
Best-First Based Parallel Nearest Neighbor Queries

Yunjun Gao, Gencai Chen, Ling Chen, Chun Chen

College of Computer Science, Zhejiang University
Hangzhou, 310027, P. R. China

{gaoyj, chengc, lingchen, chenc}@cs.zju.edu.cn

Abstract
Given a query point q, a nearest neighbor (NN)
query retrieves the closest data point with the
minimum distance to q in space (e.g., “find the
nearest hotel to the airport”). It is one of the
most important operations in spatial databases
and spatio-temporal databases. However, most of
existing methods for NN search only aim at a
single disk to find the NN of q, which incur
significant query cost (involving CPU time and
I/O overhead) and huge number of accessed
nodes with the increasing volume of data points.
Motivated by these problems, in this paper, we
present the first Best-First based Parallel NN
(BFPNN) algorithm and Full BFPNN (FBFPNN)
algorithm for effective processing of NN
retrieval by means of parallelism (i.e., fetching
more nodes or data points from multiple disks
simultaneously) in multi-disk setting.
Furthermore, extensive experiments verify that
the proposed algorithms are correct, and also
outperform the existing ones (e.g., FPSS and
CRSS algorithms) under most cases in terms of
effectiveness and scalability, by using various
real and synthetic datasets. The goal is to reduce
the query cost and alleviate I/O overhead, so as
to facilitate the execution of the NN retrieval.

1. Introduction
Increasing applications involve intensive both data and
computation, and require the large storage and
manipulation of numerous traditional and non-traditional
datasets (e.g., images, moving objects, etc.).

International Conference on Management of Data
COMAD 2005b, Hyderabad, India, December 20–22, 2005
©Computer Society of India, 2005

These applications mainly include GIS, CAD/CAM,
OLAP, and so forth. They impose various requirements
with respect to the information and the operations that
need to be supported. Thereinto, nearest neighbor (NN)
search is one of the most important operations from the
database perspective. Recently, it has attracted
considerable attention in the database community. This
paper just focuses on this theme.

Given a query point q and a dataset s, a NN query
retrieves the closest data point p with smaller distance (in
this paper we use Euclidean distance) to q than the one
from any other data point contained in s to q in space.
Formally, NN (q) = {p∈s�¬∃p’∈s’ such that dist (p’,
q) < dist (p, q)}, where s’ = {s - p} and dist is a distance
metric. For instance, in GIS, a tourist wants to find the
nearest hotel to the airport when he/she attains a new city
for the first time.

In the past decade, there have been attracted great
interests and advancements in the area of the NN
retrieval. Most methods of the NN queries have been
presented by the database researchers. In particular, we
categorize them into following four types: (i)
conventional (or stationary) NN queries [1, 2, 3, 4], (ii)
continuous NN (CNN) queries [5, 6, 7, 8, 9, 10], (iii)
aggregated NN (ANN) queries [11, 12], and (iv) reverse
NN (RNN) queries [13, 14, 15, 16, 17, 18], according to
whether the query point and data points (dataset) are fixed
or moving.

Most of the previous approaches for NN search can
efficiently perform in the sequential process environment
that only uses a single disk. In particular, various NN
queries based on Best-First (BF) algorithm are the optimal
ones with respect to query cost (including CPU time and
I/O overhead) and the number of accessed nodes.
However, with the emergence of several applications
involving huge amounts of data (e.g., GIS, CAD/CAM,
OLAP, etc.) that do not fit in one disk, those NN queries
mainly aiming at a single-disk setting are poor for dealing
with NN search in a multi-disk setting. Specifically, the
query cost (time) of the NN search increases, such that it
does not satisfy the requirement of the users. At the same

time, the I/O cost is also large, which is easy to produce
the bottleneck of I/O accesses, especially for NN queries
in spatio-temporal databases. To address these problems,
in this paper, we present the first Best-First based Parallel
NN (BFPNN) query algorithm and Full BFPNN
(FBFPNN) algorithm for effective processing of the NN
retrieval by means of parallelism (i.e., fetching more
nodes or data points from multiple disks simultaneously)
in multi-disk setting. Furthermore, considerable
experiments verify that the proposed algorithms are
correct and outperform the existing ones (e.g., FPSS and
CRSS algorithms [19]) under most cases in terms of
effectiveness and scalability, by using various real and
synthetic datasets. The goal is to improve the performance
of the NN queries processing through parallel operation in
multi-disk setting, so as to reduce the query cost and
alleviate the bottleneck of the I/O accesses (mainly
involving the number of accessed nodes).

The rest of the paper is organized as follows. Section 2
surveys related work on NN search involving BF
algorithm, parallel R-tree and existing parallel algorithms
for NN search (i.e., FPSS and CRSS algorithms). Some
definitions and problem characteristics are studied in
Section 3. Section 4 presents two parallel algorithms (i.e.,
BFPNN and FBFPNN) for single NN search.
Considerable experimental evaluations of the proposed
algorithms are discussed in Section 5. Finally, Section 6
concludes the paper with directions for future work.

2. Related work
In the sequel, we assume that the dataset is indexed by a
parallel R-tree due to the effectiveness of this structure in
the case of parallel processing with one processor and
several disks attached to it. Section 2.1 briefly surveys the
R-tree and the best-first (BF) algorithm for NN search. An
overview of the parallel R-tree is presented in Section 2.2.
Section 2.3 describes the previous studies on parallel
algorithms for NN queries.

2.1 BF algorithm for NN search using R-trees

Among various spatial indexing structures in the
literature, the R-tree [20] and its variants (e.g., the R+-tree
[21], the R*-tree [22], etc.) are the most widely accepted
and used ones. They can be thought of as extensions of B-
trees (e.g., B+-tree) in multi-dimensional space. Figure 2.1
(a) shows a set of points {a, b, ... , l} indexed by an R-tree
(Figure 2.1 (b)) assuming a capacity of three entries per
node (i.e., the fanout of each node is three). In this
example, according to the spatial proximity, 12 points are
clustered into 4 leaf nodes {N3, N4, N5, N6} which are then
recursively grouped into nodes N1, N2 that become the
entries of a single root node. Each node of the tree
corresponds to one disk page. Intermediate nodes (e.g.,
N3, N4) contain entries of the form (R, child_ptr), where R
is the Minimum Bounding Rectangle (MBR) that encloses
all the MBRs of its descendants and child_ptr is the

pointer to the page where the specific child node is stored.
Leaf entries (e.g., a, b, c) store the coordinates of data
points and (optionally) pointers to the corresponding data
records.

N1
N3

N4

N2

q

N5

N6

a

b

c

d

e

f

h

g

i

l

j k

mindist(q, N2)

minmaxdist(q, N1)

maxdist(q, N1)

search region

query point

mindist(q, N1)

N1 N2

N3 N4 N5 N6

a b c d e f g h i j k l

N1 N2

N3 N5N4 N6

Root
Level 2

Level 1

Level 0
(a) Points and node extents (b) The R-tree

Figure 2.1: Example of a NN query and an R-tree

Given a query point q and a d-dimensional dataset s, a
NN query retrieves the point p∈s that is closest to q. In
particular, The NN algorithms on R-trees utilize three
bounds to prune the search space, i.e., (i) mindist (q, N),
(ii) maxdist (q, N) and (iii) minmaxdist (q, N), where N
denote any node in R-trees. Specifically, mindist (q, N)
corresponds to the minimum possible distance between q
and any point in (the subtree of) node N (e.g., mindist (q,
N1) in Figure 2.1 (a)). Similarly, maxdist (q, N) specifies
the maximum possible distance among all distances from
any point in the subtree of node N to q (e.g., maxdist (q,
N1)). And minmaxdist (q, N) gives an upper bound of the
distance between q and its closest point in N (e.g.,
minmaxdist (q, N1)). In particular, notice that the
derivation of minmaxdist (q, N) is based on the fact that
each edge of the MBR of N contains at least one data
point [2]. Hence, it also equals the smallest of the
maximum distances from all edges of N to q. As shown in
Figure 2.1 (a).

Existing approaches of NN search are based on either
Depth-First (DF) algorithm [2, 3] or Best-First (BF)
algorithm [1, 4]. However, here only overviews the BF
algorithm for NN retrieval due to the proposed algorithms
in this paper based on it.

The BF algorithm maintains a priority query (e.g.,
heap) Q containing the entries visited so far, sorted in
ascending order of their mindist(s). BF starts from the root
and inserts all its entries into Q together with their
mindist(s). In Figure 2.1, for instance, BF starts by
inserting the root entries into Q = {(N1, mindist (q, N1)),
(N2, mindist (q, N2))}. Then, at each step, it visits the node
in Q with the smallest mindist. Continuing the above
example, the algorithm retrieves the content of N1 and
inserts its entries in Q, after which Q = {N2, N4, N3}.
Similarly, the next two nodes accessed are N2 and N6
(inserted in Q after visiting N2) in turn, and the Q changes
Q = {N6, N4, N5, N3} and Q = Q = {l, N4, k, j, N5, N3}
respectively. Here, l is discovered as the first NN of q. At
this time, BF terminates with l as the final result, since the
next entry (N4) in Q is farther (from q) than l. In addition,
BF uses minmaxdist and maxdist to reduce the number of
node access during the NN search processing.

Furthermore, it is “incremental” (i.e., reporting NNs of q
in ascending order of their distances to q).

2.2 The parallel R-tree

To maximize the parallelism for large queries and engage
as few disks as possible for small queries, Kamel and
Faloutsos [23] proposed “Multiplexed R-tree”, which
distributes the nodes of a traditional R-tree with cross-
disk pointers, based on a simple hardware architecture
consisting of one processor with several disks attached to
it. Figure 2.2, for example, shows one possible
multiplexed R-tree corresponding to the R-tree of Figure
2.1 (b) in Section 2.1.

N1 N2

N3 N4 N5 N6

a b c g h i d e f j k l

Root

N1 N2

N3 N5 N4 N6

Disk 1 Disk 2

Figure 2.2: Example of multiplexed R-tree

The multiplexed R-tree operates exactly like a single-
disk R-tree. But the only difference is that its nodes are
carefully distributed over multiple disks. Specifically, the
root node (representing as thick line in Figure 2.2) is kept
in main memory, while other nodes (e.g., N3, …, N6) are
distributed over the two disks (i.e., disk 1 and disk 2).
Furthermore, for multiplexed R-tree, each pointer
contains a disk_id (denoting an identifier of one disk), in
addition to the page_id (specifying a label of one page) of
the traditional R-tree. In addition, [23] also presented and
evaluated several heuristics, including Round Robin (RR),
Minimum Area (MA), Minimum Intersection (MI) and
Proximity Index (PI), to assign nodes to disks within the
multiplexed R-tree framework. In this paper, however, we
only use RR heuristic to distribute the node entries among
multiple disks, in order to compare the efficiency of the
proposed algorithms (including the BFPNN and the
FBFPNN algorithms) against the existing parallel
algorithms (i.e., CRSS) for NN queries.

2.3 Existing parallel algorithms for NN search

Currently, although most of existing methods of NN
queries can be efficiently suitable for a single-disk setting,
they have poor performance in the multi-disk
environment. Therefore, effectively parallel NN search
algorithms are necessary for improving the efficiency of
the NN retrieval in the multiple disks setting. However,
they do not attract sufficient attention in the past decade.
To the best of our knowledge, the only parallel NN
algorithms in the literature are the ones proposed in [19],
which are based on various heuristics and leave some
rooms for improvement.

Papadopoulos and Manolopoulos [19] studied
similarity queries (retrieving objects that are similar to a
given query vector or query point, where similarity is
defined by means of a distance metric) on a Redundant

Array of Inexpensive Disks (RAID) level 0 system. In
particular, they examined four algorithmic techniques,
namely, (i) Branch and Bound Similarity Search (BBSS),
(ii) Full Parallel Similarity Search (FPSS), (iii)
Candidate Reduction Similarity Search (CRSS), and (iv)
Weak OPTimal Similarity Search (WOPTSS).
Specifically, The BBSS is based on a previous branch-
and-bound algorithm (e.g., DF algorithm [2]). The FPSS
is depended on a greedy philosophy. It supposes that all
the residual entries (after pruning per step) would
contribute to the final answer and have to be retrieved.
The CRSS tries to exploit parallelism to a sufficient
degree and avoid fetching unnecessary data (i.e., not
acting on the final result) by using a threshold distance Dth
and the Candidate Reduction Criteria (CRC for short).
The WOPTSS is a non-existing and hypothetical optimal
algorithm. It is used to compare aforementioned
algorithms involving BBSS, FPSS, and CRSS. In
addition, from the practical perspective, [19] also reported
that the CRSS outperforms any other proposed algorithms
(i.e., the BBSS and the FPSS) through considerable
experiments with real and synthetic datasets. In particular,
it is observed that the CRSS consistently presents the best
performance in terms of speed-up, scale-up and query
response time in the multi-disk environment. Therefore,
here only introduces the CRSS algorithm together with an
illustrative example.

The CRSS uses a threshold distance Dth and CRC to
prune the needless nodes. Specifically, given a query
point q, Dth, and a MBR N, the CRC includes: (i) N is
rejected when Dth < mindist (q, N) holds, (ii) N is
activated if Dth ≥ minmaxdist (q, N) satisfies, and (iii) N is
saved for possible future reference when both Dth ≥
mindist (q, N) and Dth < minmaxdist (q, N) meet. Clearly,
the CRSS need some auxiliary data structures in order for
it to effective work. In particular, it mainly utilizes three
auxiliary structures: (i) activation structure, which stores
the pointers to the nodes that are going to be fetched in
the next step; (ii) fetch structure, which holds the newly
fetched nodes in order to deal with them further; and (iii)
candidate structure, which maintains the candidate nodes
that have neither been accessed nor been rejected yet.
Figure 2.3 (a), for instance, shows a set of points {a, b, ...,
u} indexed by an R-tree (illustrated in Figure 2.3 (b))
assuming a capacity of three entries per node.
Furthermore, nodes are numbered from N1 to N12. Here,
given a query point q, let us trace the execution of the
CRSS for a simple query requiring the NN of q (i.e., k =
1). The process of the algorithm is described as follows:

The CRSS algorithm starts from the root where the
MBRs N1, N2 and N3 reside (see Figure 2.3). According to
the first threshold distance Dth and the CRC, N2 and N3 are
activated immediately, and the pointers to N2 and N3 are
stored in the activation structure; whereas N1 is
considered as a possible candidate node and pushed into
the Candidate Stack (CS for short). Note that the
candidates are inserted into the CS in decreasing order

with respect to the mindist(s) from q (i.e., mindist (q, N3)).
This case is depicted in Figure 2.4 (a), where the shaded
boxes indicate guard entries that can be used to separate
two different candidate nodes, and the letters (involving
“I”, “S”, “R” and “C”) specify inspected nodes, selected
nodes, rejected nodes and saved candidate nodes,
respectively. After updating the CS, N2 and N3 can be
ready to fetch from the disks that they reside. It must be
noted that the requirements of fetching operation can be
performed in parallel way assuming that these nodes (i.e.,
N2 and N3) store in different disks.

q

b c

d

e

i

h m

k
n

l

N3

p

o
t

r

s

N2

N1
N4

N5

N6

N7

N8

N9

N10

N11

N12

a

f

g

j

u

Dth

D’
th

(a) Points and node extents

N1 N2

N4 N10

a b c

d e

f g

N1 N2

N4 N6

Root N3

N5 N6 N7 N8 N9 N11 N12

N3

N5

h i

j k

m n
N7 N9

N8

o p

r s

t u
N10 N12

N11

l

Level 2

Level 1

Level 0

(b) The R-tree

Figure 2.3: Example of a CRSS algorithm and an R-tree

Similarly, in the next stage, nodes N7 through N12 are
inspected. As a result, N8, N9 and N10 are activated
immediately; N11 and N12 are regarded as two possible
candidate nodes; while N7 is rejected. Here, the status of
the CS in this situation is shown in Figure 2.4 (b).

The following step includes the access of the nodes
N8, N9 and N10. This is the first time that real data objects
contribute to the formulation of the upper bound to the k-
th (here k = 1) NN during the running of the CRSS. So,
the best one out of seven objects (i.e., o) are selected and
the threshold distance Dth is updated accordingly (i.e., D’th
insteads of Dth). Then, the first candidate nodes consisting
of N11 and N12 are popped from the CS and investigated.
As a consequence, they can be safely rejected by means of
comparing mindist (q, N11) and mindist (q, N12) against the
D’th. The current case is illustrated in Figure 2.4 (c). Here
still contains N1 in the CS. Therefore, N1 is popped from
the stack and can be also safely discarded due to D’th <
mindist (q, N1). Now, the CRSS has been terminated, the
NN of q has been determined (i.e., o) and Dth = mindist (q,
k) as well.

N 1 N 1 N 1

N 1 2

N 1 1

I : N 1 , N 2 , N 3
S : N 2 , N 3
R : n o n e
C : N 1

I : N 7 , N 8 , N 9
 N 1 0 , N 1 1 , N 1 2
S : N 8 , N 9 , N 1 0

R : N 7

C : N 1 1 , N 1 2

I : N 1 1 , N 1 2
S : n o n e
R : N 1 1 , N 1 2

C : n o n e

G u a r d e n t r ie s

 (a) (b) (c)

Figure 2.4: Illustration of the first three steps of CRSS

3. Definitions and problem characteristics
The objective of a NN query is to retrieve the closest data
point of a given query point q. For example, the NN of q
in the aforementioned Figure 2.1 is l, which has the
smallest distance to q among all the distances of nodes
(contained in the Figure 2.1) from q. In this section, we
present some definitions and study several problem
characteristics in order to derive our proposed algorithms
(including the BFPNN and the FBFPNN) discussed
detailedly in the Section 4 of the paper. First of all, Table
3.1 describes various symbols used in the following
definitions for facilitating presentations.

Symbol Description
q A given query point
s A dataset
Dn A Euclidean distance in n-dimensional space
p The nearest neighbor of q

N A set of nodes (involving leaf nodes and
intermediate nodes)

Np A node containing p, and Np∈N
NDmindist A node with the minimum mindist to q in N
NDminmaxdist A node with the smallest minmaxdist to q in N
NDmaxdist A node with the minimal maxdist to q in N

Table 3.1: Symbols and descriptions used in definitions

Definition 1 (distance of the NN from q): The distance
Dn (q, p) between q and p is defined as follows: Dn (q, p) =
{Dn��∃Dn (q, p’) < Dn (q, p)}, where p’∈{s - p} and
p∈s.

Definition 2 (consistency): Let p∈Np (Np∈N) indicates
the fact that the point p is exactly contained in the node
Np, then the following inequality holds: Dn (q, Np) ≤ Dn (q,
p).

Definition 3 (minimum mindist): Let Dmindist be the
minimum mindist among all mindist(s) between q and
node(s) in N. Then, the Dmindist can be formulated as
follows: Dmindist = {mindist�� ∃ mindist (q, N’) <
mindist (q, NDmindist)}, where N’ {N – N∈ Dmindist} and
NDmindist∈N.

Definition 4 (minimum minmaxdist): Let Dminmaxdist
be the smallest minmaxdist within all minmaxdist(s) from
q to node(s) in N. Then, the formal definition of the
Dminmaxdist is: Dminmaxdist = {minmaxdist � �
∃ minmaxdist (q, N’) < minmaxdist (q, NDminmaxdist)}, in
which N’∈{N – NDminmaxdist} and NDminmaxdist∈N.

Definition 5 (minimum maxdist): Let Dmaxdist be the
minimal maxdist among all maxdist(s) to q in N. Then, the
formalization of the Dmaxdist is described as follows:
Dmaxdist = {maxdist��∃maxdist (q, N’) < maxdist (q,
NDmaxdist)}, where N’∈{N – NDmaxdist} and NDmaxdist∈N.

Figure 3.1 shows an example of above four distance
metrics, that is, (i) distance of the NN from q (i.e., Dn (q,
g) , as g is the NN of q), (ii) Dmindist (equals mindist (q,
N10), which is the smallest mindist among all mindist(s)

between a given query point q and a set of leaf nodes N
(involving nodes N4 through N12), similarly, (iii)
Dminmaxdist (equals minmaxdist (q, N6)), and (iv)
Dmaxdist (equals maxdist (q, N6)). On the other hand,
carefully considering these definitions, we can derive and
prove the following lemmas as well:

q

b c

d

e

i

h m

k
n

l

N3
p

o

t

r

s

N2

N1N4

N5

N6

N7

N8

N9

N10

N11

N12

a

f

g

j uDmindist = mindist(q, N10)
Dminmaxdist = minmaxdist(q, N6)

Dn(q, g)

Circle 1 Circle 2

The NN
of q

Direction 3 of
NN search

Direction 1 of
NN search

Direction 2 of
NN search

Search region

Dmaxdist = maxdist(q, N6)

Figure 3.1: Example of four distance metrics

Lemma 1: According to the definitions of three distance
metrics (i.e., Dn (q, p), Dmindist and Dminmaxdist), the
following inequality holds: Dmindist ≤ Dn (q, p) ≤
Dminmaxdist.

Proof. (Sketch) In the first place, we prove the left side
of the inequality in Lemma 1, i.e., Dmindist ≤ Dn (q, p).
According to the Definition 2, the distance from a given
query point q to its nearest neighbor p is not smaller than
the distance between q and the node Np containing p. So,
Dn (q, Np) ≤ Dn (q, p) holds. Similary, by Definition 3,
Dmindist is the smallest mindist between q and a set of
nodes N and Np∈N. Hence, Dmindist ≤ Dn (q, Np) holds.
Associating above two inequalities, i.e., Dn (q, Np) ≤ Dn (q,
p) and Dmindist ≤ Dn (q, Np), the inequality Dmindist ≤ Dn
(q, p) is accurate.

As for the proof of the right side of the Lemma 1 (i.e.,
Dn (q, p) ≤ Dminmaxdist), we assume, to the contrary, that
the inequality Dn (q, p) � Dminmaxdist holds. Clearly,
according to the definition of minmaxdist, which offers an
upper bound on the actual distance of object (point) to q,
there exists another data point o whose distance from q
meets following inequality: minmaxdist ≥ Dn (q, o). At the
same time, Dminmaxdist ≥ Dn (q, o) holds as well because
the Dminmaxdist is the minimum minmaxdist among all
nodes enclosed in N to q by the Definition 4. Hence,
combining two inequalities, i.e., Dn (q, p) � Dminmaxdist
and Dminmaxdist ≥ Dn (q, o), we can get the inequality:
Dn (q, p) � Dn (q, o). However, because the data point p is
the NN of q, we can also get another inequality: Dn (q, p)
� Dn (q, o) in terms of the Definition 1, which contradicts
the derived inequality: Dn (q, p) � Dn (q, o). Therefore, we
can conclude that the inequality, i.e., Dn (q, p) ≤
Dminmaxdist, holds.

Thus, combining two parts of the above proof, we can
determine the Lemma 1 is accurate. ■

Lemma 2: According to the definitions of three distance
metrics (i.e., Dn (q, p), Dmindist and Dmaxdist), the

following inequality satisfies: Dmindist ≤ Dn (q, p) <
Dmaxdist.

Proof. (Omitted) We omit the description of this proof
of the Lemma 2 due to the proof method is the same as
that of the Lemma 1. ■

As pointed out in Figure 3.1. Specifically, we can get four
distance metrics, that is, the distance of the NN q (equals
Dn (q, g)), Dmindist (equals mindist (q, N10)),
Dminmaxdist (equals minmaxdist (q, N6)) and Dmaxdist
(equals maxdist (q, N6)), which are denoted by solid lines
together with arrows. Evidently, these distances satisfy
above Lemma 1 and Lemma 2. In other words, the
following two inequalities, i.e., mindist (q, N10) < Dn (q, g)
< minmaxdist (q, N6) and mindist (q, N10) < Dn (q, g) <
maxdist (q, N6), hold.

At the same time, we can also know that the NN of q
distributes between Dmindist and Dminmaxdist.
Continuing the above example, for instance, in Figure 3.1,
the NN of q (i.e., g) distributes at the area of between
circle 1 and circle 2 (representing as the shaded area,
called search region), which centred at q with radius
Dmindist (i.e., mindist (q, N10)) and Dminmaxdist (i.e.,
minmaxdist (q, N6)), respectively. It must be noted that the
NN of q lies in between Dmindist and Dmaxdist as well,
because the Dmaxdist is not smaller than the
Dminmaxdist. Here, a problem arises, i.e., how to find the
NN of q as quick as possible. Intuitively, assuming that
the direction of the NN search is unique during the
processing of the NN queries, three search strategies can
be used to quickly discovery the NN of q, that is, (i) from
circle 1 to circle 2, (ii) from intermediate to the sides of
circle 1 and those of circle 2, and (iii) from circle 2 to
circle 1. Figure 3.1 also shows these three directions of
the NN search that are illustrated by dashed arrows.
However, which one is the best choice among them? The
following analysis answers this issue.

Let T be the total time of retrieving search region, Tm
be the time of searching area between the side of circle 1
and that of circle which falls into the search region. There
are following three cases together with analysis of their
search time:

Case 1: Following strategy 1 for searching the NN of q.
The best situation is that the NN of q just distributes on
the side of circle 1. Hence, algorithm can immediately
find the NN of q. On the contrary, as the NN of q just falls
on the side of circle 2, the algorithm need cost T time to
discovery the NN of q, which is also just the worst case.
Nevertheless, note that above worst situation little occurs
in real life, since it depends on a particular configuration
of both data objects and query object. Therefore, we can
get the time range [0, T] towards the NN search algorithm
that follows the strategy 1 for retrieving the NN of q.
Furthermore, the average search time of this case is T/2.

Case 2: Finding the NN of q according to the strategy 2.
As the analysis of the case 1, we can derive the time range

[Tm, T] concerning the algorithm for NN search which
follows the strategy 2 to get the NN of q. Moreover, the
mean search time of this case is (Tm + T)/2.

Case 3: Discovering the NN of q by the strategy 3.
Similarly, we can also get the time range [T, T], and the
average search time of this case is T.

To summarize above discussion, we use the first search
strategy (i.e., retrieving the NN of q from circle 1 to circle
2) in the proposed algorithms to obtain the NN of q as
soon as possible, since its cost is smaller than that of other
search strategies.

4. BFPNN and FBFPNN algorithms
Section 4.1 introduces several pruning strategies which
permit the development of efficient algorithm presented in
Section 4.2. Section 4.3 gives an illustrative example for
simulating the execution of the BFPNN algorithm and
analyzes its performance with respect to BF algorithm for
NN search.

4.1 Pruning strategies

Like the BF algorithm discussed in Section 2, BFPNN
and FBFPNN algorithms also employ branch-and-bound
techniques to prune the search space. Specifically,
starting from the root, the parallel R-tree is traversed by
using the following principles: (i) when a leaf entry (i.e., a
data point) p is encountered, the NN of a given query
point q is found if p contains the minimum distance to q;
(ii) for an intermediate entry, algorithms visit its subtree
only if it may enclose any qualifying data points, which
contribute to the final answer. The advantage of this
solution over exhaustive scan is that it avoids accessing
unnecessary nodes, which do not act on the final result. In
the sequel, we present several heuristics for pruning these
needless nodes.

According to the Lemma 1 discussed in Section 3, we
can formulate the following strategies to prune node
entries during processing of the NN retrieval:

Heuristic 1: Given a query point q, a node entry E with
mindist (q, E) greater than Dminmaxdist can be safely
discarded since it can not contain the NN of q (according
to the Lemma 1).

In Figure 3.1, for instance, the node entries (i.e., N4, N5,
N7, N11 and N12) can be quickly pruned in the phase of the
NN search processing, because their distances (i.e.,
mindist(s)) to q are larger than Dminmaxdist (equals
minmaxdist (q, N6)), which is the smallest minmaxdist
among all node entries (involving N4 through N12), but
the algorithms need visit those node entries (i.e., N6, N8,
N9 and N10) intersecting with the search region that lies in
between circle 1 and circle 2 centered at q with radius
Dmindist and Dminmaxdist, respectively. Applying the
heuristic 1, the algorithm can avoid accessing unnecessary

node (e.g., N4, N5, etc.), leading to quickly finding the NN
of q.

Heuristic 2: Given a query point q, if an actual distance
from q to a data point p is larger than Dminmaxdist, then
it can be safely pruned because p can not be the NN of q
(by the Lemma 1).

As known that N6, N8, N9 and N10 need to be retrieved in
the phase of NN search depending on the heuristic 1.
Therefore, continuing above example, applying the
heuristic 2 again within those qualifying node entries (i.e.,
N6, N8, N9 and N10), the data points (i.e., f, j, k, m, o and p)
contained in Figure 3.1 do not have to be accessed during
the processing of the NN search, since their actual
distances from q are also bigger than Dminmaxdist.
However, algorithms need retrieve those data points (i.e.,
g, l and n) which fall into the search region until finding
the NN of q (i.e., g). Therefore, the algorithms can reduce
the amount of accessed nodes and speed up their
execution through using the heuristic 2 as well.

Similarly, we can derive other two strategies for
pruning the unnecessary node entries during the
processing of the NN retrieval in terms of the Lemma 2
described in the Section 3:

Heuristic 3: Given a query point q, a node entry E that
satisfies the inequality mindist (q, E) > Dmaxdist can be
safely discarded since it can not enclose the NN of q
(relying on the Lemma 2).

Heuristic 4: Given a query point q, if an actual distance
between q and a data point p is bigger than Dmaxdist,
then it can be safely pruned because p is not the NN of q
(on the basis of the Lemma 2).

To summarize aforementioned discussion, the proposed
algorithms in this paper can not only avoid retrieving non-
qualifying nodes (i.e., unnecessary nodes) so that they can
find the NN of q as soon as possible, but also reduce the
number of accessed nodes and speed up their executions
as well, by employing the heuristic 1 through the heuristic
4.

4.2 Algorithms

This subsection presents the first Best-First based Parallel
Nearest Neighbor (BFPNN for short) search algorithm
and Full BFPNN (FBFPNN for short) algorithm for NN
queries in spatial databases, associating with above four
pruning strategies.

Specifically, the proposed BFPNN algorithm
implements an ordered best first traversal. It begins with
the parallel R-tree root node and proceeds down the tree.
First of all, algorithm inserts all entries in the root node
into their corresponding priority queues (e.g., heaps) that
they reside, and records current minimum minmaxdist
(i.e., Dminmaxdist) within all entries for pruning
unnecessary node entries in sequel. Then algorithm

iterates until either all queues for M disks (assuming that
the number of disks is M) are empty or the algorithm
finds the NN of a given query point q: Each iteration,
algorithm applies heuristic 1 and heuristic 2 to discard
useless node entries firstly. Then it finds the entry E with
the minimum distance to q among all queues by parallel
process. In practical implementation, algorithm gets all
entries EHi(s) at the head of each priority queue firstly
suppose that EHi(s) is (are) maintained in ascending order
with respect to its (their) mindist(s). Next it finds the entry
E with the smallest distance to q among EHi(s). Here, E
has two possibilities, that is (i) E is an data object, then
algorithm reports it as the NN of q and terminates the
algorithm; otherwise (ii) E is an intermediate node entry,
then algorithm deals with M disks in parallel way as
follows: if each queue Qi is not empty and at the head of
Qi is not a data object, then algorithm dequeues Qi and
enqueues all entries of it into corresponding queues that
they store. Furthermore, algorithm also records and
updates the current value of Dminmaxdist, when it is
smaller than its old value, such that the algorithm can
discard more node entries that do not contain any
qualifying data point (in other words, not contributing to
the final answer) in the next iteration.

To summarize aforementioned description of the
BFPNN algorithm, Figure 4.1 presents the pseudo-code
description of a BFPNN algorithm. In particular, the
inputs of the BFPNN algorithm involve a given query
point q, parallel R-tree indexing structure, and the number
of disks M; at the same time, its output is the NN of q.
Specifically, line 1 constructs and initializes priority
queues for M disks. Line 7 applies heuristics 1 and 2 (see
section 4.1) to prune all unnecessary node entries. In line
10, the NN of q is reported. At that point, some other
routines (e.g., a query engine) can take control, possibly
resuming the algorithm at a later time to get the next NN
of q, or alternately terminating it if no more NNs of q are
desired. From line 20 to line 21, the value of Dminmaxdist
is updated, such that it consistently maintains the
minimum minmaxdist distance from q. In addition, it must
be noted that the line 13 through line 21 can be performed
by means of parallel process.

BFPNN (QueryObject q, Parallel R-tree, M)
/* M is the total number of disks; Dminmax denotes the minimal
minmaxdist among all minmaxdists from q to data points; Q1,
Q2,…, and QM are maintained in ascending order with respect to
mindist; Temp_Dminmax stores temporal value of Dminmax;
FindDisk (E) return the identifier of disk residing entry E; First
(Qi) return the head entry in queue Qi; Dist (q, E) calculates the
mindist between q and E. */
1. Construct and initialize M priority queues;
2. For each entry E in the root node
3. i = FindDisk (E);
4. EnQueue (Qi, E, Dist (q, E));
5. Dminmax = minimum minmaxdist of all entries;
6. While existing queue (s) is (are) not empty
7. Prune all entries for each queue according to the

heuristics 1 and 2;
8. Find the entry Emin with the minimum distance from q

in all queue (s);
9. If Emin is an data object then
10. Report the data object as the NN of q;
11. Return;
12. Else // Emin is an intermediate node.
13. For i = 1 to M parallel do
14. If not IsEmpty (Qi) and First (Qi) is not an data

object then
15. Ni = DeQueue (Qi);
16. For each entry E in Ni
17. j = FindDisk (E);
18. EnQueue (Qj, E, Dist (q, E));
19. Temp_Dminmax = minimal minmaxdist in

all entries;
20. If Temp_Dminmax < Dminmax then
21. Dminmax = Temp_Dminmax;
22. Enddo
End BFPNN

Figure 4.1: Pseudo-code of a BFPNN algorithm

As a matter of fact, the FBFPNN exactly like the BFPNN.
Figure 4.2 proposes the pseudo-code description of a
FBFPNN algorithm as well. Notice that most of the
pseudo-code presentations of the FBFPNN algorithm are
the same as above those of the BFPNN algorithm.
However, the differences between them are discussed as
follows: (i) the former (i.e., FBFPNN algorithm) employs
heuristics 3 and 4 (see line 7 in Figure 4.2) for pruning all
unnecessary node entries, while the latter (i.e., BFPNN
algorithm) applies heuristics 1 and 2 (see line 7 in Figure
4.1) to discard all needless ones during the NN search
processing; and (ii) for FBFPNN algorithm, the value of
Dmaxdist is renovated from line 20 to line 21 in Figure
4.2, thus it always keeps the smallest maxdist distance to
q, whereas towards BFPNN algorithm, the value of
Dminmaxdist is updated in line 20 through line 21 of the
Figure 4.1, such that it consistently maintains the
minimum minmaxdist distance from q.

FBFPNN (QueryObject q, Parallel R-tree, M)
/* Dmax denotes the minimal maxdist among all maxdist(s) from
q to data points; Temp_Dmax stores temporal value of Dmax. */
1. Construct and initialize M priority queues;
2. For each entry E in the root node
3. i = FindDisk (E);
4. EnQueue (Qi, E, Dist (q, E));
5. Dmax = minimum maxdist of all entries;
6. While existing queue (s) is (are) not empty
7. Prune all entries for each queue according to the

heuristics 3 and 4;
8. Find the entry Emin with the minimum distance

from q in all queue (s);
9. If Emin is an data object then
10. Report the data object as the NN of q;
11. Return;
12. Else // Emin is an intermediate node.

13. For i = 1 to M parallel do
14. If not IsEmpty (Qi) and First (Qi) is not an

data object then
15. Ni = DeQueue (Qi);
16. For each entry E in Ni
17. j = FindDisk (E);
18. EnQueue (Qj, E, Dist (q, E));
19. Temp_Dmax = minimal maxdist in all entries;
20. If Temp_Dmax < Dmax then
21. Dmax = Temp_Dmax;
22. Enddo
End FBFPNN

Figure 4.2: Pseudo-code of a FBFPNN algorithm

4.3 Discussion

This subsection only gives an illustrative example to
simulate the execution of the BFPNN algorithm for NN
search, and omits that of the FBFPNN algorithm, since
the runnings of both algorithms are similar. Secondly, we
compare the efficiency of the BFPNN algorithm with
traditional BF algorithm. However, further performances
(e.g., mean number of accessed nodes, mean query cost
(time), etc.) of the both BFPNN and FBFPNN algorithms
with respect to existing parallel NN search algorithms are
systematically examined in the Section 5 of this paper.

N1
d1/3/6.5

N1

N4 N6

Root

N5

N2
d2/1.5/3.5

N3
d3/1/4

N4
d1/8.5/10

N5
d2/6.5/7.5

N6
d3/3/4.5

a
d1/11.5

b
d2/10

c
d3/8.5

d
d1/8

e
d2/7.5

f
d1/6.5

g
d2/3

N2

N7 N9

N8

N7
d1/7/8.5

N8
d2/3/3

N9
d3/2.5/3.5

h
d1/9

i
d2/7

j
d1/5

k
d2/5.5

m
d1/4.5

n
d2/2.5

N3

N10 N12

N11

N10
d1/1/2

N11
d2/4/5

N12
d3/3.5/4

o
d1/1

p
d2/4

r
d1/4

s
d2/6

t
d1/3.5

u
d2/6

l
d3/3

Level 2

Level 1

Level 0

Figure 4.3: The parallel R-tree for Figure 2.3 (a)

Consider, for instance, Figure 2.3 (a), where shows a
set of points {a, b, ..., u} indexed by a parallel R-tree
(illustrated in Figure 4.3) assuming a capacity of three
entries per node (i.e., the fanout of each node is three). As
an example, suppose that here wants to find the NN of a
given query point q in the parallel R-tree, where nodes are
numbered from N1 to N12; the symbols d1, d2, d3 in each
entry indicates disk 1, disk 2 and disk 3, respectively; the
one two digits (e.g., 3/6.5, 1.5/3.5, etc.) for per entry
within level 1 and level 2 refer to the mindist and
minmaxdist to q respectively (for intermediate entries),
whereas the number (e.g., 11.5, 10, etc.) for each entry
within level 0 specifies the actual distance to q (for data
objects). It must be noted that these numbers are not
stored previously, while computed dynamically during the
NN search processing. Below, we show the steps of the
execution of the BFPNN algorithm together with the
contents of each priority queue (representing as Q1, Q2
and Q3 in this example) and the values of some
parameters (e.g., Dminmax, Emin, Temp_Dminmax, etc.).
In addition, notice that all entries within each priority
queue are listed in ascending order with respect to mindist
to q. The BFPNN algorithm starts by enqueuing the root

node in parallel way, after which it performs the
following steps:

1. EnQueue (Q1, N1, 3), EnQueue (Q2, N2, 1.5), EnQueue
(Q3, N3, 1).
Dminmax = minmaxdist (q, N2) = 3.5,
Emin = Dist (q, N3) = 1.
DeQueue (Q1, N1),
EnQueue (Q1, N4, 8.5), EnQueue (Q2, N5, 6.5),
EnQueue (Q3, N6, 3);
DeQueue (Q2, N2),
EnQueue (Q1, N7, 7), EnQueue (Q2, N8, 3),
EnQueue (Q3, N9, 2.5);
DeQueue (Q3, N3),
EnQueue (Q1, N10, 1), EnQueue (Q2, N11, 4),
EnQueue (Q3, N12, 3.5).
Queues: Q1: {(N10, 1), (N7, 7), (N4, 8.5)},

Q2: {(N8, 3), (N11, 4), (N5, 6.5)},
Q3: {(N9, 2.5), (N6, 3), (N12, 3.5)}.

Temp_Dminmax = minmaxdist (q, N10) = 2,
Update Dminmax = Temp_Dminmax

= minmaxdist (q, N10) = 2.
2. Prune N7 and N4 from Q1 since their mindist(s) (equals 7

and 8.5, respectively) are greater than Dminmax (equals
2);
Discard N8, N11 and N5 from Q2 because their mindist(s)
(equals 3, 4 and 6.5, respectively) are larger than Dminmax
(equals 2);
Prune N9, N6 and N12 from Q3 as their mindist(s) (equals
2.5, 3 and 3.5, respectively) are bigger than Dminmax
(equals 2).
Emin = Dist (q, N10) = 1.
DeQueue (Q1, N10), EnQueue (Q1, o, 1),
EnQueue (Q2, p, 4).
Queues: Q1: {(o, 1)}, Q2: {(p, 4)}, Q3: empty.
Do not update Dminmax since current Temp_Dminmax
(equals 2) is not smaller than old Dminmax (equals 2).

3. Prune p from Q2 as its mindist (equals 4) is larger than
Dminmax (equals 2).
Emin = Dist (q, o) = 1

Report o is the NN of q.
N1

3/6.5
N1

N4 N6

Root

N5

N2
1.5/3.5

N3
1/4

N4
8.5/10

N5
6.5/7.5

N6
3/4.5

a
11.5

b
10

c
8.5

d
8

e
7.5

f
6.5

g
3

N2

N7 N9

N8

N7
7/8.5

N8
3/3

N9
2.5/3.5

h
9

i
7

j
5

k
5.5

m
4.5

n
2.5

N3

N10 N12

N11

N10
1/2

N11
4/5

N12
3.5/4

o
1

p
4

r
4

s
6

t
3.5

u
6

l
3

Level 2

Level 1

Level 0

Figure 4.4: The R-tree for Figure 2.3 (a)

Continuing above example, suppose that we also use
traditional BF algorithm (i.e., incremental NN algorithm)
to find the NN of q in the R-tree shown in Figure 4.4,
where the meanings of the number in each entry are as the
same as above Figure 4.3. The BF algorithm begins with
by enqueuing the root node, after which it executes the
following steps:

1. DeQueue Root, EnQueue N1, N2 and N3.
Queue: {(N3, 1), (N2, 1.5), (N1, 3)}

2. DeQueue N3, EnQueue N10, N11 and N12.
Queue: {(N10, 1), (N2, 1.5), (N1, 3), (N12, 3.5), (N11, 4)}

3. DeQueue N10, EnQueue o and p.
Queue: {(o, 1), (N2, 1.5), (N1, 3), (N12, 3.5),

(p, 4), (N11, 4)}
4. DeQueue o. The distance of o is 1, which is not larger than

the distance of N2, so o is reported as the NN of q.
Queue: {(N2, 1.5), (N1, 3), (N12, 3.5), (p, 4), (N11, 4)}

Observe that the BFPNN algorithm outperforms the
conventional BF algorithm in terms of query cost (time)
through above instance. Actually, the former is better than
the latter in most cases, especially for larger dataset. In
particular, the advantages of the BFPNN algorithm
mainly involve: (i) fetch more nodes at the same time,
considering above example again, for example, the
BFPNN algorithm can access the nodes N4 through N12 in
the first step simultaneously; and (ii) prune more
unnecessary nodes, for instance, the BFPNN algorithm
discards all node entries besides N10 in the step two by
utilizing the heuristic 1 and heuristic 2. Therefore, the
BFPNN algorithm can efficiently reduce the query cost,
so as to speed up its executive process.

5. Experiments
In this section, we perform considerable experiments to
evaluate the efficiency of the proposed algorithms
(including BFPNN and FBFPNN algorithms) and
compare them against the existing parallel NN search
algorithms (e.g., CRSS), using three real datasets
(summarized in Table 5.1) and three synthetic datasets.
Specifically, three real datasets involve CA1 that contains
2-dimensional points representing geometric locations in
California, Wave 2 including the 3-dimensional
measurements of 60k wave directions at the National
Buoy Center, and Color 3 which consists of the 4-
dimensional color histograms of 65k images. Toward
above real datasets, we normalize each dimension of the
data space to range [0, 10000]. In addition, we also create
three synthetic datasets following the Uniform, Gaussian
and Zipf distributions, respectively. In particular, the
coordinates of each point in a Uniform dataset are
generated randomly in [0, 10000], whereas, for Gaussian
dataset, the coordinates are generated randomly in [5000,
250], and the coordinates of each point in a Zipf dataset
follow a Zipf distribution with a skew coefficient 0.8.
Noted that when the skew coefficient equals 1, all
numbers generated by the Zipf distribution are equivalent,
while the Zipf distribution degenerates to uniformity, as
the coefficient equals 0. With respect to all
aforementioned datasets, the coordinates of a point on
various dimensions are mutually independent in all cases.

1 CA (dataset) can be downloaded from
http://www.census.gov/geo/www/tiger.
2 Wave (dataset) can be downloaded from
http://www.ndbc.noaa.gov.
3 Color (dataset) can be downloaded from
http://www.cs.cityu.edu.hk/~taoyf/ds.html.

 CA Wave Color

Dimensionality 2 3 4
Cardinality 62k 60k 65k

Table 5.1: Statistics of the three real datasets used

Every dataset is indexed by a parallel R-tree [30]
which is distributed among multiple disks and disk
assignment straightforwardly follows the Round Robin
(RR) heuristic. Furthermore, the node size of the parallel
R-tree is fixed to 1024 bytes. Therefore, the node capacity
(i.e., the maximum number of entries in a node) equals
50, 36, 28 and 23 entries for dimensionalities 2, 3, 4, and
5, respectively. All parameters used in our experimental
assessment are presented in Table 5.2.

Parameters Description Assigned Value
Snode Node capacity 1024 bytes
dim Space dimensionality 2�5
N dataset cardinality ≥ 60k
k Number of NNs 1�81
disks Number of disks 2�10

Table 5.2: Description of all parameters in experiments

The experiments investigate the effect of the following
parameters: (i) disks, (ii) dim and (iii) N. Performance is
measured by executing workloads, each consisting of 100
queries generated as follows: the locations of the queries
are uniformly distributed in the corresponding data space.
Moreover, the reported results represent the average cost
per query for a workload with the same parameters.
Notice that the query cost is calculated as the sum of the
CPU time and I/O overhead that is computed by charging
10ms for each node access. All the experiments are
conducted on a Pentium IV 3.0 GHz CPU, 2048 Mega
bytes memory and 160 Giga disk (whose model is
“Maxtor 6Y160LO”). Furthermore, all the algorithms are
coded in C++. Additionally, since it is very difficult to
provide experimental results by modifying all parameter
values, we only choose to illustrate representative results
that shed light on the effectiveness and scalability of our
proposed algorithms. Moreover, the proposed algorithms
are only in comparison with the CRSS, because the
efficiency of the CRSS is the best among existing parallel
NN search algorithms.

The first set of experiments evaluates the number of
accessed nodes and query cost (in second) of parallel
algorithms for single NN search as a function of disks
(changing from 2 to 10) through various real and synthetic
datasets. Figures 5.1 and 5.2 illustrate these experimental
results. Furthermore, in Figure 5.2, the number above
each column indicates the percentage of I/O cost in the
total query cost. Clearly, the performance of the BFPNN
resembles that of the FBFPNN for most datasets, since the
basic ideas of both algorithms are similar and the
difference only lies in the pruning strategies (discussed in
Section 4). However, evidently, the efficiency of them
outperforms that of the CRSS, as illustrated the two

Dataset: California (CA), Objects: 62k, Dimensions: 2, k = 1

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10
Number of Disks

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es
BFPNN FBFPNN CRSS

Dataset: Wave, Objects: 60k, Dimensions: 3, k = 1

0

5

10

15

20

25

30

35

40

2 4 6 8 10
Number of Disks

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS

Dataset: Color, Objects: 65k, Dimensions: 4, k = 1

0

40

80

120

160

200

2 4 6 8 10
Number of Disks

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS

Dataset: Uniform, Objects: 256k, Dimensions: 5, k = 1

0

20

40

60

80

100

2 4 6 8 10
Number of Disks

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS

Dataset: Gaussian, Objects: 256k, Dimensions: 5, k = 1

0

100

200

300

400

500

2 4 6 8 10
Number of Disks

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS
Dataset: Zipf, Objects: 256k, Dimensions: 5, k = 1

0

40

80

120

160

200

2 4 6 8 10
Number of Disks

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS

Figure 5.1: Number of accessed nodes VS. Number of disks

D ataset: California (CA), O bjects: 62k, D im ensions: 2 , k = 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

N um ber of D isks

BFPN N
FBFPN N

CRSS

2

BFPN N
FBFPN N

CRSS

4

BFPN N
FBFPN N

CRSS

6

BFPN N
FBFPN N

CRSS

8

BFPN N
FBFPN N

CRSS

10

90%88%

91%

82%80%

82%

81%
71% 79%

79%

68% 77%
82%

65%

74%

Percentage of
the I/O cost

Dataset: Wave, Objects: 60k, Dimensions: 3, k = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

91%92%

91%

80% 80%

84%

70%72%

78%

65%66%

75%

60%

72%

61%

Dataset: Color, Objects: 65k, Dimensions: 4, k = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

92% 93%

91%

81% 82%

80%

72%73%

65%

66% 69%

72%
58%

66%

60%

Dataset: Uniform, Objects: 256k, Dimensions: 5, k = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

92%94%

91%

81% 84%

83%

73%76%

79%

66%68%

74%

60%

72%

63%

Dataset: Gaussian, Objects: 256k, Dimensions: 5, k = 1

0
0.5

1

1.5
2

2.5
3

3.5

4
4.5

5

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

92%93%

90%

80% 82%

78%

70%72%

71%

61%64%
63%

55%
61%

58%

Dataset: Zipf, Objects: 256k, Dimensions: 5, k = 1

0

0.5

1

1.5

2

2.5

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

91%92%

89%

76% 79%

77%

64%69%

70%

54%56%

62%

49%
61%

52%

Figure 5.2: Mean Query Cost (Sec) VS. Number of disks

diagrams. Specifically, as number of disks increases, the
number of accessed nodes ascends, because we simply
employ Round Robin heuristic to assign disks in our
experimental setting. This case does not guarantee that the
node entries that will be retrieved by the same query are
distributed to diverse disks in order to augment the
parallelism. Nevertheless, assuming that the node entries
are distributed into multiple disks according to the
proximity measure, which allocates all node entries
visited by the same query to the different disks, and hands
out those accessed by the distinct queries to the same disk,
such that obtaining higher parallelism (i.e., fetching more
node entries from the disks that they reside
simultaneously for per retrieval.). This is just one part of
our further work as well. Similarly, the query cost for
each workload decreases along with the ascending of the
number of disks, as the parallelism increases gradually.
Moreover, all the algorithms are I/O bounded. However,

as the number of disks grows, the CPU cost of all
demonstrating algorithms accounts for a larger fraction of
the total query cost (indicated by its decreasing with the
percentage of the I/O cost). This situation is depicted in
Figure 5.2.

The next set of experiments inspects the influence of
the dimensionality. Towards this, we deploy two synthetic
datasets including Gaussian and Zipf that contain 256k
and 512k data points (i.e., cardinality N = 256k and N =
512k) of dimensionality varying between 2 and 5,
respectively. Furthermore, the parameter “disks” is fixed
to the value 2. Figures 5.3 and 5.4 compare the number of
accessed nodes and the query cost of the BFPNN and the
FBFPNN against those of the CRSS in answering single
NN search. As expected, the performance of all
algorithms degrades because, in general, R-trees become
less efficient with the growing of dimensionality [24] (due
to the larger overlap among the MBRs at the same level).

D a ta se t: G au ss ia n , O b je c ts: 2 5 6k , D isk s: 2 , k = 1

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0

2D 3 D 4D 5 D
D im e nsio na lity

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es B F P N N
F B F P N N
C R S S

D atase t: G a ussia n , O b jec ts: 512k , D isks : 2 , k = 1

0

100

200

300

400

500

600

2D 3D 4D 5D
D im e nsion a lity

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es B F P N N
F B F P N N
C R S S

Figure 5.3: Number of accessed nodes VS. Dimensionality

D a ta s e t: G a u s s ia n , O b je c ts : 2 5 6 k , D is k s : 2 , k = 1

0
0 .5

1
1 .5

2
2 .5

3
3 .5

4
4 .5

5

D im e n s io n a l i ty

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

I /O c o s t

C P U c o s t

B F P N N
F B F P N N

C R S S

2 D

B F P N N
F B F P N N

C R S S

3 D

B F P N N
F B F P N N

C R S S

4 D

B F P N N
F B F P N N

C R S S

5 D

9 1 % 8 9 % 9 2 % 9 2 % 9 1 %
9 1 %

9 3 % 9 4 %

9 2 %

9 4 % 9 4 %

9 2 %

P e r c e n ta g e o f
th e I /O c o s t

D a ta s e t : G a u s s ia n , O b je c t s : 5 1 2 k , D is k s : 2 , k = 1

0

1

2

3

4

5

6

7

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

I / O c o s t

C P U c o s t

D i m e n s i o n a l i t y

B F P N N
F B F P N N

C R S S

2 D

B F P N N
F B F P N N

C R S S

3 D

B F P N N
F B F P N N

C R S S

4 D

B F P N N
F B F P N N

C R S S

5 D

8 9 % 9 1 % 9 1 % 9 2 % 9 2 %
9 1 %

9 3 % 9 4 %

9 2 %

9 3 % 9 4 %

9 2 %

Figure 5.4: Mean Query Cost (Sec) VS. Dimensionality

Dataset: Gaussian, Dimensions: 3, Disks: 4, k = 1

0

10

20

30

40

50

60

70

80

64k 128k 256k 512k 1024k
Cardinality

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS

Dataset: Gaussian, Dimensions: 5, Disks: 6, k = 1

0

200

400

600

800

1000

64k 128k 256k 512k 1024k
Cardinality

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es BFPNN FBFPNN CRSS

Dataset: Zipf, Dimensions: 3, Disks: 4, k = 1

0
5

10
15
20

25
30
35

40
45

64k 128k 256k 512k 1024k
Cardinality

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es

BFPNN FBFPNN CRSS

Dataset: Zipf, Dimensions: 5, Disks: 6, k = 1

0

50

100

150

200

250

300

350

400

64k 128k 256k 512k 1024k
Cardinality

M
ea

n
N

um
be

r o
f A

cc
es

se
d

N
od

es BFPNN FBFPNN CRSS

Figure 5.5: Number of accessed nodes VS. Cardinality

Dataset: Gaussian, Dimensions: 3, Disks: 4, k = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

I/O cost

CPU cost

Cardinality

BFPNN
FBFPNN

CRSS

64k

BFPNN
FBFPNN

CRSS

128k

BFPNN
FBFPNN

CRSS

256k

BFPNN
FBFPNN

CRSS

512k

BFPNN
FBFPNN

CRSS

1024k

81%82%

85%

81%81%

84%

81%81%

83%

80%81%

82%

79%

82%

79%

Percentage of
the I/O cost

Dataset: Gaussian, Dimensions: 5, Disks: 6, k = 1

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

I/O cost

CPU cost

Cardinality

BFPNN
FBFPNN

CRSS

64k

BFPNN
FBFPNN

CRSS

128k

BFPNN
FBFPNN

CRSS

256k

BFPNN
FBFPNN

CRSS

512k

BFPNN
FBFPNN

CRSS

1024k

68%71%
71% 65%68%

69%
67%70%

69% 68%70%

67%

68%

66%

71%

Dataset: Zipf, Dimensions: 3, Disks: 4, k = 1

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

I/O cost

CPU cost

Cardinality

BFPNN
FBFPNN

CRSS

64k

BFPNN
FBFPNN

CRSS

128k

BFPNN
FBFPNN

CRSS

256k

BFPNN
FBFPNN

CRSS

512k

BFPNN
FBFPNN

CRSS

1024k

82%82%84% 81%82%

85%

82%82%
86%

81%82%

84%

81%
85%

80%

Dataset: Zipf, Dimensions: 5, Disks: 6, k = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
ea

n
Q

ue
ry

 C
os

t (
Se

c)

I/O cost

CPU cost

Cardinality

BFPNN
FBFPNN

CRSS

64k

BFPNN
FBFPNN

CRSS

128k

BFPNN
FBFPNN

CRSS

256k

BFPNN
FBFPNN

CRSS

512k

BFPNN
FBFPNN

CRSS

1024k

70%73%

75%

69%71%

74%

69%72%

72%

68%70%

72%
67%

68%

69%

Figure 5.6: Mean Query Cost (Sec) VS. Cardinality

Moreover, the total query cost increases as the increasing
of the dimensionality, since the I/O cost occupies a
greater portion of the total query cost, that is, the
algorithms have to spend more time in accessing all
required node entries which act on the final outcome for
finding the NN of a given query point. However,
obviously, the efficiency of the BFPNN still exceeds that
of the CRSS. At the same time, as aforementioned set of
experiments, the performance of the BFPNN is similar to
that of the FBFPNN no matter the dimensionality is low
or high. In addition, for all the datasets, notice that all
examining algorithms show similar efficiency in low
dimensionality (e.g., 2D), but both the BFPNN and the
FBFPNN are still more effective than the CRSS in high
dimensionality (e.g., 3D, 4D, etc.).

Finally, to study the effect of the dataset cardinality, we
use 3-dimensional (5-dimensional) Gaussian and Zipf
datasets whose cardinality range alter from 64k to 1024k,
by fixing disks the values 4 and 6, respectively. Figures
5.5 and 5.6 demonstrate these experimental results of
BFPNN, FBFPNN and CRSS for single NN search as a
function of the cardinality size. Like above two sets of
experiments, the capability of the BFPNN is better than
that of the CRSS under all the cases. Furthermore, the
efficiency of both the BFPNN and the FBFPNN is similar
regardless of the size of cardinality. Specifically, as
cardinality ascends, the number of accessed nodes adds,
since algorithms need retrieve more node entries for
discovering the NN of a given query point q. Similarly,
the query cost also augments along with the growing of
the cardinality, because the algorithms have to expend

more cost to process NN retrieval. In particular, the CPU
cost of all illustrating algorithms becomes higher, as the
algorithms need access more necessary nodes which
contribute to the final answer as well for finding the NN
of q. In addition, as shown in two diagrams, the step-wise
cost growth corresponds to an increase of the magnitude
of the cardinality between 64k and 1024k. For instance,
for 3-dimensional Zipf dataset, the increment evidently
occurs at cardinality 128k and 512k, whereas the growth
obviously arises at cardinality 1024k with respect to 5-
dimensional Zipf dataset.

6. Conclusion
The NN search is one of the most important operations in
spatial databases and spatio-temporal databases.
Motivated by most existing methods for NN queries focus
on a single disk to find the NN of a given query point, the
problems of the number of accessed nodes and query cost
become severe with the increasing volume of datasets,
especially for the dataset not fitting in one disk. To
address these problems, this paper presents the first Best-
First based Parallel NN (BFPNN) query algorithm and
Full BFPNN (FBFPNN) algorithm for effective
processing of the NN retrieval, by means of parallelism
(i.e., fetching more nodes or data points from multiple
disks simultaneously) in multi-disk setting. Furthermore,
an extensive experimental comparison verifies that, in
addition to correctness, the proposed algorithms
outperform the previous techniques in terms of efficiency
and scalability under most cases, by using various real
and synthetic datasets.

In the future, some promising directions for future
work mainly include the following issues: (i) extend the
presented algorithms to support kNN queries since the
BFPNN and FBFPNN algorithms only concentrate on the
1NN search; (ii) study on diverse disk assignment
approaches to enhance parallelism during the processing
of NN retrieval; (iii) derive analytical models for
estimating the execution cost of the parallel NN search
algorithms, such that facilitating query optimization and
revealing new problem characteristics that could lead to
even faster algorithms.

Acknowledgements
This research was supported by the National High
Technology Development 863 Program of China under
Grant No. 2003AA4Z3010-03.

References
[1] Henrich, A. A Distance-Scan Algorithm for Spatial

Access Structures. In ACM GIS, 1994.
[2] Roussopoulos, N., Kelley, S., Vincent, F. Nearest

neighbor queries. In SIGMOD, 1995.
[3] Cheung, K.L., Fu, A.W.-C. Enhanced Nearest

Neighbour search on the R-tree. ACM SIGMOD
Record, 27: 16-21, 1998.

[4] Hjaltason, G.R., Samet, H. Distance Browsing in
Spatial Databases. ACM TODS, 24: 265–318, 1999.

[5] Song, Z., Roussopoulos, N. K-Nearest Neighbor
Search for Moving Query Point. In SSTD, 2001.

[6] Tao, Y., Papadias, D. Time-Parameterized Queries
in Spatio-Temporal Databases. In SIGMOD, 2002.

[7] Tao, Y., Papadias, D., Shen, Q. Continuous Nearest
Neighbor Search. In VLDB, 2002.

[8] Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis,
S. Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. In IDEAS, 2002.

[9] Iwerks, G.S., Samet, H., Smith, K. Continuous K-
Nearest Neighbor Queries for Continuously Moving
Points with Updates. In VLDB, 2003.

[10] Xiong, X., Mokbel, M.F., Aref, W.G. SEA-CNN:
Scalable Processing of Continuous K-Nearest
Neighbor Queries in Spatio-temporal Databases. In
ICDE, 2005.

[11] Papadias, D., Tao, Y., Kyriakos, M., Chun, K.H.
Aggregate Nearest Neighbor Queries in Spatial
Databases. ACM TODS, 2005. (to appear)

[12] Yiu, M.L., Mamoulis, N., Papadias, D. Aggregate
Nearest Neighbor Queries in Road Networks. TKDE,
17: 820-833, 2005.

[13] Korn, F., Muthukrishnan, S. Influence Sets Based on
Reverse Nearest Neighbor Queries. In SIGMOD,
2000.

[14] Stanoi, I., Agrawal, D., Abbadi, A. Reverse Nearest
Neighbor Queries for Dynamic Databases. In
SIGMOD Workshop DMKD, 2000.

[15] Yang, C., Lin, K-I. An Index Structure for Efficient
Reverse Nearest Neighbor Queries. In ICDE, 2001.

[16] Maheshwari, A., Vahrenhold, J., Zeh, N. On reverse
Nearest Neighbor Queries. In CCCG, 2002.

[17] Singh, A., Ferhatosmanoglu, H., Tosun, A. High
Dimensional Reverse Nearest Neighbor Queries. In
CIKM, 2003.

[18] Tao, Y., Papadias, D., Lian, X. Reverse kNN Search
in Arbitrary Dimensionality. In VLDB, 2004.

[19] Papadopoulos, A.N., Manolopoulos, Y. Similarity
Query Processing Using Disk Arrays. In SIGMOD,
1998.

[20] Guttman, A. R-trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD, 1984.

[21] Sellis, T., Roussopoulos, N., Faloutsos, C. The R+-
tree: A Dynamic Index for Multi-dimensional
Objects. In VLDB, 1987.

[22] Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. In SIGMOD,
1990.

[23] Kamel, I., Faloutsos, C. Parallel R-trees. In
SIGMOD, 1992.

[24] Theodoridis, Y., Sellis, T.K A Model for the
Prediction of R-tree Performance. In PODS, 1996.

