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Abstract 
Given a query point q, a nearest neighbor (NN) 
query retrieves the closest data point with the 
minimum distance to q in space (e.g., “find the 
nearest hotel to the airport”). It is one of the 
most important operations in spatial databases 
and spatio-temporal databases. However, most of 
existing methods for NN search only aim at a 
single disk to find the NN of q, which incur 
significant query cost (involving CPU time and 
I/O overhead) and huge number of accessed 
nodes with the increasing volume of data points. 
Motivated by these problems, in this paper, we 
present the first Best-First based Parallel NN 
(BFPNN) algorithm and Full BFPNN (FBFPNN) 
algorithm for effective processing of NN 
retrieval by means of parallelism (i.e., fetching 
more nodes or data points from multiple disks 
simultaneously) in multi-disk setting. 
Furthermore, extensive experiments verify that 
the proposed algorithms are correct, and also 
outperform the existing ones (e.g., FPSS and 
CRSS algorithms) under most cases in terms of 
effectiveness and scalability, by using various 
real and synthetic datasets. The goal is to reduce 
the query cost and alleviate I/O overhead, so as 
to facilitate the execution of the NN retrieval. 
 

1. Introduction 
Increasing applications involve intensive both data and 
computation, and require the large storage and 
manipulation of numerous traditional and non-traditional 
datasets (e.g., images, moving objects, etc.).  
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These applications mainly include GIS, CAD/CAM, 
OLAP, and so forth. They impose various requirements 
with respect to the information and the operations that 
need to be supported. Thereinto, nearest neighbor (NN) 
search is one of the most important operations from the 
database perspective. Recently, it has attracted 
considerable attention in the database community. This 
paper just focuses on this theme. 

Given a query point q and a dataset s, a NN query 
retrieves the closest data point p with smaller distance (in 
this paper we use Euclidean distance) to q than the one 
from any other data point contained in s to q in space. 
Formally, NN (q) = {p∈s�¬∃p’∈s’ such that dist (p’, 
q) < dist (p, q)}, where s’ = {s - p} and dist is a distance 
metric. For instance, in GIS, a tourist wants to find the 
nearest hotel to the airport when he/she attains a new city 
for the first time. 

In the past decade, there have been attracted great 
interests and advancements in the area of the NN 
retrieval. Most methods of the NN queries have been 
presented by the database researchers. In particular, we 
categorize them into following four types: (i) 
conventional (or stationary) NN queries [1, 2, 3, 4], (ii) 
continuous NN (CNN) queries [5, 6, 7, 8, 9, 10], (iii) 
aggregated NN (ANN) queries [11, 12], and (iv) reverse 
NN (RNN) queries [13, 14, 15, 16, 17, 18], according to 
whether the query point and data points (dataset) are fixed 
or moving. 

Most of the previous approaches for NN search can 
efficiently perform in the sequential process environment 
that only uses a single disk. In particular, various NN 
queries based on Best-First (BF) algorithm are the optimal 
ones with respect to query cost (including CPU time and 
I/O overhead) and the number of accessed nodes. 
However, with the emergence of several applications 
involving huge amounts of data (e.g., GIS, CAD/CAM, 
OLAP, etc.) that do not fit in one disk, those NN queries 
mainly aiming at a single-disk setting are poor for dealing 
with NN search in a multi-disk setting. Specifically, the 
query cost (time) of the NN search increases, such that it 
does not satisfy the requirement of the users. At the same 



time, the I/O cost is also large, which is easy to produce 
the bottleneck of I/O accesses, especially for NN queries 
in spatio-temporal databases. To address these problems, 
in this paper, we present the first Best-First based Parallel 
NN (BFPNN) query algorithm and Full BFPNN 
(FBFPNN) algorithm for effective processing of the NN 
retrieval by means of parallelism (i.e., fetching more 
nodes or data points from multiple disks simultaneously) 
in multi-disk setting. Furthermore, considerable 
experiments verify that the proposed algorithms are 
correct and outperform the existing ones (e.g., FPSS and 
CRSS algorithms [19]) under most cases in terms of 
effectiveness and scalability, by using various real and 
synthetic datasets. The goal is to improve the performance 
of the NN queries processing through parallel operation in 
multi-disk setting, so as to reduce the query cost and 
alleviate the bottleneck of the I/O accesses (mainly 
involving the number of accessed nodes). 

The rest of the paper is organized as follows. Section 2 
surveys related work on NN search involving BF 
algorithm, parallel R-tree and existing parallel algorithms 
for NN search (i.e., FPSS and CRSS algorithms). Some 
definitions and problem characteristics are studied in 
Section 3. Section 4 presents two parallel algorithms (i.e., 
BFPNN and FBFPNN) for single NN search. 
Considerable experimental evaluations of the proposed 
algorithms are discussed in Section 5. Finally, Section 6 
concludes the paper with directions for future work. 

2.   Related work 
In the sequel, we assume that the dataset is indexed by a 
parallel R-tree due to the effectiveness of this structure in 
the case of parallel processing with one processor and 
several disks attached to it. Section 2.1 briefly surveys the 
R-tree and the best-first (BF) algorithm for NN search. An 
overview of the parallel R-tree is presented in Section 2.2. 
Section 2.3 describes the previous studies on parallel 
algorithms for NN queries. 

2.1  BF algorithm for NN search using R-trees 

Among various spatial indexing structures in the 
literature, the R-tree [20] and its variants (e.g., the R+-tree 
[21], the R*-tree [22], etc.) are the most widely accepted 
and used ones. They can be thought of as extensions of B-
trees (e.g., B+-tree) in multi-dimensional space. Figure 2.1 
(a) shows a set of points {a, b, ... , l} indexed by an R-tree 
(Figure 2.1 (b)) assuming a capacity of three entries per 
node (i.e., the fanout of each node is three). In this 
example, according to the spatial proximity, 12 points are 
clustered into 4 leaf nodes {N3, N4, N5, N6} which are then 
recursively grouped into nodes N1, N2 that become the 
entries of a single root node. Each node of the tree 
corresponds to one disk page. Intermediate nodes (e.g., 
N3, N4) contain entries of the form (R, child_ptr), where R 
is the Minimum Bounding Rectangle (MBR) that encloses 
all the MBRs of its descendants and child_ptr is the 

pointer to the page where the specific child node is stored. 
Leaf entries (e.g., a, b, c) store the coordinates of data 
points and (optionally) pointers to the corresponding data 
records. 
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Figure 2.1: Example of a NN query and an R-tree 

Given a query point q and a d-dimensional dataset s, a 
NN query retrieves the point p∈s that is closest to q. In 
particular, The NN algorithms on R-trees utilize three 
bounds to prune the search space, i.e., (i) mindist (q, N), 
(ii) maxdist (q, N) and (iii) minmaxdist (q, N), where N 
denote any node in R-trees. Specifically, mindist (q, N) 
corresponds to the minimum possible distance between q 
and any point in (the subtree of) node N (e.g., mindist (q, 
N1) in Figure 2.1 (a)). Similarly, maxdist (q, N) specifies 
the maximum possible distance among all distances from 
any point in the subtree of node N to q (e.g., maxdist (q, 
N1)). And minmaxdist (q, N) gives an upper bound of the 
distance between q and its closest point in N (e.g., 
minmaxdist (q, N1)). In particular, notice that the 
derivation of minmaxdist (q, N) is based on the fact that 
each edge of the MBR of N contains at least one data 
point [2]. Hence, it also equals the smallest of the 
maximum distances from all edges of N to q. As shown in 
Figure 2.1 (a). 

Existing approaches of NN search are based on either 
Depth-First (DF) algorithm [2, 3] or Best-First (BF) 
algorithm [1, 4]. However, here only overviews the BF 
algorithm for NN retrieval due to the proposed algorithms 
in this paper based on it. 

The BF algorithm maintains a priority query (e.g., 
heap) Q containing the entries visited so far, sorted in 
ascending order of their mindist(s). BF starts from the root 
and inserts all its entries into Q together with their 
mindist(s). In Figure 2.1, for instance, BF starts by 
inserting the root entries into Q = {(N1, mindist (q, N1)), 
(N2, mindist (q, N2))}. Then, at each step, it visits the node 
in Q with the smallest mindist. Continuing the above 
example, the algorithm retrieves the content of N1 and 
inserts its entries in Q, after which Q = {N2, N4, N3}. 
Similarly, the next two nodes accessed are N2 and N6 
(inserted in Q after visiting N2) in turn, and the Q changes 
Q = {N6, N4, N5, N3} and Q = Q = {l, N4, k, j, N5, N3} 
respectively. Here, l is discovered as the first NN of q. At 
this time, BF terminates with l as the final result, since the 
next entry (N4) in Q is farther (from q) than l. In addition, 
BF uses minmaxdist and maxdist to reduce the number of 
node access during the NN search processing. 



Furthermore, it is “incremental” (i.e., reporting NNs of q 
in ascending order of their distances to q). 

2.2   The parallel R-tree 

To maximize the parallelism for large queries and engage 
as few disks as possible for small queries, Kamel and 
Faloutsos [23] proposed “Multiplexed R-tree”, which 
distributes the nodes of a traditional R-tree with cross-
disk pointers, based on a simple hardware architecture 
consisting of one processor with several disks attached to 
it. Figure 2.2, for example, shows one possible 
multiplexed R-tree corresponding to the R-tree of Figure 
2.1 (b) in Section 2.1. 
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Figure 2.2: Example of multiplexed R-tree 

The multiplexed R-tree operates exactly like a single-
disk R-tree. But the only difference is that its nodes are 
carefully distributed over multiple disks. Specifically, the 
root node (representing as thick line in Figure 2.2) is kept 
in main memory, while other nodes (e.g., N3, …, N6) are 
distributed over the two disks (i.e., disk 1 and disk 2). 
Furthermore, for multiplexed R-tree, each pointer 
contains a disk_id (denoting an identifier of one disk), in 
addition to the page_id (specifying a label of one page) of 
the traditional R-tree. In addition, [23] also presented and 
evaluated several heuristics, including Round Robin (RR), 
Minimum Area (MA), Minimum Intersection (MI) and 
Proximity Index (PI), to assign nodes to disks within the 
multiplexed R-tree framework. In this paper, however, we 
only use RR heuristic to distribute the node entries among 
multiple disks, in order to compare the efficiency of the 
proposed algorithms (including the BFPNN and the 
FBFPNN algorithms) against the existing parallel 
algorithms (i.e., CRSS) for NN queries. 

2.3   Existing parallel algorithms for NN search 

Currently, although most of existing methods of NN 
queries can be efficiently suitable for a single-disk setting, 
they have poor performance in the multi-disk 
environment. Therefore, effectively parallel NN search 
algorithms are necessary for improving the efficiency of 
the NN retrieval in the multiple disks setting. However, 
they do not attract sufficient attention in the past decade. 
To the best of our knowledge, the only parallel NN 
algorithms in the literature are the ones proposed in [19], 
which are based on various heuristics and leave some 
rooms for improvement. 

Papadopoulos and Manolopoulos [19] studied 
similarity queries (retrieving objects that are similar to a 
given query vector or query point, where similarity is 
defined by means of a distance metric) on a Redundant 

Array of Inexpensive Disks (RAID) level 0 system. In 
particular, they examined four algorithmic techniques, 
namely, (i) Branch and Bound Similarity Search (BBSS), 
(ii) Full Parallel Similarity Search (FPSS), (iii) 
Candidate Reduction Similarity Search (CRSS), and (iv) 
Weak OPTimal Similarity Search (WOPTSS). 
Specifically, The BBSS is based on a previous branch-
and-bound algorithm (e.g., DF algorithm [2]). The FPSS 
is depended on a greedy philosophy. It supposes that all 
the residual entries (after pruning per step) would 
contribute to the final answer and have to be retrieved. 
The CRSS tries to exploit parallelism to a sufficient 
degree and avoid fetching unnecessary data (i.e., not 
acting on the final result) by using a threshold distance Dth 
and the Candidate Reduction Criteria (CRC for short). 
The WOPTSS is a non-existing and hypothetical optimal 
algorithm. It is used to compare aforementioned 
algorithms involving BBSS, FPSS, and CRSS. In 
addition, from the practical perspective, [19] also reported 
that the CRSS outperforms any other proposed algorithms 
(i.e., the BBSS and the FPSS) through considerable 
experiments with real and synthetic datasets. In particular, 
it is observed that the CRSS consistently presents the best 
performance in terms of speed-up, scale-up and query 
response time in the multi-disk environment. Therefore, 
here only introduces the CRSS algorithm together with an 
illustrative example. 

The CRSS uses a threshold distance Dth and CRC to 
prune the needless nodes. Specifically, given a query 
point q, Dth, and a MBR N, the CRC includes: (i) N is 
rejected when Dth < mindist (q, N) holds, (ii) N is 
activated if Dth ≥ minmaxdist (q, N) satisfies, and (iii) N is 
saved for possible future reference when both Dth ≥ 
mindist (q, N) and Dth < minmaxdist (q, N) meet. Clearly, 
the CRSS need some auxiliary data structures in order for 
it to effective work. In particular, it mainly utilizes three 
auxiliary structures: (i) activation structure, which stores 
the pointers to the nodes that are going to be fetched in 
the next step; (ii) fetch structure, which holds the newly 
fetched nodes in order to deal with them further; and (iii) 
candidate structure, which maintains the candidate nodes 
that have neither been accessed nor been rejected yet. 
Figure 2.3 (a), for instance, shows a set of points {a, b, ..., 
u} indexed by an R-tree (illustrated in Figure 2.3 (b)) 
assuming a capacity of three entries per node. 
Furthermore, nodes are numbered from N1 to N12. Here, 
given a query point q, let us trace the execution of the 
CRSS for a simple query requiring the NN of q (i.e., k = 
1). The process of the algorithm is described as follows: 

The CRSS algorithm starts from the root where the 
MBRs N1, N2 and N3 reside (see Figure 2.3). According to 
the first threshold distance Dth and the CRC, N2 and N3 are 
activated immediately, and the pointers to N2 and N3 are 
stored in the activation structure; whereas N1 is 
considered as a possible candidate node and pushed into 
the Candidate Stack (CS for short). Note that the 
candidates are inserted into the CS in decreasing order 



with respect to the mindist(s) from q (i.e., mindist (q, N3)). 
This case is depicted in Figure 2.4 (a), where the shaded 
boxes indicate guard entries that can be used to separate 
two different candidate nodes, and the letters (involving 
“I”, “S”, “R” and “C”) specify inspected nodes, selected 
nodes, rejected nodes and saved candidate nodes, 
respectively. After updating the CS, N2 and N3 can be 
ready to fetch from the disks that they reside. It must be 
noted that the requirements of fetching operation can be 
performed in parallel way assuming that these nodes (i.e., 
N2 and N3) store in different disks. 
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Figure 2.3: Example of a CRSS algorithm and an R-tree 

Similarly, in the next stage, nodes N7 through N12 are 
inspected. As a result, N8, N9 and N10 are activated 
immediately; N11 and N12 are regarded as two possible 
candidate nodes; while N7 is rejected. Here, the status of 
the CS in this situation is shown in Figure 2.4 (b). 

The following step includes the access of the nodes 
N8, N9 and N10. This is the first time that real data objects 
contribute to the formulation of the upper bound to the k-
th (here k = 1) NN during the running of the CRSS. So, 
the best one out of seven objects (i.e., o) are selected and 
the threshold distance Dth is updated accordingly (i.e., D’th 
insteads of Dth). Then, the first candidate nodes consisting 
of N11 and N12 are popped from the CS and investigated. 
As a consequence, they can be safely rejected by means of 
comparing mindist (q, N11) and mindist (q, N12) against the 
D’th. The current case is illustrated in Figure 2.4 (c). Here 
still contains N1 in the CS. Therefore, N1 is popped from 
the stack and can be also safely discarded due to D’th < 
mindist (q, N1). Now, the CRSS has been terminated, the 
NN of q has been determined (i.e., o) and Dth = mindist (q, 
k) as well. 
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Figure 2.4: Illustration of the first three steps of CRSS 

3.   Definitions and problem characteristics 
The objective of a NN query is to retrieve the closest data 
point of a given query point q. For example, the NN of q 
in the aforementioned Figure 2.1 is l, which has the 
smallest distance to q among all the distances of nodes 
(contained in the Figure 2.1) from q. In this section, we 
present some definitions and study several problem 
characteristics in order to derive our proposed algorithms 
(including the BFPNN and the FBFPNN) discussed 
detailedly in the Section 4 of the paper. First of all, Table 
3.1 describes various symbols used in the following 
definitions for facilitating presentations. 

Symbol Description 
q A given query point 
s A dataset 
Dn A Euclidean distance in n-dimensional space 
p The nearest neighbor of q 

N A set of nodes (involving leaf nodes and 
intermediate nodes) 

Np A node containing p, and Np∈N 
NDmindist A node with the minimum mindist to q in N 
NDminmaxdist A node with the smallest minmaxdist to q in N 
NDmaxdist A node with the minimal maxdist to q in N 

Table 3.1: Symbols and descriptions used in definitions 

Definition 1 (distance of the NN from q): The distance 
Dn (q, p) between q and p is defined as follows: Dn (q, p) = 
{Dn��∃Dn (q, p’) < Dn (q, p)}, where p’∈{s - p} and 
p∈s. 

Definition 2 (consistency): Let p∈Np (Np∈N) indicates 
the fact that the point p is exactly contained in the node 
Np, then the following inequality holds: Dn (q, Np) ≤ Dn (q, 
p). 

Definition 3 (minimum mindist): Let Dmindist be the 
minimum mindist among all mindist(s) between q and 
node(s) in N. Then, the Dmindist can be formulated as 
follows: Dmindist = {mindist�� ∃ mindist (q, N’) < 
mindist (q, NDmindist)}, where N’ {N – N∈ Dmindist} and 
NDmindist∈N. 

Definition 4 (minimum minmaxdist): Let Dminmaxdist 
be the smallest minmaxdist within all minmaxdist(s) from 
q to node(s) in N. Then, the formal definition of the 
Dminmaxdist is: Dminmaxdist = {minmaxdist � �
∃ minmaxdist (q, N’) < minmaxdist (q, NDminmaxdist)}, in 
which N’∈{N – NDminmaxdist} and NDminmaxdist∈N. 

Definition 5 (minimum maxdist): Let Dmaxdist be the 
minimal maxdist among all maxdist(s) to q in N. Then, the 
formalization of the Dmaxdist is described as follows: 
Dmaxdist = {maxdist��∃maxdist (q, N’) < maxdist (q, 
NDmaxdist)}, where N’∈{N – NDmaxdist} and NDmaxdist∈N. 

Figure 3.1 shows an example of above four distance 
metrics, that is, (i) distance of the NN from q (i.e., Dn (q, 
g) , as g is the NN of q), (ii) Dmindist (equals mindist (q, 
N10), which is the smallest mindist among all mindist(s) 



between a given query point q and a set of leaf nodes N 
(involving nodes N4 through N12), similarly, (iii) 
Dminmaxdist (equals minmaxdist (q, N6)), and (iv) 
Dmaxdist (equals maxdist (q, N6)). On the other hand, 
carefully considering these definitions, we can derive and 
prove the following lemmas as well: 

q

b c

d

e

i

h m

k
n

l

N3
p

o

t

r

s

N2

N1N4

N5

N6

N7

N8

N9

N10

N11

N12

a

f

g

j uDmindist = mindist(q, N10)
Dminmaxdist = minmaxdist(q, N6)

Dn(q, g)

Circle 1 Circle 2

The NN
of q

Direction 3 of
NN search

Direction 1 of
NN search

Direction 2 of
NN search

Search region

Dmaxdist = maxdist(q, N6)

 
Figure 3.1: Example of four distance metrics 

Lemma 1: According to the definitions of three distance 
metrics (i.e., Dn (q, p), Dmindist and Dminmaxdist), the 
following inequality holds: Dmindist ≤  Dn (q, p) ≤ 
Dminmaxdist. 

Proof. (Sketch)  In the first place, we prove the left side 
of the inequality in Lemma 1, i.e., Dmindist ≤ Dn (q, p). 
According to the Definition 2, the distance from a given 
query point q to its nearest neighbor p is not smaller than 
the distance between q and the node Np containing p. So, 
Dn (q, Np) ≤ Dn (q, p) holds. Similary, by Definition 3, 
Dmindist is the smallest mindist between q and a set of 
nodes N and Np∈N. Hence, Dmindist ≤ Dn (q, Np) holds. 
Associating above two inequalities, i.e., Dn (q, Np) ≤ Dn (q, 
p) and Dmindist ≤ Dn (q, Np), the inequality Dmindist ≤ Dn 
(q, p) is accurate. 

As for the proof of the right side of the Lemma 1 (i.e., 
Dn (q, p) ≤ Dminmaxdist), we assume, to the contrary, that 
the inequality Dn (q, p) � Dminmaxdist holds. Clearly, 
according to the definition of minmaxdist, which offers an 
upper bound on the actual distance of object (point) to q, 
there exists another data point o whose distance from q 
meets following inequality: minmaxdist ≥ Dn (q, o). At the 
same time, Dminmaxdist ≥ Dn (q, o) holds as well because 
the Dminmaxdist is the minimum minmaxdist among all 
nodes enclosed in N to q by the Definition 4. Hence, 
combining two inequalities, i.e., Dn (q, p) � Dminmaxdist 
and Dminmaxdist ≥ Dn (q, o), we can get the inequality: 
Dn (q, p) � Dn (q, o). However, because the data point p is 
the NN of q, we can also get another inequality: Dn (q, p) 
� Dn (q, o) in terms of the Definition 1, which contradicts 
the derived inequality: Dn (q, p) � Dn (q, o). Therefore, we 
can conclude that the inequality, i.e., Dn (q, p) ≤ 
Dminmaxdist, holds. 

Thus, combining two parts of the above proof, we can 
determine the Lemma 1 is accurate. ■ 

Lemma 2: According to the definitions of three distance 
metrics (i.e., Dn (q, p), Dmindist and Dmaxdist), the 

following inequality satisfies: Dmindist ≤  Dn (q, p) < 
Dmaxdist. 

Proof. (Omitted)  We omit the description of this proof 
of the Lemma 2 due to the proof method is the same as 
that of the Lemma 1. ■ 

As pointed out in Figure 3.1. Specifically, we can get four 
distance metrics, that is, the distance of the NN q (equals 
Dn (q, g)), Dmindist (equals mindist (q, N10)), 
Dminmaxdist (equals minmaxdist (q, N6)) and Dmaxdist 
(equals maxdist (q, N6)), which are denoted by solid lines 
together with arrows. Evidently, these distances satisfy 
above Lemma 1 and Lemma 2. In other words, the 
following two inequalities, i.e., mindist (q, N10) < Dn (q, g) 
< minmaxdist (q, N6) and mindist (q, N10) < Dn (q, g) < 
maxdist (q, N6), hold. 

At the same time, we can also know that the NN of q 
distributes between Dmindist and Dminmaxdist. 
Continuing the above example, for instance, in Figure 3.1, 
the NN of q (i.e., g) distributes at the area of between 
circle 1 and circle 2 (representing as the shaded area, 
called search region), which centred at q with radius 
Dmindist (i.e., mindist (q, N10)) and Dminmaxdist (i.e., 
minmaxdist (q, N6)), respectively. It must be noted that the 
NN of q lies in between Dmindist and Dmaxdist as well, 
because the Dmaxdist is not smaller than the 
Dminmaxdist. Here, a problem arises, i.e., how to find the 
NN of q as quick as possible. Intuitively, assuming that 
the direction of the NN search is unique during the 
processing of the NN queries, three search strategies can 
be used to quickly discovery the NN of q, that is, (i) from 
circle 1 to circle 2, (ii) from intermediate to the sides of 
circle 1 and those of circle 2, and (iii) from circle 2 to 
circle 1. Figure 3.1 also shows these three directions of 
the NN search that are illustrated by dashed arrows. 
However, which one is the best choice among them? The 
following analysis answers this issue. 

Let T be the total time of retrieving search region, Tm 
be the time of searching area between the side of circle 1 
and that of circle which falls into the search region. There 
are following three cases together with analysis of their 
search time: 

Case 1: Following strategy 1 for searching the NN of q. 
The best situation is that the NN of q just distributes on 
the side of circle 1. Hence, algorithm can immediately 
find the NN of q. On the contrary, as the NN of q just falls 
on the side of circle 2, the algorithm need cost T time to 
discovery the NN of q, which is also just the worst case. 
Nevertheless, note that above worst situation little occurs 
in real life, since it depends on a particular configuration 
of both data objects and query object. Therefore, we can 
get the time range [0, T] towards the NN search algorithm 
that follows the strategy 1 for retrieving the NN of q. 
Furthermore, the average search time of this case is T/2. 

Case 2: Finding the NN of q according to the strategy 2. 
As the analysis of the case 1, we can derive the time range 



[Tm, T] concerning the algorithm for NN search which 
follows the strategy 2 to get the NN of q. Moreover, the 
mean search time of this case is (Tm + T)/2. 

Case 3: Discovering the NN of q by the strategy 3. 
Similarly, we can also get the time range [T, T], and the 
average search time of this case is T. 

To summarize above discussion, we use the first search 
strategy (i.e., retrieving the NN of q from circle 1 to circle 
2) in the proposed algorithms to obtain the NN of q as 
soon as possible, since its cost is smaller than that of other 
search strategies. 

4.   BFPNN and FBFPNN algorithms 
Section 4.1 introduces several pruning strategies which 
permit the development of efficient algorithm presented in 
Section 4.2. Section 4.3 gives an illustrative example for 
simulating the execution of the BFPNN algorithm and 
analyzes its performance with respect to BF algorithm for 
NN search. 

4.1   Pruning strategies 

Like the BF algorithm discussed in Section 2, BFPNN 
and FBFPNN algorithms also employ branch-and-bound 
techniques to prune the search space. Specifically, 
starting from the root, the parallel R-tree is traversed by 
using the following principles: (i) when a leaf entry (i.e., a 
data point) p is encountered, the NN of a given query 
point q is found if p contains the minimum distance to q; 
(ii) for an intermediate entry, algorithms visit its subtree 
only if it may enclose any qualifying data points, which 
contribute to the final answer. The advantage of this 
solution over exhaustive scan is that it avoids accessing 
unnecessary nodes, which do not act on the final result. In 
the sequel, we present several heuristics for pruning these 
needless nodes. 

According to the Lemma 1 discussed in Section 3, we 
can formulate the following strategies to prune node 
entries during processing of the NN retrieval: 

Heuristic 1: Given a query point q, a node entry E with 
mindist (q, E) greater than Dminmaxdist can be safely 
discarded since it can not contain the NN of q (according 
to the Lemma 1). 

In Figure 3.1, for instance, the node entries (i.e., N4, N5, 
N7, N11 and N12) can be quickly pruned in the phase of the 
NN search processing, because their distances (i.e., 
mindist(s)) to q are larger than Dminmaxdist (equals 
minmaxdist (q, N6)), which is the smallest minmaxdist 
among all node entries (involving N4 through N12),     but 
the algorithms need visit those node entries (i.e., N6, N8, 
N9 and N10) intersecting with the search region that lies in 
between circle 1 and circle 2 centered at q with radius 
Dmindist and Dminmaxdist, respectively. Applying the 
heuristic 1, the algorithm can avoid accessing unnecessary 

node (e.g., N4, N5, etc.), leading to quickly finding the NN 
of q. 

Heuristic 2: Given a query point q, if an actual distance 
from q to a data point p is larger than Dminmaxdist, then 
it can be safely pruned because p can not be the NN of q 
(by the Lemma 1). 

As known that N6, N8, N9 and N10 need to be retrieved in 
the phase of NN search depending on the heuristic 1. 
Therefore, continuing above example, applying the 
heuristic 2 again within those qualifying node entries (i.e., 
N6, N8, N9 and N10), the data points (i.e., f, j, k, m, o and p) 
contained in Figure 3.1 do not have to be accessed during 
the processing of the NN search, since their actual 
distances from q are also bigger than Dminmaxdist. 
However, algorithms need retrieve those data points (i.e., 
g, l and n) which fall into the search region until finding 
the NN of q (i.e., g). Therefore, the algorithms can reduce 
the amount of accessed nodes and speed up their 
execution through using the heuristic 2 as well. 

Similarly, we can derive other two strategies for 
pruning the unnecessary node entries during the 
processing of the NN retrieval in terms of the Lemma 2 
described in the Section 3: 

Heuristic 3: Given a query point q, a node entry E that 
satisfies the inequality mindist (q, E) > Dmaxdist can be 
safely discarded since it can not enclose the NN of q 
(relying on the Lemma 2). 

Heuristic 4: Given a query point q, if an actual distance 
between q and a data point p is bigger than Dmaxdist, 
then it can be safely pruned because p is not the NN of q 
(on the basis of the Lemma 2). 

To summarize aforementioned discussion, the proposed 
algorithms in this paper can not only avoid retrieving non-
qualifying nodes (i.e., unnecessary nodes) so that they can 
find the NN of q as soon as possible, but also reduce the 
number of accessed nodes and speed up their executions 
as well, by employing the heuristic 1 through the heuristic 
4. 

4.2   Algorithms 

This subsection presents the first Best-First based Parallel 
Nearest Neighbor (BFPNN for short) search algorithm 
and Full BFPNN (FBFPNN for short) algorithm for NN 
queries in spatial databases, associating with above four 
pruning strategies. 

Specifically, the proposed BFPNN algorithm 
implements an ordered best first traversal. It begins with 
the parallel R-tree root node and proceeds down the tree. 
First of all, algorithm inserts all entries in the root node 
into their corresponding priority queues (e.g., heaps) that 
they reside, and records current minimum minmaxdist 
(i.e., Dminmaxdist) within all entries for pruning 
unnecessary node entries in sequel. Then algorithm 



iterates until either all queues for M disks (assuming that 
the number of disks is M) are empty or the algorithm 
finds the NN of a given query point q: Each iteration, 
algorithm applies heuristic 1 and heuristic 2 to discard 
useless node entries firstly. Then it finds the entry E with 
the minimum distance to q among all queues by parallel 
process. In practical implementation, algorithm gets all 
entries EHi(s) at the head of each priority queue firstly 
suppose that EHi(s) is (are) maintained in ascending order 
with respect to its (their) mindist(s). Next it finds the entry 
E with the smallest distance to q among EHi(s). Here, E 
has two possibilities, that is (i) E is an data object, then 
algorithm reports it as the NN of q and terminates the 
algorithm; otherwise (ii) E is an intermediate node entry, 
then algorithm deals with M disks in parallel way as 
follows: if each queue Qi is not empty and at the head of 
Qi is not a data object, then algorithm dequeues Qi and 
enqueues all entries of it into corresponding queues that 
they store. Furthermore, algorithm also records and 
updates the current value of Dminmaxdist, when it is 
smaller than its old value, such that the algorithm can 
discard more node entries that do not contain any 
qualifying data point (in other words, not contributing to 
the final answer) in the next iteration. 

To summarize aforementioned description of the 
BFPNN algorithm, Figure 4.1 presents the pseudo-code 
description of a BFPNN algorithm. In particular, the 
inputs of the BFPNN algorithm involve a given query 
point q, parallel R-tree indexing structure, and the number 
of disks M; at the same time, its output is the NN of q. 
Specifically, line 1 constructs and initializes priority 
queues for M disks. Line 7 applies heuristics 1 and 2 (see 
section 4.1) to prune all unnecessary node entries. In line 
10, the NN of q is reported. At that point, some other 
routines (e.g., a query engine) can take control, possibly 
resuming the algorithm at a later time to get the next NN 
of q, or alternately terminating it if no more NNs of q are 
desired. From line 20 to line 21, the value of Dminmaxdist 
is updated, such that it consistently maintains the 
minimum minmaxdist distance from q. In addition, it must 
be noted that the line 13 through line 21 can be performed 
by means of parallel process. 
 
BFPNN (QueryObject q, Parallel R-tree, M) 
/* M is the total number of disks; Dminmax denotes the minimal 
minmaxdist among all minmaxdists from q to data points; Q1, 
Q2,…, and QM are maintained in ascending order with respect to 
mindist; Temp_Dminmax stores temporal value of Dminmax; 
FindDisk (E) return the identifier of disk residing entry E; First 
(Qi) return the head entry in queue Qi; Dist (q, E) calculates the 
mindist between q and E. */ 
1. Construct and initialize M priority queues; 
2. For each entry E in the root node 
3.     i = FindDisk (E); 
4.     EnQueue (Qi, E, Dist (q, E)); 
5.     Dminmax = minimum minmaxdist of all entries; 
6. While existing queue (s) is (are) not empty 
7.     Prune all entries for each queue according to the  

heuristics 1 and 2; 
8.     Find the entry Emin with the minimum distance from q 

in all queue (s); 
9.     If Emin is an data object then 
10.         Report the data object as the NN of q; 
11.         Return; 
12.     Else    // Emin is an intermediate node. 
13.         For i = 1 to M parallel do 
14.             If not IsEmpty (Qi) and First (Qi) is not an data 

object then 
15.                 Ni = DeQueue (Qi); 
16.                 For each entry E in Ni 
17.                     j = FindDisk (E); 
18.                     EnQueue (Qj, E, Dist (q, E)); 
19.                     Temp_Dminmax = minimal minmaxdist in 

all entries; 
20.                 If Temp_Dminmax < Dminmax then 
21.                     Dminmax = Temp_Dminmax; 
22. Enddo 
End BFPNN 

Figure 4.1: Pseudo-code of a BFPNN algorithm 

As a matter of fact, the FBFPNN exactly like the BFPNN. 
Figure 4.2 proposes the pseudo-code description of a 
FBFPNN algorithm as well. Notice that most of the 
pseudo-code presentations of the FBFPNN algorithm are 
the same as above those of the BFPNN algorithm. 
However, the differences between them are discussed as 
follows: (i) the former (i.e., FBFPNN algorithm) employs 
heuristics 3 and 4 (see line 7 in Figure 4.2) for pruning all 
unnecessary node entries, while the latter (i.e., BFPNN 
algorithm) applies heuristics 1 and 2 (see line 7 in Figure 
4.1) to discard all needless ones during the NN search 
processing; and (ii) for FBFPNN algorithm, the value of 
Dmaxdist is renovated from line 20 to line 21 in Figure 
4.2, thus it always keeps the smallest maxdist distance to 
q, whereas towards BFPNN algorithm, the value of 
Dminmaxdist is updated in line 20 through line 21 of the 
Figure 4.1, such that it consistently maintains the 
minimum minmaxdist distance from q. 
 
FBFPNN (QueryObject q, Parallel R-tree, M) 
/* Dmax denotes the minimal maxdist among all maxdist(s) from 
q to data points; Temp_Dmax stores temporal value of Dmax. */ 
1. Construct and initialize M priority queues; 
2. For each entry E in the root node  
3.     i = FindDisk (E); 
4.     EnQueue (Qi, E, Dist (q, E)); 
5.     Dmax = minimum maxdist of all entries; 
6. While existing queue (s) is (are) not empty 
7.     Prune all entries for each queue according to the 

heuristics 3 and 4; 
8.     Find the entry Emin with the minimum distance  

from q in all queue (s); 
9.     If Emin is an data object then 
10.         Report the data object as the NN of q; 
11.         Return; 
12.     Else    // Emin is an intermediate node. 



13.         For i = 1 to M parallel do 
14.             If not IsEmpty (Qi) and First (Qi) is not an  

data object then 
15.                 Ni = DeQueue (Qi); 
16.                 For each entry E in Ni 
17.                     j = FindDisk (E); 
18.                     EnQueue (Qj, E, Dist (q, E)); 
19.                     Temp_Dmax = minimal maxdist in all entries; 
20.                 If Temp_Dmax < Dmax then 
21.                     Dmax = Temp_Dmax; 
22. Enddo 
End FBFPNN 

Figure 4.2: Pseudo-code of a FBFPNN algorithm 

4.3   Discussion 

This subsection only gives an illustrative example to 
simulate the execution of the BFPNN algorithm for NN 
search, and omits that of the FBFPNN algorithm, since 
the runnings of both algorithms are similar. Secondly, we 
compare the efficiency of the BFPNN algorithm with 
traditional BF algorithm. However, further performances 
(e.g., mean number of accessed nodes, mean query cost 
(time), etc.) of the both BFPNN and FBFPNN algorithms 
with respect to existing parallel NN search algorithms are 
systematically examined in the Section 5 of this paper. 
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Figure 4.3: The parallel R-tree for Figure 2.3 (a) 

Consider, for instance, Figure 2.3 (a), where shows a 
set of points {a, b, ..., u} indexed by a parallel R-tree 
(illustrated in Figure 4.3) assuming a capacity of three 
entries per node (i.e., the fanout of each node is three). As 
an example, suppose that here wants to find the NN of a 
given query point q in the parallel R-tree, where nodes are 
numbered from N1 to N12; the symbols d1, d2, d3 in each 
entry indicates disk 1, disk 2 and disk 3, respectively; the 
one two digits (e.g., 3/6.5, 1.5/3.5, etc.) for per entry 
within level 1 and level 2 refer to the mindist and 
minmaxdist to q respectively (for intermediate entries), 
whereas the number (e.g., 11.5, 10, etc.) for each entry 
within level 0 specifies the actual distance to q (for data 
objects). It must be noted that these numbers are not 
stored previously, while computed dynamically during the 
NN search processing. Below, we show the steps of the 
execution of the BFPNN algorithm together with the 
contents of each priority queue (representing as Q1, Q2 
and Q3 in this example) and the values of some 
parameters (e.g., Dminmax, Emin, Temp_Dminmax, etc.). 
In addition, notice that all entries within each priority 
queue are listed in ascending order with respect to mindist 
to q. The BFPNN algorithm starts by enqueuing the root 

node in parallel way, after which it performs the 
following steps: 

1. EnQueue (Q1, N1, 3), EnQueue (Q2, N2, 1.5), EnQueue 
(Q3, N3, 1). 
Dminmax = minmaxdist (q, N2) = 3.5, 
Emin = Dist (q, N3) = 1. 
DeQueue (Q1, N1),  
EnQueue (Q1, N4, 8.5), EnQueue (Q2, N5, 6.5), 
EnQueue (Q3, N6, 3); 
DeQueue (Q2, N2),  
EnQueue (Q1, N7, 7), EnQueue (Q2, N8, 3),  
EnQueue (Q3, N9, 2.5); 
DeQueue (Q3, N3),  
EnQueue (Q1, N10, 1), EnQueue (Q2, N11, 4),  
EnQueue (Q3, N12, 3.5). 
Queues:  Q1: {(N10, 1), (N7, 7), (N4, 8.5)},  

Q2: {(N8, 3), (N11, 4), (N5, 6.5)},  
Q3: {(N9, 2.5), (N6, 3), (N12, 3.5)}. 

Temp_Dminmax = minmaxdist (q, N10) = 2, 
Update Dminmax = Temp_Dminmax  

= minmaxdist (q, N10) = 2. 
2. Prune N7 and N4 from Q1 since their mindist(s) (equals 7 

and 8.5, respectively) are greater than Dminmax (equals 
2); 
Discard N8, N11 and N5 from Q2 because their mindist(s) 
(equals 3, 4 and 6.5, respectively) are larger than Dminmax 
(equals 2); 
Prune N9, N6 and N12 from Q3 as their mindist(s) (equals 
2.5, 3 and 3.5, respectively) are bigger than Dminmax 
(equals 2). 
Emin = Dist (q, N10) = 1. 
DeQueue (Q1, N10), EnQueue (Q1, o, 1), 
EnQueue (Q2, p, 4). 
Queues: Q1: {(o, 1)}, Q2: {(p, 4)}, Q3: empty. 
Do not update Dminmax since current Temp_Dminmax 
(equals 2) is not smaller than old Dminmax (equals 2). 

3. Prune p from Q2 as its mindist (equals 4) is larger than 
Dminmax (equals 2). 
Emin = Dist (q, o) = 1 

Report o is the NN of q. 
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Figure 4.4: The R-tree for Figure 2.3 (a) 

Continuing above example, suppose that we also use 
traditional BF algorithm (i.e., incremental NN algorithm) 
to find the NN of q in the R-tree shown in Figure 4.4, 
where the meanings of the number in each entry are as the 
same as above Figure 4.3. The BF algorithm begins with 
by enqueuing the root node, after which it executes the 
following steps: 

1. DeQueue Root, EnQueue N1, N2 and N3. 
Queue: {(N3, 1), (N2, 1.5), (N1, 3)} 

2. DeQueue N3, EnQueue N10, N11 and N12. 
Queue: {(N10, 1), (N2, 1.5), (N1, 3), (N12, 3.5), (N11, 4)} 



3. DeQueue N10, EnQueue o and p. 
Queue: {(o, 1), (N2, 1.5), (N1, 3), (N12, 3.5),  

(p, 4), (N11, 4)} 
4. DeQueue o. The distance of o is 1, which is not larger than 

the distance of N2, so o is reported as the NN of q. 
Queue: {(N2, 1.5), (N1, 3), (N12, 3.5), (p, 4), (N11, 4)} 

Observe that the BFPNN algorithm outperforms the 
conventional BF algorithm in terms of query cost (time) 
through above instance. Actually, the former is better than 
the latter in most cases, especially for larger dataset. In 
particular, the advantages of the BFPNN algorithm 
mainly involve: (i) fetch more nodes at the same time, 
considering above example again, for example, the 
BFPNN algorithm can access the nodes N4 through N12 in 
the first step simultaneously; and (ii) prune more 
unnecessary nodes, for instance, the BFPNN algorithm 
discards all node entries besides N10 in the step two by 
utilizing the heuristic 1 and heuristic 2. Therefore, the 
BFPNN algorithm can efficiently reduce the query cost, 
so as to speed up its executive process. 

5.   Experiments 
In this section, we perform considerable experiments to 
evaluate the efficiency of the proposed algorithms 
(including BFPNN and FBFPNN algorithms) and 
compare them against the existing parallel NN search 
algorithms (e.g., CRSS), using three real datasets 
(summarized in Table 5.1) and three synthetic datasets. 
Specifically, three real datasets involve CA1 that contains 
2-dimensional points representing geometric locations in 
California, Wave 2  including the 3-dimensional 
measurements of 60k wave directions at the National 
Buoy Center, and Color 3  which consists of the 4-
dimensional color histograms of 65k images. Toward 
above real datasets, we normalize each dimension of the 
data space to range [0, 10000]. In addition, we also create 
three synthetic datasets following the Uniform, Gaussian 
and Zipf distributions, respectively. In particular, the 
coordinates of each point in a Uniform dataset are 
generated randomly in [0, 10000], whereas, for Gaussian 
dataset, the coordinates are generated randomly in [5000, 
250], and the coordinates of each point in a Zipf dataset 
follow a Zipf distribution with a skew coefficient 0.8. 
Noted that when the skew coefficient equals 1, all 
numbers generated by the Zipf distribution are equivalent, 
while the Zipf distribution degenerates to uniformity, as 
the coefficient equals 0. With respect to all 
aforementioned datasets, the coordinates of a point on 
various dimensions are mutually independent in all cases. 

                                                           
1 CA (dataset) can be downloaded from 
http://www.census.gov/geo/www/tiger.  
2 Wave (dataset) can be downloaded from 
http://www.ndbc.noaa.gov. 
3 Color (dataset) can be downloaded from 
http://www.cs.cityu.edu.hk/~taoyf/ds.html. 

 
 CA Wave Color 

Dimensionality 2 3 4 
Cardinality 62k 60k 65k 

Table 5.1: Statistics of the three real datasets used 

Every dataset is indexed by a parallel R-tree [30] 
which is distributed among multiple disks and disk 
assignment straightforwardly follows the Round Robin 
(RR) heuristic. Furthermore, the node size of the parallel 
R-tree is fixed to 1024 bytes. Therefore, the node capacity 
(i.e., the maximum number of entries in a node) equals 
50, 36, 28 and 23 entries for dimensionalities 2, 3, 4, and 
5, respectively. All parameters used in our experimental 
assessment are presented in Table 5.2. 

Parameters Description Assigned Value 
Snode Node capacity 1024 bytes 
dim Space dimensionality  2�5 
N dataset cardinality ≥ 60k 
k Number of NNs 1�81 
disks Number of disks 2�10 

Table 5.2: Description of all parameters in experiments 

The experiments investigate the effect of the following 
parameters: (i) disks, (ii) dim and (iii) N. Performance is 
measured by executing workloads, each consisting of 100 
queries generated as follows: the locations of the queries 
are uniformly distributed in the corresponding data space. 
Moreover, the reported results represent the average cost 
per query for a workload with the same parameters. 
Notice that the query cost is calculated as the sum of the 
CPU time and I/O overhead that is computed by charging 
10ms for each node access. All the experiments are 
conducted on a Pentium IV 3.0 GHz CPU, 2048 Mega 
bytes memory and 160 Giga disk (whose model is 
“Maxtor 6Y160LO”). Furthermore, all the algorithms are 
coded in C++. Additionally, since it is very difficult to 
provide experimental results by modifying all parameter 
values, we only choose to illustrate representative results 
that shed light on the effectiveness and scalability of our 
proposed algorithms. Moreover, the proposed algorithms 
are only in comparison with the CRSS, because the 
efficiency of the CRSS is the best among existing parallel 
NN search algorithms. 

The first set of experiments evaluates the number of 
accessed nodes and query cost (in second) of parallel 
algorithms for single NN search as a function of disks 
(changing from 2 to 10) through various real and synthetic 
datasets. Figures 5.1 and 5.2 illustrate these experimental 
results. Furthermore, in Figure 5.2, the number above 
each column indicates the percentage of I/O cost in the 
total query cost. Clearly, the performance of the BFPNN 
resembles that of the FBFPNN for most datasets, since the 
basic ideas of both algorithms are similar and the 
difference only lies in the pruning strategies (discussed in 
Section 4). However, evidently, the efficiency of them 
outperforms that of the CRSS, as illustrated the two



Dataset: California (CA), Objects: 62k, Dimensions: 2, k = 1
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Dataset: Wave, Objects: 60k, Dimensions: 3, k = 1
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Dataset: Color, Objects: 65k, Dimensions: 4, k = 1
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Dataset: Uniform, Objects: 256k, Dimensions: 5, k = 1
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Dataset: Gaussian, Objects: 256k, Dimensions: 5, k = 1
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Dataset: Zipf, Objects: 256k, Dimensions: 5, k = 1
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Figure 5.1: Number of accessed nodes VS. Number of disks 
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Dataset: Wave, Objects: 60k, Dimensions: 3, k = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n 
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

91%92%

91%

80% 80%

84%

70%72%

78%

65%66%

75%

60%

72%

61%

 

Dataset: Color, Objects: 65k, Dimensions: 4, k = 1
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Dataset: Uniform, Objects: 256k, Dimensions: 5, k = 1
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Dataset: Gaussian, Objects: 256k, Dimensions: 5, k = 1
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Dataset: Zipf, Objects: 256k, Dimensions: 5, k = 1

0

0.5

1

1.5

2

2.5

M
ea

n 
Q

ue
ry

 C
os

t (
Se

c)

CPU cost I/O cost

Number of Disks

BFPNN
FBFPNN

CRSS

2

BFPNN
FBFPNN

CRSS

4

BFPNN
FBFPNN

CRSS

6

BFPNN
FBFPNN

CRSS

8

BFPNN
FBFPNN

CRSS

10

91%92%

89%

76% 79%

77%

64%69%

70%

54%56%

62%

49%
61%

52%

Figure 5.2: Mean Query Cost (Sec) VS. Number of disks 

diagrams. Specifically, as number of disks increases, the 
number of accessed nodes ascends, because we simply 
employ Round Robin heuristic to assign disks in our 
experimental setting. This case does not guarantee that the 
node entries that will be retrieved by the same query are 
distributed to diverse disks in order to augment the 
parallelism. Nevertheless, assuming that the node entries 
are distributed into multiple disks according to the 
proximity measure, which allocates all node entries 
visited by the same query to the different disks, and hands 
out those accessed by the distinct queries to the same disk, 
such that obtaining higher parallelism (i.e., fetching more 
node entries from the disks that they reside 
simultaneously for per retrieval.). This is just one part of 
our further work as well. Similarly, the query cost for 
each workload decreases along with the ascending of the 
number of disks, as the parallelism increases gradually. 
Moreover, all the algorithms are I/O bounded. However, 

as the number of disks grows, the CPU cost of all 
demonstrating algorithms accounts for a larger fraction of 
the total query cost (indicated by its decreasing with the 
percentage of the I/O cost). This situation is depicted in 
Figure 5.2. 

The next set of experiments inspects the influence of 
the dimensionality. Towards this, we deploy two synthetic 
datasets including Gaussian and Zipf that contain 256k 
and 512k data points (i.e., cardinality N = 256k and N = 
512k) of dimensionality varying between 2 and 5, 
respectively. Furthermore, the parameter “disks” is fixed 
to the value 2. Figures 5.3 and 5.4 compare the number of 
accessed nodes and the query cost of the BFPNN and the 
FBFPNN against those of the CRSS in answering single 
NN search. As expected, the performance of all 
algorithms degrades because, in general, R-trees become 
less efficient with the growing of dimensionality [24] (due 
to the larger overlap among the MBRs at the same level). 
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D atase t: G a ussia n , O b jec ts: 512k , D isks : 2 , k  =  1
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Figure 5.3: Number of accessed nodes VS. Dimensionality 

D a ta s e t:  G a u s s ia n ,  O b je c ts :  2 5 6 k ,  D is k s :  2 ,  k  =  1
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Figure 5.4: Mean Query Cost (Sec) VS. Dimensionality 

Dataset: Gaussian, Dimensions: 3, Disks: 4, k = 1
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Dataset: Gaussian, Dimensions: 5, Disks: 6, k = 1
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Dataset: Zipf, Dimensions: 3, Disks: 4, k = 1
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Dataset: Zipf, Dimensions: 5, Disks: 6, k = 1
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Figure 5.5: Number of accessed nodes VS. Cardinality 

Dataset: Gaussian, Dimensions: 3, Disks: 4, k = 1
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Dataset: Gaussian, Dimensions: 5, Disks: 6, k = 1
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Dataset: Zipf, Dimensions: 3, Disks: 4, k = 1
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Dataset: Zipf, Dimensions: 5, Disks: 6, k = 1
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Figure 5.6: Mean Query Cost (Sec) VS. Cardinality 

Moreover, the total query cost increases as the increasing 
of the dimensionality, since the I/O cost occupies a 
greater portion of the total query cost, that is, the 
algorithms have to spend more time in accessing all 
required node entries which act on the final outcome for 
finding the NN of a given query point. However, 
obviously, the efficiency of the BFPNN still exceeds that 
of the CRSS. At the same time, as aforementioned set of 
experiments, the performance of the BFPNN is similar to 
that of the FBFPNN no matter the dimensionality is low 
or high. In addition, for all the datasets, notice that all 
examining algorithms show similar efficiency in low 
dimensionality (e.g., 2D), but both the BFPNN and the 
FBFPNN are still more effective than the CRSS in high 
dimensionality (e.g., 3D, 4D, etc.). 

Finally, to study the effect of the dataset cardinality, we 
use 3-dimensional (5-dimensional) Gaussian and Zipf 
datasets whose cardinality range alter from 64k to 1024k, 
by fixing disks the values 4 and 6, respectively. Figures 
5.5 and 5.6 demonstrate these experimental results of 
BFPNN, FBFPNN and CRSS for single NN search as a 
function of the cardinality size. Like above two sets of 
experiments, the capability of the BFPNN is better than 
that of the CRSS under all the cases. Furthermore, the 
efficiency of both the BFPNN and the FBFPNN is similar 
regardless of the size of cardinality. Specifically, as 
cardinality ascends, the number of accessed nodes adds, 
since algorithms need retrieve more node entries for 
discovering the NN of a given query point q. Similarly, 
the query cost also augments along with the growing of 
the cardinality, because the algorithms have to expend 



more cost to process NN retrieval. In particular, the CPU 
cost of all illustrating algorithms becomes higher, as the 
algorithms need access more necessary nodes which 
contribute to the final answer as well for finding the NN 
of q. In addition, as shown in two diagrams, the step-wise 
cost growth corresponds to an increase of the magnitude 
of the cardinality between 64k and 1024k. For instance, 
for 3-dimensional Zipf dataset, the increment evidently 
occurs at cardinality 128k and 512k, whereas the growth 
obviously arises at cardinality 1024k with respect to 5-
dimensional Zipf dataset. 

6.   Conclusion 
The NN search is one of the most important operations in 
spatial databases and spatio-temporal databases. 
Motivated by most existing methods for NN queries focus 
on a single disk to find the NN of a given query point, the 
problems of the number of accessed nodes and query cost 
become severe with the increasing volume of datasets, 
especially for the dataset not fitting in one disk. To 
address these problems, this paper presents the first Best-
First based Parallel NN (BFPNN) query algorithm and 
Full BFPNN (FBFPNN) algorithm for effective 
processing of the NN retrieval, by means of parallelism 
(i.e., fetching more nodes or data points from multiple 
disks simultaneously) in multi-disk setting. Furthermore, 
an extensive experimental comparison verifies that, in 
addition to correctness, the proposed algorithms 
outperform the previous techniques in terms of efficiency 
and scalability under most cases, by using various real 
and synthetic datasets. 

In the future, some promising directions for future 
work mainly include the following issues: (i) extend the 
presented algorithms to support kNN queries since the 
BFPNN and FBFPNN algorithms only concentrate on the 
1NN search; (ii) study on diverse disk assignment 
approaches to enhance parallelism during the processing 
of NN retrieval; (iii) derive analytical models for 
estimating the execution cost of the parallel NN search 
algorithms, such that facilitating query optimization and 
revealing new problem characteristics that could lead to 
even faster algorithms. 

Acknowledgements 
This research was supported by the National High 
Technology Development 863 Program of China under 
Grant No. 2003AA4Z3010-03. 

References 
[1] Henrich, A. A Distance-Scan Algorithm for Spatial 

Access Structures. In ACM GIS, 1994. 
[2] Roussopoulos, N., Kelley, S., Vincent, F. Nearest 

neighbor queries. In SIGMOD, 1995. 
[3] Cheung, K.L., Fu, A.W.-C. Enhanced Nearest 

Neighbour search on the R-tree. ACM SIGMOD 
Record, 27: 16-21, 1998. 

[4] Hjaltason, G.R., Samet, H. Distance Browsing in 
Spatial Databases. ACM TODS, 24: 265–318, 1999. 

[5] Song, Z., Roussopoulos, N. K-Nearest Neighbor 
Search for Moving Query Point. In SSTD, 2001. 

[6] Tao, Y., Papadias, D. Time-Parameterized Queries 
in Spatio-Temporal Databases. In SIGMOD, 2002. 

[7] Tao, Y., Papadias, D., Shen, Q. Continuous Nearest 
Neighbor Search. In VLDB, 2002. 

[8] Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, 
S. Nearest Neighbor and Reverse Nearest Neighbor 
Queries for Moving Objects. In IDEAS, 2002. 

[9] Iwerks, G.S., Samet, H., Smith, K. Continuous K-
Nearest Neighbor Queries for Continuously Moving 
Points with Updates. In VLDB, 2003. 

[10] Xiong, X., Mokbel, M.F., Aref, W.G. SEA-CNN: 
Scalable Processing of Continuous K-Nearest 
Neighbor Queries in Spatio-temporal Databases. In 
ICDE, 2005. 

[11] Papadias, D., Tao, Y., Kyriakos, M., Chun, K.H. 
Aggregate Nearest Neighbor Queries in Spatial 
Databases. ACM TODS, 2005. (to appear)  

[12] Yiu, M.L., Mamoulis, N., Papadias, D. Aggregate 
Nearest Neighbor Queries in Road Networks. TKDE, 
17: 820-833, 2005. 

[13] Korn, F., Muthukrishnan, S. Influence Sets Based on 
Reverse Nearest Neighbor Queries. In SIGMOD, 
2000. 

[14] Stanoi, I., Agrawal, D., Abbadi, A. Reverse Nearest 
Neighbor Queries for Dynamic Databases. In 
SIGMOD Workshop DMKD, 2000. 

[15] Yang, C., Lin, K-I. An Index Structure for Efficient 
Reverse Nearest Neighbor Queries. In ICDE, 2001. 

[16] Maheshwari, A., Vahrenhold, J., Zeh, N. On reverse 
Nearest Neighbor Queries. In CCCG, 2002. 

[17] Singh, A., Ferhatosmanoglu, H., Tosun, A. High 
Dimensional Reverse Nearest Neighbor Queries. In 
CIKM, 2003. 

[18] Tao, Y., Papadias, D., Lian, X. Reverse kNN Search 
in Arbitrary Dimensionality. In VLDB, 2004. 

[19] Papadopoulos, A.N., Manolopoulos, Y. Similarity 
Query Processing Using Disk Arrays. In SIGMOD, 
1998. 

[20] Guttman, A. R-trees: A Dynamic Index Structure for 
Spatial Searching. In SIGMOD, 1984. 

[21] Sellis, T., Roussopoulos, N., Faloutsos, C. The R+-
tree: A Dynamic Index for Multi-dimensional 
Objects. In VLDB, 1987. 

[22] Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, 
B. The R*-tree: An Efficient and Robust Access 
Method for Points and Rectangles. In SIGMOD, 
1990. 

[23] Kamel, I., Faloutsos, C. Parallel R-trees. In 
SIGMOD, 1992. 

[24] Theodoridis, Y., Sellis, T.K A Model for the 
Prediction of R-tree Performance. In PODS, 1996. 


