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Abstract

This paper presents a generalization of the disjunctive
paraconsistent relational data model in which disjunc-
tive positive and negative information can be repre-
sented explicitly and manipulated. There are situa-
tions where the closed world assumption to infer nega-
tive facts is not valid or undesirable and there is a need
to represent and reason with negation explicitly. We
consider explicit disjunctive negation in the context of
disjunctive databases as there is an interesting inter-
play between these two types of information. Gener-
alized disjunctive paraconsistent relation is introduced
as the main structure in this model. The relational
algebra is appropriately generalized to work on gen-
eralized disjunctive paraconsistent relations and their
correctness is established.

1 Introduction

Two important features of the relational data model [4]
for databases are its value-oriented nature and its rich
set of simple, but powerful algebraic operators. More-
over, a strong theoretical foundation for the model is
provided by the classical first-order logic [15]. This
combination of a respectable theoretical platform, ease
of implementation and the practicality of the model re-
sulted in its immediate success, and the model has en-
joyed being used by many database management sys-
tems.

One limitation of the relational data model, how-
ever, is its lack of applicability to nonclassical situ-
ations. These are situations involving incomplete or
even inconsistent information.

Several types of incomplete information have been
extensively studied in the past such as null values [5,
10], partial values [8], fuzzy and uncertain values [7,
14], and disjunctive information [11, 12, 17]. Liu and
Sunderraman in [11] and [12] presented extensions to
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relational data model that were capable of representing
and manipulating disjunctive information.

However, unlike incomplete information, inconsis-
tent information has not enjoyed enough research at-
tention. While it may be argued that true knowl-
edge systems should contain no inconsistent informa-
tion, contradictions are very common in belief sys-
tems. Even experts of a domain often disgaree with
each other, sometimes strongly. Logics dealing with
inconsistent information are called paraconsistent log-
ics, and were studied in detail by de Costa [6] and
Belnap [2]. Blair and Subrahmanian [3] proposed
logic programming based on paraconsistent logic and
Subrahmanian [16] extended the work to disjunctive
deductive databases. Bagai and Sunderraman [1]
presented a paraconsistent relational data model to
represent and manipulate explicit negation in rela-
tional databases. More recently, Grant and Subrah-
manian [9] present a survey of work in paraconsistent
databases and knowledgebases.

In this paper, we present an extension to the re-
lational data model that is capable of representing
and manipulating explicitly stated positive disjunc-
tive facts as well as explicitly stated negative disjunc-
tive facts. The model proposed in this paper is a
generalization of the disjunctive paraconsistent data
model[18]. We introduce generalized disjunctive para-
consistent relations, which are the fundamental struc-
tures underlying our model. These structures are
generalizations of disjunctive paraconsistent relations
which are capable of representing disjunctive positive
and explicit negative definite facts. A generalized
disjunctive paraconsistent relation essentially consists
of two kinds of information: positive tuple sets rep-
resenting exclusive disjunctive positive facts (one of
which belongs to the relation) and negative tuple sets
representing exclusive disjunctive negated facts (one
of which does not belong to the relation). Gener-
alized disjunctive paraconsistent relations are strictly
more general than disjunctive paraconsistent relations
in that for any disjunctive paraconsistent relation,
there is a generalized disjunctive paraconsistent rela-
tion with the same information content, but not vice



versa. We define algebraic operators over generalized
disjunctive paraconsistent relations that extend the
standard operations over disjunctive paraconsistent re-
lations.

In Sections 2 and 3 we briefly present the data mod-
els that precede the generalization presented in this pa-
per. Paraconsistent relations allow unit positive and
negative facts to be represented. Disjunctive paracon-
sistent relations allow disjunctive positive facts and
unit negative facts to be represented. In Section 4,
we present the generalization that allows disjunctive
positive as well as disjunctive negative facts to be rep-
resented. The relational algebra is then generalized in
Section 5. The paper is concluded in Section 6 with
directions for future work.

2 Paraconsistent Relations

In this section, we present a brief overview of paracon-
sistent relations and the algebraic operations on them.
For a more detailed description, refer to [1]. Unlike
ordinary relations that can model worlds in which ev-
ery tuple is known to either hold a certain underlying
predicate or to not hold it, paraconsistent relations
provide a framework for incomplete or even inconsis-
tent information about tuples. They naturally model
belief systems rather than knowledge systems, and are
thus a generalisation of ordinary relations. The oper-
ators on ordinary relations can also be generalised for
paraconsistent relations.

Let a relation scheme (or just scheme) Σ be a finite
set of attribute names, where for any attribute name
A ∈ Σ, dom(A) is a non-empty domain of values for
A. A tuple on Σ is any map t : Σ → ∪A∈Σdom(A),
such that t(A) ∈ dom(A), for each A ∈ Σ. Let τ(Σ)
denote the set of all tuples on Σ.

Definition 1 A paraconsistent relation on scheme Σ
is a pair R = 〈R+, R−〉, where R+ and R− are any
subsets of τ(Σ). We let P(Σ) be the set of all paracon-
sistent relations on Σ. 2

Intuitively, R+ may be considered as the set of all tu-
ples for which R is believed to be true, and R− the
set of all tuples for which R is believed to be false.
Note that since contradictory beliefs are possible, we
do not assume R+ and R− to be mutually disjoint,
though this condition holds in an important class of
paraconsistent relations. As paraconsistent relations
may contain contradictory information, they model
belief systems more naturally than knowledge systems.
Furthermore, R+ and R− may not together cover all
tuples in τ(Σ).

Definition 2 A paraconsistent relation R on scheme
Σ is called a consistent paraconsistent relation if R+∩
R− = ∅. We let C(Σ) be the set of all consistent re-
lations on Σ. Moreover, R is called a complete para-
consistent relation if R+ ∪ R− = τ(Σ). If R is both

consistent and complete, i.e. R− = τ(Σ)−R+, then it
is a total paraconsistent relation, and we let T (Σ) be
the set of all total paraconsistent relations on Σ. 2

Algebraic Operators

To reflect generalization of relational algebra opera-
tors, a dot is placed over an ordinary relational op-
erator to obtain the corresponding paraconsistent re-
lation operator. For example, 1 denotes the natural
join among ordinary relations, and 1̇ denotes natural
join on paraconsistent relations. We first introduce
two fundamental set-theoretic algebraic operators on
paraconsistent relations:

Definition 3 Let R and S be paraconsistent relations
on scheme Σ. Then, the union of R and S, denoted
R ∪̇ S, is a paraconsistent relation on scheme Σ, given
by (R ∪̇ S)+ = R+∪S+ and (R ∪̇ S)− = R−∩S−; and
the complement of R, denoted −̇ R, is a paraconsistent
relation on scheme Σ, given by (−̇ R)+ = R− and
(−̇ R)− = R+. 2

An intuitive appreciation of the union operator may be
obtained by interpreting relations as properties of tu-
ples. So, R ∪̇ S is the “either-R-or-S” property. Now
since R+ and S+ are the sets of tuples for which the
properties R and S, respectively, are believed to hold,
the set of tuples for which the property “either-R-or-
S” is believed to hold is clearly R+ ∪ S+. Moreover,
since R− and S− are the sets of tuples for which prop-
erties R and S, respectively, are believed to not hold,
the set of tuples for which the property “either-R-or-
S” is believed to not hold is similarly R− ∩ S−.

The definition of complement and of all the other
operators on paraconsistent relations defined later can
(and should) be understood in the same way.

If Σ and ∆ are relation schemes such that Σ ⊆ ∆,
then for any tuple t ∈ τ(Σ), we let t∆ denote the set
{t′ ∈ τ(∆) | t′(A) = t(A), for all A ∈ Σ} of all exten-
sions of t. We extend this notion for any T ⊆ τ(Σ) by
defining T∆ = ∪t∈T t∆. We now define some relation-
theoretic operators on paraconsistent relations.

Definition 4 Let R and S be paraconsistent relations
on schemes Σ and ∆, respectively. Then, the natu-
ral join (or just join) of R and S, denoted R 1̇ S, is
a paraconsistent relation on scheme Σ ∪ ∆, given by
(R 1̇ S)+ = R+ 1 S+, and (R 1̇ S)− = (R−)Σ∪∆ ∪
(S−)Σ∪∆, where 1 is the usual natural join among or-
dinary relations. 2

It is instructive to observe that (R 1̇ S)− contains all
extensions of tuples in R− and S−, because at least
one of R and S is believed false for these extended
tuples.

Definition 5 Let R be a paraconsistent relation on
scheme Σ, and ∆ be any scheme. Then, the projec-
tion of R onto ∆, denoted π̇∆(R), is a paraconsistent



relation on ∆, given by π̇∆(R)+ = π∆((R+)Σ∪∆), and
π̇∆(R)− = {t ∈ τ(∆) | tΣ∪∆ ⊆ (R−)Σ∪∆}, where π∆

is the usual projection over ∆ of ordinary relations.
2

It should be noted that, contrary to usual practice,
the above definition of projection is not just for sub-
schemes. However, if ∆ ⊆ Σ, then it coincides with the
intuitive projection operation. In this case, π̇∆(R)−
consists of those tuples in τ(∆), all of whose exten-
sions are in R−.

Definition 6 Let R be a paraconsistent relation on
scheme Σ, and let F be any logic formula involving at-
tribute names in Σ, constant symbols (denoting values
in the attribute domains), equality symbol =, negation
symbol ¬, and connectives ∨ and ∧. Then, the selec-
tion of R by F , denoted σ̇F (R), is a paraconsistent
relation on scheme Σ, given by σ̇F (R)+ = σF (R+),
and σ̇F (R)− = R−∪σ¬F (τ(Σ)), where σF is the usual
selection of tuples satisfying F . 2

3 Disjunctive Paraconsistent Relations

In this section, we present a brief overview of disjunc-
tive paraconsistent relations and the algebraic opera-
tions on them. For a more detailed description, refer
to [18].

Definition 7 A disjunctive paraconsistent relation,
R, over the scheme Σ consists of two components
< R+, R− > where R+ ⊆ 2τ(Σ) and R− ⊆ τ(Σ). R+,
the positive component, is a set of tuple sets. Each
tuple set in this component represents a disjunctive
positive fact. In the case where the tuple set is a sin-
gleton, we have a definite positive fact. R−, the neg-
ative component consists of tuples that we refer to as
definite negative tuples. Let D(Σ) represent all dis-
junctive paraconsistent relations over the scheme Σ.
2

Definition 8 Let R be a disjunctive paraconsistent
relation over Σ. Then,
norm(R)+ = {w|w ∈ R+ ∧ w 6⊆ R−}
norm(R)− =
R− − {t|t ∈ R− ∧ (∃w)(w ∈ R+ ∧ t ∈ w ∧ w ⊆ R−)}
2

A disjunctive paraconsistent relation is called normal-
ized if it does not contain any inconsistencies. We let
N (Σ) denote the set of all normalized disjunctive para-
consistent relations over scheme Σ.

Definition 9 Let R be a normalized disjunctive para-
consistent relation. Then, reduce(R) is defined as fol-
lows:
reduce(R)+ =
{w′ | (∃w)(w ∈ R+ ∧ w′ = w −R−∧

¬(∃w1)(w1 ∈ R+∧(w1−R−) ⊂ w′))}
reduce(R)− = R− 2

Definition 10 Let U ⊆ P(Σ). Then,
normrepΣ(U) = U − {R|R ∈ U ∧R+ ∩R− 6= ∅} 2

The normrep operator removes all inconsistent
paraconsistent relations from its input.

Definition 11 Let U ⊆ P(Σ). Then,
reducerepΣ(U) = {R|R ∈ U∧

¬(∃S)(S ∈ U∧ R 6= S ∧ S+ ⊆ R+ ∧ S− ⊆ R−)}
2

The reducerep operator keeps only the “minimal”
paraconsistent relations and eliminates any paracon-
sistent relation that is “subsumed” by others.

Definition 12 The information content of disjunc-
tive paraconsistent relations is defined by the map-
ping repΣ : N (Σ) → P(Σ). Let R be a normalized
disjunctive paraconsistent relation on scheme Σ with
R+ = {w1, . . . , wk}. Let
U = {< {t1, . . . , tk}, R− > |

(∀i)(1 ≤ i ≤ k → ti ∈ wi)}. Then,
repΣ(R) = reducerepΣ(normrepΣ(U)) 2

Algebraic Operators

Definition 13 Let R and S be two normalized dis-
junctive paraconsistent relations on scheme Σ with
reduce(R)+ = {v1, . . . , vn} and
reduce(S)+ = {w1, . . . , wm}.
Then, R∪̂S is a disjunctive paraconsistent relation
over scheme Σ given by
R∪̂S = reduce(T ), where
T+ = reduce(R)+ ∪ reduce(S)+ and
T− = reduce(R)− ∩ reduce(S)−,
and R∩̂S is a disjunctive paraconsistent relation over
scheme Σ given by R∩̂S = reduce(T ), where T is
defined as follows. Let
E = {{t1, . . . , tn}|(∀i)(1 ≤ i ≤ n → ti ∈ vi)} and
F = {{t1, . . . , tm}|(∀i)(1 ≤ i ≤ m → ti ∈ wi)}.
Let the elements of E be E1, . . . , Ee and those of F
be F1, . . . , Ff and let Aij = Ei ∩ Fj for 1 ≤ i ≤ e
and 1 ≤ j ≤ f . Let A1, . . . , Ag be the distinct Aijs.
Then,
T+ = {w|(∃t1) · · · (∃tg)(t1 ∈ A1 ∧ · · · ∧ tg ∈ Ag∧

w = {t1, . . . , tg})}
T− = R− ∪ S−. 2

Definition 14 Let R be a normalized disjunctive
paraconsistent relation on scheme Σ, and let F be any
logic formula involving attribute names in Σ, constant
symbols (denoting values in the attribute domains),
equality symbol =, negation symbol ¬, and connec-
tives ∨ and ∧. Then, the selection of R by F , de-
noted σ̂F (R), is a disjunctive paraconsistent relation
on scheme Σ, given by σ̂F (R) = reduce(T ), where
T+ = {w|w ∈ reduce(R)+ ∧ (∀t ∈ w)F (t)} and
T− = reduce(R)− ∪ σ¬F (τ(Σ)),
where σF is the usual selection of tuples. 2



If Σ and ∆ are relation schemes such that Σ ⊆ ∆,
then for any tuple t ∈ τ(Σ), we let t∆ denote the
set {t′ ∈ τ(∆) | t′(A) = t(A), for all A ∈ Σ} of all
extensions of t. We extend this notion for any T ⊆
τ(Σ) by defining T∆ = ∪t∈T t∆.

Definition 15 Let R be a normalized disjunctive
paraconsistent relation on scheme Σ, and ∆ ⊆ Σ.
Then, the projection of R onto ∆, denoted π̂∆(R),
is a disjunctive paraconsistent relation on scheme ∆,
given by π̂∆(R) = reduce(T ), where
T+ = {π∆(w)|w ∈ reduce(R)+} and
T− = {t ∈ τ(∆)|tΣ∪∆ ⊆ (reduce(R)−)Σ∪∆},
where π∆ is the usual projection over ∆ of tuples. 2

Definition 16 Let R and S be normalized disjunc-
tive paraconsistent relations on schemes Σ and ∆,
respectively with reduce(R)+ = {v1, . . . , vn} and
reduce(S)+ = {w1, . . . , wm}. Then, the natural join
of R and S, denoted R 1̂ S, is a disjunctive paracon-
sistent relation on scheme Σ ∪ ∆, given by R 1̂ S =
reduce(T ), where T is defined as follows. Let
E = {{t1, . . . , tn}|(∀i)(1 ≤ i ≤ n → ti ∈ vi)} and
F = {{t1, . . . , tm}|(∀i)(1 ≤ i ≤ m → ti ∈ wi)}.
Let the elements of E be E1, . . . , Ee and those of F
be F1, . . . , Ff and let Aij = Ei 1 Fj for 1 ≤ i ≤ e and
1 ≤ j ≤ f . Let A1, . . . , Ag be the distinct Aijs. Then,
T+ = {w|(∃t1) · · · (∃tg)(t1 ∈ Ai ∧ · · · ∧ tg ∈ Ag∧

w = {t1, . . . , tg})}, and
T− = (reduce(R)−)Σ∪∆ ∪ (reduce(S)−)Σ∪∆.

2

4 Generalized Disjunctive Paraconsis-
tent Relations

In this section, we present the main structure under-
ling our model, the generalized disjunctive paraconsis-
tent relations. We identify several types of redundan-
cies and inconsistencies that may appear and provide
operators to remove them. Finally, we present the
information content of generalized paraconsistent re-
lations.

Definition 17 A generalized disjunctive paraconsis-
tent relation, R, over the scheme Σ consists of two
components 〈R+, R−〉 where R+ ⊆ 2τ(Σ) and R− ⊆
2τ(Σ). R+, the positive component, is a set of tuple
sets. Each tuple set in this component represents a
disjunctive positive fact. In the case where the tuple
set is a singleton, we have a definite positive fact. R−,
the negative component consists of a set of tuple sets.
Each tuple set in this component represents a disjunc-
tive negative fact. In the case where the tuple set is a
singleton, we have a definite negated fact. Let GD(Σ)
represent all generalized disjunctive paraconsistent re-
lations over the scheme Σ. 2

Example 1 Consider the following generalized dis-
junctive paraconsistent relation:

supply+ = {{< s1, p1 >}, {< s2, p1 >,< s2, p2 >},
{< s3, p3 >,< s3, p4 >}}

supply− = {{< s1, p2 >}, {< s1, p3 >},
{< s2, p3 >,< s2, p4 >}}.

The positive component corresponds to the statement
s1 supplies p1, s2 supplies p1 or p2, and s3 supplies p3
or p4 and the negative component corresponds to s1
does not supply p2 and s1 does not supply p3 and s2
does not supply p3 or s2 does not supply p4. It should
be noted that the status of tuples that do not appear
anywhere in the generalized disjunctive paraconsistent
relation, such as (s3, p2), is unknown. 2

Inconsistencies

Inconsistency can be present in a generalized disjunc-
tive paraconsistent relation in two situations. On the
one hand inconsistency is present if each of the tu-
ples of a tuple set of the positive component are also
present as singletons in negative component. In such
a case, the positive tuple set states that at least one
of the tuples in the tuple set must be in the relation
whereas the negative component states that all the tu-
ples in the tuple set must not be in the relation. We
deal with this inconsistency by removing both the pos-
itive tuple set and all its corresponding singleton tuple
sets from the negative component. On the other hand
inconsistency is present if all the tuples of a tuple set of
the negative component are also present as singletons
in the positive component. In such a case, the tuple
set states that at least one of the tuples in the tuple
set must not be in the relation whereas the positive
component states that all the tuples in the tuple set
must be in the relation. We deal with this inconsis-
tency by removing both the negative tuple set and all
its corresponding singleton tuple sets from the positive
component.

The g norm operator defined below removes both
kinds of inconsistencies from a generalized disjunctive
paraconsistent relation.

Definition 18 Let R be a generalized disjunctive
paraconsistent relation over Σ. Then,
g norm(R)+ = R+ −
{w|w ∈ R+ ∧ (∀t)(t ∈ w → {t} ∈ R−)} −
{{t}|(∃u)(u ∈ R− ∧ (∀s)(s ∈ u → {s} ∈ R+) ∧ t ∈ u)}
g norm(R)− = R− −
{w|w ∈ R− ∧ (∀t)(t ∈ w → {t} ∈ R+)} −
{{t}|(∃u)(u ∈ R+ ∧ (∀s)(s ∈ u → {s} ∈ R−) ∧ t ∈ u)}

2

A generalized disjunctive paraconsistent relation is
called normalized if it does not contain any inconsis-
tencies. We let GN (Σ) denote the set of all normalized
generalized disjunctive paraconsistent relations over
scheme Σ.



Redundancies

We now identify the following four types of re-
dundancies in a normalized generalized disjunctive
paraconsistent relation R:

1. w1 ∈ R+, w2 ∈ R+, and w1 ⊂ w2. In this case, w1

subsumes w2. To eliminate this redundancy, we
delete w2 from R+.

2. u1 ∈ R−, u2 ∈ R−, and u1 ⊂ u2. In this case, u1

subsumes u2. To eliminate this redundancy, we
delete u2 from R−.

3. u = {t1, · · · , tk} ∈ R− and {ti} ∈ R+,
1 ≤ i ≤ n < k. This redundancy is eliminated
by deleting the tuple set u from R− and adding
the tuple set u − {t1, ..., tn} to R−. Since we are
dealing with normalized generalized disjunctive
paraconsistent relations, u − {t1, ..., tn} cannot
be empty.

4. w = {t1, ..., tk} ∈ R+ and {ti} ∈ R−,
1 ≤ i ≤ n < k. This redundancy is eliminated
by deleting the tuple set w from R+ and adding
the tuple set w − {t1, ..., tn} to R+. Since we are
dealing with normalized generalized disjunctive
paraconsistent relations, w − {t1, ..., tn} cannot
be empty.

We now introduce an operator called g reduce
which removes the redundancies identified above.

Definition 19 Let R be a normalized generalized dis-
junctive paraconsistent relation and let
U = {t|{t} ∈ R−} and W = {t|{t} ∈ R+}. Then,
g reduce(R)+ = {w′|(∃w)(w ∈ R+ ∧ w′ = w − U∧

¬(∃w1)(w1 ∈ R+∧
(w1 − U) ⊂ w′))}

g reduce(R)− = {u′|(∃u)(u ∈ R− ∧ u′ = u−W∧
¬(∃u1)(u1 ∈ R−∧
u1 −W ) ⊂ u′))}

2

Example 2 Consider the following generalized dis-
junctive paraconsistent relation:
R+ = {{< a >}, {< b >, < c >}, {< c >, < d >},

{< a >, < e >}, {< f >,< g >}}
and R− = {{< b >}, {< c >,< e >}, {< i >},

{< d >, < e >, < f >}}.
The disjunctive tuple {< a >,< e >} is subsumed by
{< a >} and hence removed. In the disjunctive tuple
set {< b >, < c >}, < b > is redundant due to the
presence of the negative singleton tuple set {< b >}
resulting in the positive tuple {< c >} which in turn
subsumes {< c >, < d >} and makes {< c >, < e >}
redundant and resulting in {< e >} which subsumes
the {< d >, < e >, < f >}. The reduced generalized
disjunctive paraconsistent relation is:

g reduce(R)+ =
{{< a >}, {< c >}, {< f >,< g >}} and

g reduce(R)− = {{< b >}, {< e >}, {< i >}} 2

Information Content

The information content of a generalized disjunctive
paraconsistent relation can be defined to be a col-
lection of disjunctive paraconsistent relations. The
different possible disjunctive paraconsistent relations
are constructed by selecting one of the several tuples
within a tuple set for each tuple set in the negative
component. In doing so, we may end up with non-
minimal disjunctive paraconsistent relations or even
with inconsistent disjunctive paraconsistent relations.
These would have to be removed in order to obtain
the exact information content of generalized disjunc-
tive paraconsistent relations. The formal definitions
follow:

Definition 20 Let U ⊆ D(Σ). Then,
g normrepΣ(U) =
{R|R ∈ U ∧ ¬(∃w)(w ∈ R+ ∧ w ⊆ R−)} 2

The g normrep operator removes all inconsistent
disjunctive paraconsistent relations from its input.

Definition 21 Let U ⊆ D(Σ). Then,
g reducerepΣ(U) = {R|R ∈ U∧

¬(∃S)(S ∈ U ∧ R 6= S ∧ S+ ⊆ R+ ∧ S− ⊆ R−)}
2

The g reducerep operator keeps only the “min-
imal” disjunctive paraconsistent relations and elimi-
nates any disjunctive paraconsistent relation that is
“subsumed” by others.

Definition 22 The information content of general-
ized disjunctive paraconsistent relations is defined by
the mapping g repΣ : GN (Σ) → D(Σ). Let R be a
normalized generalized disjunctive paraconsistent re-
lation on scheme Σ with R− = {u1, . . . , um}.
Let U = {< R+, {t1, . . . , tm} > |(∀i)(1 ≤ i ≤ m →
ti ∈ ui)}. Then,
g repΣ(R) = g reducerepΣ(g normrepΣ(U)) 2

Note that the information content is defined only
for normalized generalized disjunctive paraconsistent
relations.

The following important theorem states that infor-
mation is neither lost nor gained by removing the re-
dundancies in a generalized disjunctive paraconsistent
relations.

Theorem 1 Let R be a generalized disjunctive para-
consistent relation on scheme Σ. Then,
g repΣ(g reduce(R)) = g repΣ(R) 2



5 Generalized Relational Algebra

In this section, we first develop the notion of precise
generalizations of algebraic operators. This is an im-
portant property that must be satisfied by any new
operator defined for generalized disjunctive paracon-
sistent relations. Then, we present several algebraic
operators on generalized disjunctive paraconsistent re-
lations that are precise generalizations of their coun-
terparts on disjunctive paraconsistent relations.

Precise Generalization of Operations

We now construct a framework for operators on both
kinds of relations and introduce the notion of the pre-
cise generalization relationship among their operators.

An n-ary operator on disjunctive paraconsistent re-
lations with signature
〈Σ1, . . . , Σn+1〉 is a function
Θ : D(Σ1)× · · · × D(Σn) → D(Σn+1),
where Σ1, . . . , Σn+1 are any schemes. Similarly, an n-
ary operator on generalized disjunctive paraconsistent
relations with signature 〈Σ1, . . . , Σn+1〉 is a function:
Ψ : GD(Σ1)× · · · × GD(Σn) → GD(Σn+1).

We now need to extend operators on disjunctive
paraconsistent relations to sets of disjunctive para-
consistent relations. For any operator
Θ : D(Σ1)× · · · × D(Σn) → D(Σn+1)
on disjunctive paraconsistent relations, we let
S(Θ) : 2D(Σ1) × · · · × 2D(Σn) → 2D(Σn+1)

be a map on sets of disjunctive paraconsistent rela-
tions defined as follows. For any sets M1, . . . , Mn

of disjunctive paraconsistent relations on schemes
Σ1, . . . , Σn, respectively,

S(Θ)(M1, . . . , Mn) =
{Θ(R1, . . . , Rn)|Ri ∈ Mi, for all i, 1 ≤ i ≤ n}.

In other words, S(Θ)(M1, . . . , Mn) is the set of Θ-
images of all tuples in the Cartesian product M1 ×
· · · ×Mn. We are now ready to lead up to the notion
of precise operator generalization.

Definition 23 An operator Ψ on generalized dis-
junctive paraconsistent relations with signature
〈Σ1, . . . , Σn+1〉 is consistency preserving if for any nor-
malized generalized disjunctive relations R1, . . . , Rn

on schemes Σ1, . . . , Σn, respectively, Ψ(R1, . . . , Rn) is
also normalized. 2

Definition 24 A consistency preserving operator Ψ
on generalized disjunctive paraconsistent relations
with signature 〈Σ1, . . . , Σn+1〉 is a precise generaliza-
tion of an operator Θ on disjunctive paraconsistent
relations with the same signature, if for any normal-
ized generalized disjunctive paraconsistent relations
R1, . . . , Rn on schemes Σ1, . . . , Σn, we have
g repΣn+1

(Ψ(R1, . . . , Rn)) =
S(Θ)(g repΣ1

(R1), . . . ,g repΣn
(Rn)).

2

We now present precise generalizations for the usual
relation operators, such as union, join, projection. To
reflect generalization, a line is placed over an ordi-
nary operator. For example, 1 denotes the natural
join among ordinary relations, 1̇ denotes natural join
on paraconsistent relations, 1̂ denotes natural join on
disjunctive paraconsistent relations and 1 denotes nat-
ural join on generalized disjunctive paraconsistent re-
lations.

Union and Intersection

Definition 25 Let R and S be two normalized gen-
eralized disjunctive paraconsistent relations on scheme
Σ with
g reduce(R)+ = {u1, . . . , un},
g reduce(R)− = {v1, . . . , vk},
g reduce(S)+ = {w1, . . . , wm}, and
g reduce(S)− = {x1, . . . , xj}.
Then, R∪S is a generalized disjunctive paraconsistent
relation over scheme Σ given by R∪S = g reduce(T ),
where T is defined as follows.
Let E = {{t1, . . . , tk}|(∀i)(1 ≤ i ≤ k → ti ∈ vi)} and
F = {{t1, . . . , tj}|(∀i)(1 ≤ i ≤ j → ti ∈ xi)}.
Let the elements of E be E1, . . . , Ee and those of F
be F1, . . . , Ff and let Aij = Ei ∩Fj, for 1 ≤ i ≤ e and
1 ≤ j ≤ f . Let A1, . . . , Ag be the distinct Aijs. Then,
T+ = g reduce(R)+ ∪ g reduce(S)+
T− = {w|(∃t1) · · · (∃tg)(t1 ∈ A1 ∧ · · · ∧ tg ∈ Ag ∧ w =
{t1, . . . , tg})}.
and R∩S is a generalized disjunctive paraconsistent re-
lation over scheme Σ given by R∩S = g reduce(T ),
where T is defined as follows.
Let E = {{t1, . . . , tn}|(∀i)(1 ≤ i ≤ n → ti ∈ ui)}
and F = {{t1, . . . , tm}|(∀i)(1 ≤ i ≤ m → ti ∈ wi)}.
Let the elements of E be E1, . . . , Ee and those of F
be F1, . . . , Ff and let Aij = Ei ∩ Fj, for 1 ≤ i ≤ e
and 1 ≤ j ≤ f . Let A1, . . . , Ag be the distinct Aij s.
Then,
T+ = {w|(∃t1) · · · (∃tg)(t1 ∈ A1 ∧ · · · ∧ tg ∈ Ag ∧ w =
{t1, . . . , tg})}.
T− = g reduce(R)− ∪ g reduce(S)−. 2

The following theorem establishes the precise gen-
eralization property for union and intersection:

Theorem 2 Let R and S be two normalized general-
ized disjunctive paraconsistent relations on scheme Σ.
Then,
1. g repΣ(R∪S) = g repΣ(R)S(∪̂)g repΣ(S).

2. g repΣ(R∩S) = g repΣ(R)S(∪̂)g repΣ(S). 2

Complement

Definition 26 Let R be normalized generalized
disjunctive paraconsistent relation on scheme Σ.



Then, −R is a generalized disjunctive paraconsistent
relation over scheme Σ given by
(−R)+ = g reduce(R)− and (−R)− =
g reduce(R)+.

2

Selection

Definition 27 Let R be a normalized generalized dis-
junctive paraconsistent relation on scheme Σ, and
let F be any logic formula involving attribute names
in Σ, constant symbols (denoting values in the at-
tribute domains), equality symbol =, negation sym-
bol ¬, and connectives ∨ and ∧. Then, the selec-
tion of R by F , denoted σF (R), is a generalized dis-
junctive paraconsistent relation on scheme Σ, given by
σF (R) = g reduce(T ), where
T+ = {w|w ∈ g reduce(R)+ ∧ (∀t ∈ w)F (t)} and
T− = R−∪σ¬F (τ(Σ)), where σF is the usual selection
of tuples.

2

A disjunctive tuple set is either selected as a whole
or not at all. All the tuples within the tuple set must
satisfy the selection criteria for the tuple set to be se-
lected.

Project

Definition 28 Let R be a normalized generalized dis-
junctive paraconsistent relation on scheme Σ with
g reduce(R)− = {v1, . . . , vn}., and ∆ ⊆ Σ. Then,
the projection of R onto ∆, denoted π∆(R), is a gen-
eralized disjunctive paraconsistent relation on scheme
∆, given by π∆(R) = g reduce(T ), where T is de-
fined as follows.
Let E = {{t1, . . . , tn}|(∀i)(1 ≤ i ≤ n → ti ∈ vi)}. Let
the elements of E be E1, . . . , Ee and let
Ai = {t ∈ π(∆)|tΣ∪∆ ⊆ (Ei)Σ∪∆}. Then,
T+ = {π∆(w)|w ∈ g reduce(R)+}
T− = {w|(∃t1) . . . (∃te)(t1 ∈ Ai ∧ . . . ∧ te ∈ Ae ∧ w =
{t1, . . . , te})}, where π∆ is the usual projection over
∆ of tuples.

2

The positive component of the projections consists
of the projection of each of the tuple sets onto ∆ and
π∆(R)− consists of those tuple sets in τ(∆), all of
whose extensions are in R−.

Natural Join

Definition 29 Let R and S be normalized general-
ized disjunctive paraconsistent relations on schemes Σ
and ∆, respectively with
g reduce(R)+ = {u1, . . . , un},
g reduce(R)− = {v1, . . . , vk},
g reduce(S)+ = {w1, . . . , wm}, and
g reduce(S)− = {x1, . . . , xj}.
Then, the natural join of R and S, denoted R1S,

is a generalized disjunctive paraconsistent relation on
scheme Σ ∪∆, given by R1S = g reduce(T ), where
T is defined as follows. Let
E = {{t1, . . . , tn}|(∀i)(1 ≤ i ≤ n → ti ∈ ui)} and
F = {{t1, . . . , tm}|(∀i)(1 ≤ i ≤ m → ti ∈ wi)}.
Let the elements of E be E1, . . . , Ee and those of F
be F1, . . . , Ff and let Aij = Ei 1 Fj for 1 ≤ i ≤ e and
1 ≤ j ≤ f . Let A1, . . . , Ag be the distinct Aijs. Then,
T+ = {w|(∃t1) · · · (∃tg)(t1 ∈ A1 ∧ · · · ∧ tg ∈ Ag ∧ w =
{t1, . . . , tg})}. Let
G = {{t1, . . . , tk}|(∀i)(1 ≤ i ≤ k → ti ∈ vi)} and
H = {{t1, . . . , tj}|(∀i)(1 ≤ i ≤ j → ti ∈ xi)}.
Let the elements of G be G1, . . . , Gg and those of H
be H1, . . . , Hh and let
Bij = (Gi)Σ∪∆∪(Hj)Σ∪∆ for 1 ≤ i ≤ g and 1 ≤ j ≤ h.
Let B1, . . . , Bf be the distinct Bijs. Then,
T− = {w|(∃t1) · · · (∃tf )(t1 ∈ B1 ∧ · · · ∧ tf ∈ Bf ∧ w =
{t1, . . . , tf})}. 2

Theorem 3 Let R and S be two normalized general-
ized disjunctive paraconsistent relations on scheme Σ1

and Σ2. Also let F be a selection formula on scheme
Σ1 and ∆ ⊆ Σ1. Then,

1. g repΣ1
(σF (R)) = S(σ̂F )(g repΣ1

(R)).

2. g repΣ1
(π∆(R)) = S(π̂∆)(g repΣ1

(R)).

3. g repΣ1∪Σ2
(R1S) =

g repΣ1
(R)S(1̂)g repΣ2

(S).

2

6 Conclusions and Future Work

We have presented a framework for relational
databases under which positive disjunctive as well as
explicit negative disjunctive facts can be represented
and manipulated. It is the generalization of disjunc-
tive paraconsistent relation in [18]. There are at least
two directions for future work. One would be to make
the model more expressive by considering disjunctive
positive and negative facts. Work is in progress in this
direction. The extended model will be more expres-
sive. The algebraic operators will have to be extended
appropriately. The other direction for future work
would be to design query processing for the model
presented in this paper. The database management
systems based on this model can be used to store
and retrieve incomplete and inconsistent information
existing in many real situations such as bioinformat-
ics, biomedical application and Web intelligence, etc.
There has been some interest in studying extended dis-
junctive logic programs in which the head of clauses
can have one or more literals [13]. This leads to two
notions of negation: implicit negation (corresponding
to negative literals in the body) and explicit negation
(corresponding to negative literals in the head). The



model presented in this paper could provide a frame-
work under which the semantics of extended disjunc-
tive logic programs could be constructed in a bottom-
up manner.
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