to bounds on space and time used in computation (for certain

models of computation).

Fast Fourier Transform. In this lecture we cover the space-time trade-off for

the Fast Fourier Transform (FFT) algorithm. We will see that the savings offered

by the FFT algorithm (O(n · log n), compared to O(n2) for the näıve discrete

Fourier transform (DFT) algorithm), can be lost if sufficient amount of storage is

not available. To be precise, the FFT can be computed in O(n · log n) time only

if Ω(n/log n) space is used concurrently; if only o(n/log n) space is used then the

time required grows at a rate of ω(n/log n).

Overview. First, in Section 2, we discuss the pebbling game and, in particular,

focus on the relevant definitions; as a concrete example, we demonstrate various

pebbling strategies for the perfect binary tree of depth d, denoted BT (d). Next,

in Section 3, we refresh the definitions of the DFT, discuss the FFT and discuss,

in detail, the properties of the 2d-point FFT graph, denoted F (d). In Sections 4

and 5, we establish upper and lower bounds on the pebbling complexities of F (d).

We conclude with some remarks in Section 6.

∗The write-up is a summary of a lecture given as part of the course Pearls of Computer Science

at IDC, Herzliya. Most of the material, in particular the figures, in the write-up is from [Sav98]

and [SS78].

1

2 Pebbling

The pebbling game on DAGs is used to abstract computation using straight-line

programs1, which can be viewed as computation carried out on a DAG. Roughly

speaking, vertices correspond to gates (depending on the model e.g., Boolean gates

AND, OR or NOT, or algebraic gates + or ×) and edges correspond to wires that

bring input to the gates. A pebble placed on a vertex indicates that the value

associated with that vertex resides in the register. The rules of the game are the

following:

Rule 1. (Initialization) A pebble can be placed on an input vertex (i.e., a source)

at any time.

Rule 2. (Computation) A pebble can be placed on (or moved to) any non-input

vertex iff its parents2 all carry pebbles.

Rule 3. (Deletion) A pebble can be removed at any time.

The goal of the pebbling game is to pebble each output vertex (i.e., a sink) at

least once. Intuitively, Rule 1 captures reading of an input in to a register; Rule 2

captures the computation of a value associated with a vertex; and Rule 3 captures

erasure of value from the register. The goal captures computation of the output.

Pebbling sequences. A (pebbling) sequence for a graph G = (V, E) is an exe-

cution of rules of the pebbling game on it. It is denoted by P := P0,P1, . . . ,PT ,

where P0 = ∅ and Pi ⊆ V , 1 ≤ i ≤ T are pebbling configurations. The sequence is

valid if configuration Pi+1 was derived from Pi, for each 1 ≤ i < T , by applying

one of the pebbling rules. The complexity measures for sequences that we are

interested are:

1. Time complexity: TG(P) = T

2. Space complexity: SG(P) = max0≤i≤T |Pi|

3. Space-time complexity: STG(P) = SG(P) · TG(P)

Given a complexity measure C for a sequence P , the corresponding complexity

measure for the graph C(G) is the minimum over all the possible valid sequences;

i.e.,

C(G) = minP (CG(P)).

Since there is a rough correspondence between a straight-line program and its un-

derlying graph, lower bounds on pebbling complexities translates to lower bounds

on the resource used in the computation: e.g., a lower bounds on the space-

complexity of the graph gives a rough estimate on the number of registers that

are required for the corresponding computation. Therefore, for discussing trade-

off properties of, say, FFT, the semantics of the nodes in the straight-line program

is irrelevant — it suffices to know the structure of the graph that underlies it.

1A straight-line program is a restricted model of computation in which loops and conditional

statements are not allowed — c.f., [Sav98, Section 2.2] for the formal definition. It covers, for

example, logic circuits as well as algebraic circuits.
2For a graph G = (V, E), the parents of a vertex v ∈ V is the set {u : u ∈ V,∃(u, v) ∈ E}.

2

2.1 Example: The Perfect Binary Tree

The perfect binary tree of depth3 d is denoted by BT (d). Its vertices are arranged

in d + 1 layers, with layer i, 0 ≤ i ≤ d, comprising of 2d−i vertices (e.g., see

Figure 1) — therefore, the number of vertices is |V| =
∑d

i=0 2i = 2d+1 − 1. The

lone vertex that resides in layer d is called the root, whereas the vertices at layer 0

are the leaves. Three pebbling strategies for BT (d) along with their complexity is

discussed below; the choice of BT (d) for the demonstration is down, mainly, to two

reasons: a) it serves as a clean, non-trivial example; and b) the arguments for the

FFT graph F (d) are built on top of those for BT (d) (c.f., for example Theorems

3 and 4).

Figure 1: A perfect binary tree of depth 4 (BT (4)). The vertices are arranged in

five layers (0 through 4) with 16 (leaves), 8, 4, 2 and 1 (root) vertices respectively.

The critical point for a particular sequence for BT 4 has also been highlighted: the

leaf vertex involved is u∗ = 26, and the “siblings” of the vertices on the critical

path are {15, 18, 25, 27}. ([Sav98, Figure 10.2])

1. The näıve strategy (P1) is to pebble layer-by-layer starting from the leaves

and ending with the root, without removing any pebble (see Figure 2.(a)).

The space-complexity of the strategy is SBT (d)(P1) = |V| = 2d+1 − 1, which

also turns out to be its time-complexity.

2. The “breadth-first” strategy (P2) also involves placing pebbles layer-by-layer,

but pebbles are removed as soon as they are of no use (see Figure 2.(b)).

To be more precise, at any point in the sequence at most two layers carry

pebbles, and pebbles on the lower layer is used to pebble their children in

the higher layer and subsequently removed. To be precise, the steps are:

(a.) Pebble layer 0 from left to right

(b.) Repeat for each 1 ≤ i ≤ d: for each vertex on layer i, move pebble

from the left parent on to the vertex and remove the pebble on the

right parent.

3The depth of a graph is the length of its longest path.

3

The number of pebbles used is the most at the end of Step (a.), and thus the

space-complexity of the sequence is SBT (d)(P2) = 2d. The number of moves

is

2d + 2 · 2d−1 + 2 · 2d−2 + · · ·+ 2 · 1 = 2 · (2d + 2d−1 + 2d−2 + · · ·+ 1)− 2d

and therefore TBT (d)(P2) = 2 · (2d+1 − 1)− 2d.

3. The “depth-first” strategy (P3) results in the pebble-optimal sequence for

BT (d) (see Figure 2.(c)). The strategy is recursive in depth: to pebble a

particular vertex v

(a.) pebble its left parent (recursively)

(b.) pebble its right parent (recursively)

(c.) move the pebble on the left parent on to v

(d.) remove the pebble on the right parent.

To pebble BT (d), the above steps are carried out on the root. The time-

complexity of the sequence is captured by the recursion T (d) = 2·T (d−1)+2,

with T (0) = 1. Hence TBT (d)(P3) = 2d+1. As for the space-complexity, we

show next using induction (on depth) that the number of pebbles in play

is at most (d + 1). It is clear that P3 pebbles BT (0) using a single pebble

(the base case); let’s assume that P3 pebbles BT (d−1) using d pebbles (the

induction hypothesis). Note that BT (d) comprises of two copies of BT (d−1).

For the root of BT (d), Step (a) requires only d pebbles (by the induction

hypothesis); while the right sub-tree is pebbled in Step (b) (using at most d

pebbles), only the root of the left sub-tree carries a pebble and therefore the

number of pebbles in play is at most d + 1.

Note that although P1 is näıve in terms of the number of pebbles used, it is optimal

in terms of the time-complexity (as at each vertex in BT (d) must carry a pebble at

least once at some point during the pebbling). Next, we show that it takes at least

(d + 1) pebbles to pebble BT (d) — i.e., P3 is pebble-optimal. The proof traces

back to [PH70], and serves a warm-up to lower-bounds for the FFT graphs,.

Theorem 1 ([PH70]). S(BT (d)) = d + 1.

Proof. Consider the paths in BT (d). Initially, no paths carry pebbles; in the end

all the paths end up carrying a pebble (as the root carries one). Now, consider

the latest point in time in the sequence when a path was pebble-free, denoted the

critical point (see Figure 1). It must be the case that it is one of the leaves,

denoted u∗, that is pebbled in this move leading to the (critical) path from u∗ to

the root being “closed”. Since the rest of the paths carry a pebble at the critical

point, at least d pebbles must be present on the tree, one per sibling of the vertices

on the critical path (i.e., one on each layer). Counting also the pebble placed on

u∗, it follows that S(BT (d)) ≥ d + 1; taking into account the upper bound due to

depth-first pebbling completes the proof.

4

◦ ◦ ◦ ◦

◦ ◦

◦

• ◦ ◦ ◦

◦ ◦

◦

• • ◦ ◦

◦ ◦

◦

• • • ◦

◦ ◦

◦

• • • •

◦ ◦

◦

• • • •

• ◦

◦

• • • •

• •

◦

• • • •

• •

•

(a)

◦ ◦ ◦ ◦

◦ ◦

◦

• ◦ ◦ ◦

◦ ◦

◦

• • ◦ ◦

◦ ◦

◦

• • • ◦

◦ ◦

◦

• • • •

◦ ◦

◦

◦ • • •

• ◦

◦

◦ • ◦ •

• •

◦

◦ ◦ • ◦

• •

◦

◦ ◦ ◦ ◦

• •

◦

◦ ◦ ◦ ◦

◦ •

•

◦ ◦ ◦ ◦

◦ ◦

•

(b)

◦ ◦ ◦ ◦

◦ ◦

◦

• ◦ ◦ ◦

◦ ◦

◦

• • ◦ ◦

◦ ◦

◦

◦ • ◦ ◦

• ◦

◦

◦ ◦ ◦ ◦

• ◦

◦

◦ ◦ • ◦

• ◦

◦

◦ ◦ • •

• ◦

◦

◦ ◦ ◦ •

• •

◦

◦ ◦ ◦ ◦

• •

◦

◦ ◦ ◦ ◦

◦ •

•

◦ ◦ ◦ ◦

◦ ◦

•

(c)

Figure 2: The pebbling strategies for BT (2): näıve pebbling (a), breadth-first

pebbling (b) and depth-first pebbling (c).

5

3 Fast Fourier Transform: a Refresher

Let n = 2d. The n-point discrete Fourier transform (DFT) Fd : Rn → Rn maps

n-tuples (a0, . . . , an−1) over R to n-tuples (f0, . . . , fn−1) over R, where fi = p(ωi)

and p(x) =
∑n−1

i=0 aix
i, ω being the nth primitive root of unity. Näıve computation

of DFT through polynomial multiplication takes O(n2) operations, n operations

per polynomial evaluation. The fast Fourier transform (FFT) exploits the following

decomposition of p(x):

p(x) = a0 + a1x + · · ·+ an−1x
n−1

= (a0 + a2x
2 + · · ·+ an−2x

n−2) + x(a1 + a3x
2 + · · ·+ an−1x

n−2)

= pe(x
2) + xpo(x2).

In particular, p(ωi) = pe(ω
2i)+ωipo(ω2i). Since ω2 is the (n/2)th principal root of

unity, we have decomposed the computation of n-point FFT to the computation

of two (n/2)-point FFTs, a ring multiplication and a ring addition operation.

Thus, the time-complexity of n-point FFT is captured by the recurrence T (n) =

2T (n/2) + O(n), and hence T (n) = O(n · log n).

The FFT graph. The straight-line programs that compute 2-point FFT (the

butterfly graph) and 16-point FFT are shown in Figure 3. In general, the straight-

line program that computes n-point FFT, has n · (d+ 1) nodes which are arranged

in d+ 1 layers (i.e., depth is d) with n nodes per layer. Therefore, we focus on the

underlying graph, denoted F (d), with nodes corresponding to vertices and wires

to edges. F (d) has sever interesting structural properties, of which a couple are

highlighted below.

(1.) Owing to the recursive definition of the FFT algorithm, the graph F (d) is

highly recursive. In particular, it can be viewed as composed of copies of

smaller FFT graphs. For example, in Figure 3.(b), the graph F (4) is shown

decomposed into eight copies of F (1) on top of two copies of F 8 (boxed). In

general, for 0 ≤ j ≤ d, F (d) can be viewed as decomposed into

(a) 2d−j copies of F (j) denoted A(j) := A
(j)
0 , . . . , A

(j)

2d−j−1 above; and

(b) 2j copies of F (d−j) denoted B(d−j) := B
(d−j)
0 , . . . , B

(d−j)
2j−1 below

(see Figure 4 for a schematic, and Figure 5 for an example).

(2.) The sub-graph rooted at an output vertex (i.e., the sub-graph consisting of

all vertices from which that output vertex is reachable) is a perfect binary

tree BT (d) as highlighted in red in Figure 3.

We will refer frequently to the representation of F (d) in Item (1.) and the obser-

vation in Item (2.) in order to explain pebbling strategies for F (d).

4 Upper Bounds

In this section, we show that F (d) has ST-complexity of O(n2). Intuitively, this

involves establishing that the best pebbling strategy given S pebbles is to use,

6

(a)

(b)

Figure 3: (a). The butterfly graph (F (1)). (b) The 16-point FFT graph F (4).

It consists of 5 layers, with the input vertices at layer 0 (a0, a8, . . . , a15, ob-

tained through the bit-reversal permutation) and the output vertices at layer 4

(f0, . . . , f15). The edges between layers i− 1 and i, for 1 ≤ i ≤ 4, are each associ-

ated with the value ω24−i

; a vertex in layer i with parent vertices vi−1,j and vi−1,k
(in that order), for 0 ≤ i, j <, represents the computation vi−1,j + ω24−i

vi−1,k (a

basic F (1) operation). The graph F (4) is shown decomposed into eight copies of

F (1) on top of two copies of F 8 (boxed). The perfect binary tree BT (d) rooted at

f0 is highlighted in red. ([Sav98, Figures 11.8, 6.7])

appropriately, a “hybrid” of the breadth-first pebbling P2 (which is move-efficient)

and the depth-first pebbling P3 (which is pebble-optimal).

Theorem 2 ([SS78, Theorem 1]). The FFT graph F (d) can be pebbled in T moves

with S pebbles where

T ≤

{
2n2/2j + (j + 1)n if S ≥ d + 2j − j, 1 ≤ j ≤ d− 1

n · (d + 1) otherwise if S = 2d + 1.
(1)

Proof sketch. First, we observe that the breadth-first pebbling P2 can be easily

adapted into a breadth-first pebbling for F (d), which uses at most (n + 1) pebbles

and n · (d + 1) moves4:

SF (j)(P2) = n + 1 and TF (j)(P2) = n · (d + 1).

This establishes the second inequality in (1); to establish the first inequality, sup-

4There seems to be a mistake in [SS78] with regard to this claim: it is impossible to pebble

in n(d + 1) moves, as claimed, without not dropping pebbles (and there are only 2d + 1 pebbles

available). It takes 3nd/2 +n moves to pebble F (d) using 2d + 1 pebbles in the manner described

above. Nevertheless, that does not make any (asymptotic) difference in the analysis.

7

B
(d−j)
0 B

(d−j)
1 B

(d−j)
2j−1

A
(j)
0 A

(j)
1 A

(j)
2 A

(j)
3

A
(j)

2d−j−2 A
(j)

2d−j−1

· · ·

· · ·

(Virtual edges)

Figure 4: Schematic diagram showing the decomposition of F (d) into A(j) :=

A
(j)
0 , . . . , A

(j)

2d−j−1 and B(d−j) = B
(d−j)
0 , . . . , B

(d−j)
2j−1 . The virtual edges between

A(j) and B(d−j) are determined as follows: the mth input to A
(j)
` is the `th output

of B
(d−j)
m . The output edges, on the other hand, are determined as follows: the `th

output of F (d) is the rth output of A
(j)
s for unique r, s ≥ 0 : i = r ·2d−j+s, s < 2d−j .

pose that only

S = 2j︸︷︷︸
pebbles for P2

+ (d− j)︸ ︷︷ ︸
pebbles for P3

pebbles, for 1 ≤ j ≤ d − 1, are available. We view the graph F (d) as decomposed

into A(j) and B(d−j) and, on a high level, use a strategy that is a hybrid of the

breadth-first and depth-first pebbling strategies. The hybrid pebbling uses the

(d − j) pebbles to pebble, depth-first, the perfect binary tree BT (d−j) rooted at

each input vertex of A
(j)
` , and then uses the 2j pebbles to pebble A

(j)
` breadth-first.

The steps are detailed below.

Repeat for each A
(j)
` ∈ A(j):

Step 1. Repeat for each input vertex vm ∈ A
(j)
` :

Step 1.a Pebble, depth-first, the binary tree BT (d−j) contained in

B
(d−j)
m and rooted at vm (using (d− j) pebbles)

Step 2. Pebble, breadth-first, the output vertices of A
(j)
` (using 2j pebbles)

The total number of moves is

|A(j)| ·
(

(# input vertices in A
(j)
` ·#moves in Step 1.a) + #moves in Step 2)

)
= |A(j)| ·

(
(# input vertices in A

(j)
` · TBT (d−j))(P3) + TF (j)(P2))

)
= 2d−j ·

(
(2j · (2d−j+1 − 1)) + (j + 1) · 2j

)
= 2n2/2j + (j + 1) · n.

That completes the proof.

8

Figure 5: The graph F (5) viewed as composed of eight copies of F (2) FFT graphs

(A := A
(2)
0 , . . . , A

(2)
7) and four copies of the F (3) graph (B := B

(3)
0 , . . . , B

(3)
3). Note

that the vertices in the bottom layer of A and in the top layer of B are, in fact,

the same, and hence the vertices from B to A are virtual. The reason for their

introduction is aesthetic, and to simplify exposition. ([Sav98, Figure 10.8])

5 Lower Bounds

In this section, we complement the upper bound in the previous section with an

(almost) tight lower bound; that is, we show that ST(F (d)) = Ω(n2). Intuitively,

we show that the hybrid pebbling discussed in the previous section is the best one

can hope for. We warm up with the bound for the extreme case of S = d + 1.

Theorem 3 ([SS78, Theorem 2]). At least T ≥ n(n − d)/2 + n − 1 moves are

necessary to pebble F (d) with S = d + 1 pebbles.

Proof sketch. The proof builds on that of Theorem 1. We view F (d) as decom-

posed into the n output vertices and two copies of F (d−1) denoted B
(d−1)
0 , B

(d−1)
1

(e.g., see Figure 3). Consider the first critical point of a pebbling sequence (where

the notion of critical point is same as in Theorem 1). By an argument similar to

that in the proof of Theorem 1, exactly one of the (d + 1) pebbles lies on level

d − 1 in either B
(d−1)
0 or B

(d−1)
1 — without loss of generality, let it lie in B

(d−1)
0 .

This particular pebble is useful only in pebbling the two output vertices that it is

the parent of and is, after that, useless. Therefore, before the next critical point it

must be that, for B
(d−1)
0 , either:

a. a single pebble is brought to level (d− 1) using 2d − 1 moves; or

b. d pebbles are brought to levels 0, . . . , d−2 with two pebbles at level 0 — this

requires 1 +
∑d−2

j=0(2j+1 − 1) = 2d − d moves.

As this needs to be repeated at least 2d−1 times, the total number of moves is at

9

least

(2d − 1) + 2d−1 · (2d − d) = n(n− d)/2 + n− 1,

where (2d − 1) is the number of moves made till the first critical point.

Next, we state and prove the full theorem. Although it builds on Theorem 3,

the proof is quite fine-grained and as a result very technical.

Theorem 4 ([SS78, Theorem 3]). The number of moves necessary to pebble F (d)

using S < n/2 + 1 pebbles satisfies

T ≥ n · (j + 2) + n(n− S)/2j+1 (2)

where j ≤ d− 1 is determined by

2j−1 + d− (j − 1) < S ≤ 2j + (d− j). (3)

Proof sketch. As in the proof of Theorem 3, we decompose the graph into A(j)

and B(d−j), and show that pebbling A(j) breadth-first (once) and pebbling B(d−j)
depth-first (multiple times) is the optimal strategy. Hence, the upper bound is

tight up to constant factors. We establish the lower bound for A(j) and B(d−j)
separately (and this explains the two terms in (2)).

A. The lower-bound for A(j) is straightforward: we use the fact that each vertex

must be visited at least once. Therefore, the number of moves involved is at

least

2d−j︸︷︷︸
|A(j)|

· (2j · (j + 2))︸ ︷︷ ︸
|A(j)

` |

and the number of pebbles in play are at most 2j . This establishes the first

term of (2).

0 1 2 3 t∗1

v∗1

t∗i

v∗i

t∗i+1

v∗i+1

t∗i′

v∗i′

0 T

First critical point
All heavy critical points

Figure 6: The timeline of a pebbling for F (d). Critical points are marked in red;

heavy critical points with respect to t∗i are marked by the longer red bar. t∗1 is the

first critical point; t∗i′ is the first non-heavy critical point with respect to t∗i .

B. Bounding the number of moves in B(d−j) is non-trivial as the sub-trees are

pebbled (depth-first) multiple times. The argument is a fine-grained version

of that in Theorem 3, and is summarised below.

(i.) Let’s look at the time-line of a pebbling sequence for F (d) (see Fig-

ure 6). Let’s examine the snapshot at a critical time t∗i : let the path

closed be for an output vertex v∗i , and let the path pass through A
(j)
`∗

10

and B
(d−j)
m∗ , for some 0 ≤ `∗ < 2d−j and 0 ≤ m∗ < 2j . Assume that at

this point of time (t∗i), there are a pebbles on A(j) and b pebbles on

B(d−j) \ {B(d−j)
m∗ } (i.e., on the bottom graphs except the one involving

the critical path). Let R denote a + b. It follows that

S = a + b︸ ︷︷ ︸
R

+ (d− j + 1)︸ ︷︷ ︸
#pebbles on B

(d−j)

m∗

(3)
=⇒ 2j−1 < R < 2j . (4)

(ii.) The first step is to show that the vertex v∗i is “heavy” at time t∗i , where

an v∗i is deemed heavy (at time t∗i) if at least da/2e of the 2j of its paths

from the input vertices in A
(j)
`∗ are blocked by pebbles in the pebbling

configuration Pt∗i
. This makes crucial use of the inequality in (4). (c.f.,

[SS78, Lemmas 3 and 4])

(iii.) Next, we show that there are at most 2j+1 heavy output nodes after

v∗i at the critical point t∗i ; let’s denote the first non-heavy output node

at t∗i by v∗i′ , i′ > i. This is shown by establishing that around 2j+1

trees in B(d−j) are empty — therefore, a lot of pebbles (around 2d−S)

are moved on B(d−j) in between the critical points for v∗i and v∗i′ . (c.f.,

[SS78, Lemma 5])

(iv.) As there must be at least 2d/2j+1 snapshots of the above type for the

whole sequence, (ii.) and (iii.), together, imply that at least (2d − S) ·
2d−(j+1) moves are made overall.

This establishes the second term of (2).

6 Epilogue

A. The lower-bound technique we saw is quite general (see [Gri76], for example)

and can be applied to other problems that have straight-line programs. A

couple of examples are given below.s

1. For multiplication of two n×n matrices (S + 1) ·T ≥ n3/4; since the

näıve multiplication algorithm takes T = O(n3) and O(1) space, it

follows that (S + 1) · T = Θ(n3).

2. For multiplication of two n bit integers, (S+1) ·T ≥ n2/64; however,

no matching upper bound is known — the best bound is (S+1) ·T =

O((nlog n)2).

B. The pebbling paradigm is quite powerful: it allows establishing similar bounds

for other models of computation. For example, it is possible to capture par-

allel computation if the pebbling moves are allowed to be made in parallel

(i.e., Rules 2 qne 3 can be carried out in parallel). It is possible to model

reversible computation [Ben89] by adding a constraint to Rule 3: A pebble

can be removed only if all its parents carry pebbles.

11

References

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation.

SIAM Journal on Computing, 18(4):766–776, 1989. (Cited on page 11.)

[Gri76] D. Grigoriev. An application of separability and independence notions

for proving lower bounds of circuit complexity. Notes of the Scientific

Seminar Leningrad branch of the Steklov Institute, 60:38–48, 1976. (Cited

on page 11.)

[PH70] Michael S. Paterson and Carl E. Hewitt. Record of the project mac con-

ference on concurrent systems and parallel computation. chapter Com-

parative Schematology, pages 119–127. ACM, New York, NY, USA, 1970.

(Cited on page 4.)

[Sav98] John E. Savage. Models of computation - exploring the power of computing.

Addison-Wesley, 1998. (Cited on pages 1, 2, 3, 7 and 9.)

[SS78] J. Savage and S. Swamy. Space-time trade-offs on the fft algorithm.

IEEE Transactions on Information Theory, 24(5):563–568, September

1978. (Cited on pages 1, 7, 9, 10 and 11.)

12

	Motivation
	Pebbling
	Example: The Perfect Binary Tree

	Fast Fourier Transform: a Refresher
	Upper Bounds
	Lower Bounds
	Epilogue

