


ducing training data instead of producing rules. This
training data is used to learn a model that could be
used to process novel instances. With the help of
domain-experts to annotate texts, systems can be cus-
tomized to a specific domain without any intervention
from the developers. The success of this method de-
pends on the availability of good training data. An-
notated training data may be sparse, or difficult and
expensive to obtain. Despite this, contemporary work
focuses on the automatic learning aiming to alleviate
the aforementioned problems.

Recent study by Ireson et al [13] shows that the
adoption of a machine learning algorithm, in itself,
does not provide a guaranteed advantage in infor-
mation extraction. Hence we aim to bring the best
of both worlds together by combining the trainable
system approach and the knowledge engineering ap-
proach. We propose a framework for acquiring rules
for information extraction which can later be refined
by a knowledge engineer to “tune” the system for high
performance. This is based on Compton et al’s semi-
nal work [4] on a knowledge acquisition methodology
called the Ripple Down Rules (RDR). Our inspiration
to use ripple down rules comes from its rich structure
due to exceptions. Exceptions allow addition of knowl-
edge without breaking the previous rules.

Section 2 describes the prior art in Information Ex-
traction systems. Section 3 introduces the knowledge
acquisition framework for information extraction. Al-
though the focus of this paper is on using ripple down
rules for information extraction, in Section 4, we also
present a method of automatically learning such rules
from a raw corpus. The knowledge acquisition frame-
work was implemented as a visual tool, called Visu-
alRDR. Section 5 describes VisualRDR. The experi-
ments and the results of using RDR for information
extraction are detailed in Section 6.

2 Information Extraction

In this section we provide a synoptic view of some
of the existing work on information extraction. In-
formation extraction approaches for the purpose of
this study are roughly classified into pattern based ap-
proaches and statistical approaches.

2.1 Pattern based approaches

The basic idea behind pattern based approaches is to
learn patterns that can extract the relevant informa-
tion. The information extraction process is treated as
a process of slot-filling. The patterns (or rules) can be
used either for single slot extraction or multi slot ex-
traction. In multi slot extraction the extraction rules
are able to link together related information, as op-
posed to single slot rules that can only extract isolated
data (e.g. in a document that contains several names
and addresses, single-slot rules can not specify what

the address of a particular person is). Section 3 lists
some examples of such systems.

2.2 Statistical approaches

Machine learning methods using Naive Bayes, Sup-
port Vector Machines (SVM), Hidden Markov Mod-
els (HMM), Conditional Random Fields (CRF) and
Semi Markov CRFs have been applied to information
extraction. In the Naive Bayes method [7] we treat
the document as a bag of words and totally ignore
the linguistic structure of the document and a pri-
ori probabilities are estimated using weights taken as
the TF-IDF measure of the words. Experiments have
been done to study the possibility of using support
vector machines in information integration. Features
from the document/sentence are extracted and classi-
fied using an SVM classifier. Hidden Markov Models
are a powerful probabilistic tool for time series data
and have been successfully applied to sequence labeling
and prediction problems in speech and text processing.
Recently, McCallum et al [12] have used HMMs to ex-
tract information from natural language text. They
alleviate the large training data requirement in HMMs
using a statistical technique called shrinkage. Peng et
al [14] have used conditional random fields to extract
information from scientific papers and Sarawagi et al
[21] demonstrate the possibility of using semi Markov
conditional random fields.

3 Knowledge acquisition for Informa-
tion Extraction

Knowledge acquisition is “the transfer and transforma-
tion of potential problem-solving expertise from some
knowledge source to a program.” [2] Knowledge ac-
quisition is performed by knowledge engineering tech-
niques. Knowledge engineering is “the process of re-
ducing a large body of knowledge to a precise set of
facts and rules.” [6]

The information extraction task can be solved us-
ing a knowledge based approach. Explicit rules could
be elucidated for extracting information from unstruc-
tured sources. Several efforts in the past have made
use of rules for information extraction. Some examples
include, AUTOSLOG [18], LIEP [10], CRYSTAL [24],
WHISK [23], RAPIER [3] and SRV [8]. All these sys-
tems suffer from the maintainability problems pointed
by [5].

3.1 Organizing knowledge

Having selected a knowledge based approach to infor-
mation extraction, we had several options to organize
this knowledge. Some options that we considered in-
clude decision lists, decision trees, case based reasoning
(CBR) and ripple down rules(RDR). Decision lists [19]
maintain rules as a series of if-then-else statements
as shown in Figure 1. Although this method is ap-



Figure 1: Decision Lists

pealingly simple, it suffers from a major setback that
rules (if-then blocks) cannot be added freely into the
knowledge base without risking its integrity. An addi-
tion, modification or deletion of one rule could poten-
tially affect others. Hence such knowledge bases would
become brittle with use. Another possibility was to
use decision trees [15]. Decision trees require well de-
fined attributes and their values and they test a subset
of attributes before arriving at a decision as shown in
Figure 2. The problem with decision trees is that that

Figure 2: Decision Trees

dont allow easy modification. We wanted to build a
system that could be used by a domain-expert who
may not be even familiar with knoweledge engineering
techniques. Case based reasoning (CBR) [11] has been
extensively used capturing knowledge. Although it is
very domain-expert friendly, it requires considerable
investment in the design of case features and similarity
metric that enable querying and retrieval of solutions.
We use the knowledge acquisition methodology pro-
posed by Compton et al [4] called Ripple Down Rules
(RDR). The main advantages of using RDR is that

1. RDR enable incremental acquisition of rules.

2. Rules are acquired in context

3. Rule based systems modeled on RDR are
amenable to easy maintainance.

4. They have a compact representation than decision
trees or case bases.

3.2 Ripple Down Rules

Ripple down rules (RDR) is a knowledge acquisition
methodology and a way of structuring knowledge bases
which grew out of long term experience of maintain-
ing an expert system , GARVIN-ESI by Compton et
al [4]. In the RDR framework, the human expert’s
knowledge is acquired based on the current context
and is added incrementally. Ripple Down Rules con-
sist of rules which form a tree structure. Many rules
in RDR are exceptions to other rules. Ripple down
rules methodology allows incremental changes to the
knowledge base without causing unwanted side effects
to the existing knowledge base. Compton et al have
shown [5] that this approach allows clear separation
of knowledge engineering and domain expertise. This
enables domain experts to change the knowledge base
without the need of a knowledge engineer. The root
of the tree provides a default conclusion if the rule
linked to the child is not satisfied for a particular case.
Whenever the RDR incorrectly classifies a case or fails
to classify a case, a rule is added. When a rule is added
to the RDR structure, the case that prompted the rule
is also stored in association with the rule. These cases
are called “cornerstone cases.” Apart from providing
contextual information, later we shall see that the cor-
nerstone cases are also useful in on the fly validation.
Inferencing in RDR is very simple. Whenever a case
is satisfied by the rule which does not have a depen-
dent, i.e., no branches, the conclusion associated with
that rule is asserted. On the other hand, if the rule
has a TRUE branch then that branch condition is also
tested in a depth-first manner. The conclusion of the
deepest satisfying node is returned as the result. If
besides the default rule, no rule satisfies the case, an
exception branch is added to the default rule and a
new rule is created. As always, with every new rule
we also store the cornerstone case that actuated the
creation of that new rule.

3.3 RDR for information extraction

Simple regular expression patterns based on features
in the text are used for extracting information. We
organize the rules in a ripple down representation with
the more generic rules at the top, and having child
rules that further specialize them. We use XML to
represent the rules for information extraction. The
schema for our representation is shown below.

<!DOCTYPE KNOWLEDGE [
<!ELEMENT KNOWLEDGE (RULE+)>
<!ELEMENT RULE (CONTEXT, CONCLUSION,

CSCASE+, EXCEPTION)>
<!ELEMENT CONTEXT (#PCDATA)>
<!ELEMENT CONCLUSION (#PCDATA)>



Figure 3: Information Extraction Process

<!ELEMENT CSCASE (LOCATION)>
<!ELEMENT EXCEPTION (RULE+)>
<!ELEMENT LOCATION (#PCDATA)>

<!ATTLIST RULE ID CDATA #REQUIRED>
<!ATTLIST CSCASE ID CDATA #REQUIRED>
]>

3.4 On the fly validation

It was realized that the error rate could be eliminated
by validating the rules as they were added [4]. Every
time a new rule is added, the cornerstone cases could
be used to verify if the new rule did not inadvertently
break previously existing rules. Thus each time a new
rule is added, we verify if the cornerstone cases still
continue to be satisfied by the rules which were orig-
inally created to cater to them. Instances where this
does not happen are flagged to the user as potential
problems. The user can then choose to modify the
newly added rule or refine the existing rules. This
ensures that the knowledge base is consistent at all
times.

3.5 Our approach to information extraction

We identify and distinctly separate the tasks of low-
level entity tagging and information extraction. By
low-level entity tagging, we refer to the task of iden-
tifying the category of single or compound words in
the raw text solely based on the orthographic, part
of speech and dictionary based features of the words.
The raw corpus is run through a rule based, cus-
tom developed named-entity (NE) tagger [16, 17].
The NE annotator identifies entity categories such as
NAME, PERSON, DATE, AMOUNT, ORGANIZATION etc.

We then write regular expression pat-
terns with associated actions, over the an-
notated document. For example, the pattern
ORGANIZATION.*sold.*ORGANIZATION with an asso-
ciated action <seller>ORGANIZATION</seller>.*
sold.*<acquired>ORGANIZATION</acquired> would
imply that the organization on the left sold the
organization on the right to some third company
that happened to be the buying/acquiring company.
A collection of such rules organized using the RDR
framework is then applied for annotating documents.
This process is outlined in Figure 3.

4 Learning of RDR

It is clear that RDR provides an efficient way of or-
ganizing rules. Creation of these rules, however, could
be a time-consuming task, especially when we already
have a huge collection of labeled documents and we
need to write rules that have sufficient coverage of la-
beled documents. We glean these rules from the corpus
and construct an RDR tree using the rules. Several ef-
forts in the past, including, INDUCT [9], Cut95 [22]
have addressed the problem of learning RDR from
training data.

Figure 4: Learning of Ripple Down Rules

Figure 4 outlines our methodology. In order to learn
we start with a labeled corpus. We split the labeled
corpus into a test and training data set. RDR is in-
duced from the training data set and test set is used
for validation of the learnt RDR. The RDR is said to
cover a case if it accepts the case.

The steps involved in learning the RDR are as fol-
lows:

1. Named Entity Recognition is performed on the
corpus.

2. Features between entities of interest are identified.

3. These features are clustered based on the criterion
such that similar feature patterns fall in the same
cluster.

4. A regular expression is formed for each cluster
and a first level RDR is built using the regular
expression corresponding to each cluster.

5. The first level RDR is applied on the training
data.

6. At each node where mis-classifications take place,
all the misclassified instances at that node are col-
lected and steps 2-5 are performed on those in-
stances.

7. Step 6 is repeated till no appreciable improvement
in the performance of the RDR is observed.



5 VisualRDR

We implemented a graphical user interface (GUI)
based tool called VisualRDR that uses RDR for in-
formation extraction and provides for easy creation,
maintenance and learning of Ripple Down Rules. To
enable the tool to be general enough to support any
application that uses RDR, a plug-in based architec-
ture is designed so that the actual task to be per-
formed by the rules is factored out into externally load-
able plug-ins. Users of the tool can extend it to ap-
plications other than information extraction by writ-
ing appropriate plug-ins. Further, we provide facili-
ties to learn RDRs if the application wishes to do so.
Since ripple down rules are highly interactive, we en-
vision knowledge engineers to manually add, modify
and delete rules. Any modifications to the rule-base is
reflected immediately in the GUI and the tool is capa-
ble of pointing out if any rules broke-down due to the
changes made. The following features were identified
to be core for any RDR based application.

1. Create a new RDR

2. Edit an RDR

3. Use an RDR against a set of cases

4. On the fly validation

Optionally, we could also add capability to automati-
cally learn the rules. Again, the exact method of rule
learning is left to the user.

5.1 Creating new rules

New rules are added to the ripple down rule structure
as exceptions. Every new rule added has to be an
exception to some previously existing rule, which the
newly added rule specializes. In case there is no rule
relevant to the current case, the new rule is added as
an exception to the default rule, which is the root of
the ripple down tree. Figure 5 shows the VisualRDR

Figure 5: Adding exception

interface for adding rules.

5.2 Editing an RDR

VisualRDR supports manual editing of ripple down
rules, since any knowledge based system will invariably
involve a human in the loop. The interfaces are kept
simple so that any domain-expert can easily modify,
add or delete the rules without the need of a knowl-
edge engineer. We ensure that the consistency of the
knowledge base is not perturbed during each edit op-
eration, by providing appropriate visual cues, using on
the fly validation.

Figure 6: Editing of rules in VisualRDR

5.3 Using the RDR

VisualRDR operates in two modes, batch and single.
In the batch mode, an entire collection of cases could
be classified using the RDR. On the other hand, the
single mode enables the validation of a single case using
the RDR. Figure 7 shows the VisualRDR interface for

Figure 7: Using RDR

applying a rule to a case. The exact operation of the
rule is left to the writer of the plug-in. In our case, we
wrote a plug-in that enables extraction of information.

5.4 On the fly validation

Each time a change is made to the ripple down rule
structure, the rule-base is validated as mentioned
in Section 3.4. OTFV alidate, the procedure for
on-the-fly validation is given below. Each time a rule
is added to the RDR knowledge base, all cornerstone
cases are reclassified using the new RDR. Cases for
which the new classification is different from the
previous classification are flagged as possible errors.

procedure OTFV alidate(rdr)
1: cstones← rdr.cscases



2: for all case ∈ cstones do
3: newrule← Classify(case, rdr)
4: if newrule 6= case.rule then
5: Flag case as possibly misclassified.
6: end if
7: end for

Figure 8: On the fly validation

Figure 8 shows on the fly validation being done in
VisualRDR.

5.5 Learning

VisualRDR leaves learning of RDR to be implemented
by the plug-in writer. In our case, we implement the
learning algorithm mentioned in Section 4.

6 Experiments and results

6.1 The dataset

For the purpose of this experiment we use the acqui-
sitions corpus of Reuters news articles on mergers and
acquisitions provided by RISE2. The corpus has 600
news articles about acquisitions providing information
about buyers, sellers, the money involved and so on.
The corpus is manually annotated so that it can be
used for training and validation purposes.

6.2 The task

Our aim was to identify the names of the seller and
purchaser involved from every news snippet in the ac-
quisitions corpus. Although we only extract seller and
purchaser names instead of all information extracted
by comparing techinques [8] [12], extracting other in-
formation is merely a process of adding more rules to
the knowledge base. In this work we choose to demon-
strate the concept by extracting seller and purchaser
information.

2http://www.isi.edu/info-agents/RISE/

6.3 The Knowledge Base

We performed our experiments with 6 seed rules that
were refined over a period of time. These rules were
based on simple regular expressions on data annotated
by entity tagging. All rules were hand-crafted. For
details, please refer to the appendix A.

6.4 Results

The RDR mentioned listed in appendix A was used to
extract information from the acquisitions corpus after
entity identification. The performance for extracting
seller and purchaser information was as shown below.
The number of cases in which the seller or buyer infor-
mation was provided in the labeled collection is shown
beside “Total cases”. By precision we mean the pro-
portion of the extracted information (seller or buyer)
that is relevant and recall is the proportion of the rele-
vant information that was extracted. The F1 measure
is a harmonic mean of precision and recall.

Seller Purchaser
Total cases 471 447
Precision 64.54 58.38
Recall 77.70 80.98
F1 measure 70.51 67.84

Table 1: Results with RDR listed in appendix A

7 Conclusions and future work

In our current work we have shown the utility of
a knowledge acquisition methodology, called Ripple
Down Rules, for information extraction. We also de-
scribed VisualRDR, a framework for creating, main-
taining and learning of Ripple Down Rules. These
rules could be fine-tuned by a domain-expert for
achieving high levels of performance. We wish to add
additional features to VisualRDR such as highlighting
redundant and contradictory rules.

8 Acknowledgements

Delip Rao would like to acknowledge the support by
IBM India research lab from May 2005 to August 2005
during which this work was done.

References

[1] D. E. Appelt and D. J. Israel. Introduction to
information extraction technology. IJCAI, 1999.

[2] D. B. Buchanan, J. B. R. Betchel, and
W. Clancey. Constructing an expert system.
building expert systems, 1983.

[3] M. E. Califf and R. J. Mooney. Relational learning
of pattern-match rules for information extraction.
In AAAI/IAAI, pages 328–334, 1999.



[4] P. Compton and R. Jansen. Knowledge in con-
text: a strategy for expert system maintenance.
In Proceedings of the 2nd Australian Joint Arti-
ficial Intelligence conference, volume 406 of Lec-
ture Notes in Artificial Intelligence, pages 292–
306, Adelaide, 1988. Springer.

[5] P. Compton and R. Jansen. A philosophical basis
for knowledge acquisition, Aug. 16 2000.

[6] E. A. Feigenbaum. Knowledge engineering. the
applied side of artificial intelligence, 1984.

[7] D. Freitag. Using grammatical inference to im-
prove precision in information extraction. In
Workshop on Grammatical Inference, Automata
Induction, and Language Acquisition (ICML’97),
Nashville, TN, 1997.

[8] D. Freitag. Multistrategy learning for information
extraction, 1998.

[9] B. R. Gaines and P. Compton. Induction of ripple-
down rules applied to modeling large databases.
J. Intell. Inf. Syst, 5(3):211–228, 1995.

[10] S. B. Huffman. Learning information extraction
patterns from examples. In Learning for Natural
Language Processing, pages 246–260, 1995.

[11] D. B. Leake, editor. Case-Based Reasoning. The
MIT Press, Cambridge, Massachusetts, 1996.

[12] A. McCallum and D. Freitag. Information ex-
traction with HMMs and shrinkage. In AAAI’99
Workshop on Machine Learning for Information
Extraction, 1999.

[13] F. C. Neil Ireson, D. F. Mary Elaine Califf,
N. Kushmerick, and A. Lavelli. Evaluating ma-
chine learning for information extraction. In
International Conference on Machine Learn-
ing(ICML), 2005.

[14] F. Peng and A. McCallum. Accurate information
extraction from research papers using conditional
random fields. In HLT-NAACL, pages 329–336,
2004.

[15] R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[16] G. Ramakrishnan. Word Associations in Text
Mining. PhD thesis, IIT Bombay, 2005.

[17] G. Ramakrishnan, S. Joshi, S. Negi, R. Krishna-
puram, and S. Balakrishnan. Automatic sales lead
generation from web data. In The 22nd Interna-
tional Conference on Data Engineering, Atlanta,
GA, U.S.A, 2006.

[18] E. Riloff. Automatically constructing a dictionary
for information extraction tasks. In AAAI, pages
811–816, 1993.

[19] R. Rivest. Learning decision lists. Machine Learn-
ing, 1987.

[20] S. Sarawagi. Automation in information extrac-
tion and integration. VLDB, 2002.

[21] S. Sarawagi and W. W. Cohen. Semi-markov con-
ditional random fields for, June 07 2004.

[22] T. Scheffer. Algebraic foundation and improved
methods of induction of ripple down rules, Dec. 05
1996.

[23] S. Soderland. Learning information extraction
rules for semi-structured and free text. Machine
Learning, 34:233, 1999.

[24] S. Soderland, D. Fisher, J. Aseltine, and
Lenhert. CRYSTAL: Inducing a conceptual dic-
tionary. Proc. Int. Joint Conf. Artcicial In-
teligence (IJCAI-95), pages 1314–1319, 1995.

A The knowledge base

Figure 9 shows a snapshot of the RDR knowledge base
used for extraction.



Figure 9: RDR knowledge base used for information extraction




