A Concise Labeling Scheme for XML Data

Risi Thonangi

Software Engineering and Technology Labs,
Infosys Technologies Limited,
Bangalore, India.
Risi_Thonangi@infosys.com

Abstract read by the search procedure, any old partial matches which
convert to complete matches are output to the user. These

In this paper, we look at the problem of assigning labels toquery processors were time consuming and inefficient as
nodes of a dynamic XML tree such that the labels encode¢hey traverse the complete tree for every query.
all ancestor-descendant relationships between the nodes To overcome this problem, each node in a tree is as-
and the document-order between the nodes. Such labelinggned a label such that these labels capture ancestor-
facilitates efficient XML query processing. A number of descendant relationships between the nodes[10, 16]. They
labeling schemes have been designed for this task. Thes#ould also capture trdbcument-ordéramong the nodes.
schemes can be broadly classified into (1) Static Labelingdnce the nodes are labeled, they become independent en-
Schemes and (2) Dynamic Labeling Schemes. While statigties and can be stored in a back-end relational database
schemes generate short labels, their performance degradgighout the pointers. This method allows indexing the
in update intensive environments. Dynamic schemes havgodes orelement-namand other important fields which
nice update performance, but their size of labels is high. Amproves query processing performance.
good labeling scheme should generate concise labels and |n this paper, our topic of interest is labeling the nodes
should perform better when there are arbitrary updates 080 as to preserve relationships between them. A number
the XML tree. In this paper, we present a new labelingof labeling schemes have been proposed until now to solve

scheme called Sector-based Labeling (SL) scheme whicthis problem. They can be broadly classified into two cate-
labels nodes with sectors. We analyze the proposed Skories.

scheme and show that it generates smaller labels than the
static schemes and has update performance as good as tfig) Static Labeling Schemes
dynamic schemes. We conduct experiments and show that These schemes are mainly designed to label XML

the obtained results substantiate our analyses. documents which are static. Cost of inserting a new
element into a document labeled by a static scheme
1 Introduction is high but the labels generated by these schemes are

)]] concise.
The growing popularity of XML standard for communi-

cation on the Internet has led to ubiquitous existence of(2) Dynamic Labeling Schemes
XML data. This triggered the need for systems which can Schemes in this category are useful to label update in-

store and query XML data efficiently. An XML document tensive XML documents. The size of the labels gener-
consists of a hierarchy of properly nested tagged elements. ated by these schemes is comparatively high, but they
Query languages such as XPath [5] and XQuery [4] fa- can accommodate new insertions efficiently into the

cilitate searching a document by traversing its hierarchy. XML tree.

Using such languages, a user can define path/tree-pattern

queries. The document order in which the XML elements Earlier proposed schemes were mainly static labeling

appear plays an important role in query formation. schemes and were typically range-based [10, 7, 3]. The
Older XML query processors stored XML data in its na- Range-Labeling (RL) [10] scheme assigns each node a

tive tree form and searched it by traversing its hierarchyrange on a one-dimensional axis such that a node’s range

The tree traversal was either top-down or bottom-up [11]will include all it’s children’s ranges. The average label-

While traversing the tree, the query processor book-keepsize generated by this schemeis log N whereN is the

all partial matches that were found. When a new node isitumber of nodes, but labeling new insertions into the XML

tree may frequently require relabeling many nodes.

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14-16, 2006 1The order in which elements appear in an XML document. Thigior
©Computer Saciety of India, 2006 is the same as the pre-order of a tree.

Newer labeling schemes like [15, 6] are dynamicand “size”. The two values form arange (order, order+size)
schemes which design prefix-based labels that increase Bnd hence this scheme is called rasige-labeling (RL)
length as the node’s depth increases. The update perfoscheme. The labels are assigned such that a child’s interval
mance of these schemes is much better than static schemssontained in all it's parents’ intervals. Two nodésand
but the labels generated are larger in size. The extra stof3 form an ancestor-descendant pair if-and-only-if
age space required to store these labels affects the query
processing performance as more hard-disk reads would be A.order < B.pre < A.order + A.size.
tnheecye(?:\ﬁ:]yét-l;irt]?r:;br? ;i\r/nelg”l’:;gﬁlsig eb\(,av(l)r:g?ment to process I{'hesize of a node determines the number of children it can

The main contributions of this paper are summarized a
follows:

old and is inversely proportional to the depth of the node.
he order values of the nodes in the tree increase in pre-
fix order. This labeling scheme allows insertions to a node
e we propose a new labeling scheme which generates |auntil space in its interval is available. When it runs out of
bels smaller than that of static schemes and has updaf®ace at a node, a new insertion at it can only be accommo-
performance as good as the dynamic schemes. Théated by “size” of the node. This might require relabeling
new labeling scheme called as Sector-based Labelingodes with pre-order positions larger than the current node
(SL) scheme allocates sectors in a two-dimensionaflthough Dietz and RL schemes are effective in generating
plane as labels. concise labels they cannot handle updates efficiently. It is
also difficult, in the case of RL scheme, to determine how
e We present algorithms to label a given tree with much space to allocate to each node. There by, a situation
s_ector—based labels and to insert nodes into it at rugan occur where parts of the XML tree with frequent up-
time. dates might run out of space while other parts of the tree

e We derive mathematical formulae to quickly find might be left with free space.

ancestor-descendant and document-order reIatior‘E 2 Dynamic Labeling Schemes
ships between two labels. '
Dynamic labeling schemes like [14, 6, 12] assign a code
e We give an in-depth label-size analysis of the pro-tg each node and the label of a node is the concatenation
posed SL scheme as well as other existing schemegs a|| the codes of nodes appearing on its incoming path
and show that SL scheme is relatively concise and isrom the root node. For such labeling schemes, checking
efficient at handling updates. for an ancestor-descendant relationship between two nodes
. is equivalent to determining if one node’s label is a prefix
* We conduct experiments on standard datasets an(()ﬁfthe other. The integer-based prefix labeling scheme [14],

compare label-size conciseness and efficiency at han- . .) o
({:]alled as the Dewey labeling scheme, assigns an integer ‘n

dlmg_ updates between the proposed SL scheme an code) to then'th child of a node. A node’s label is the
existing schemes. . . . o
concatenated string of the integers assigned to all it's an-
The rest of the paper is organized as follows. Section Zestors. A delimiter is used while concatenation to remove
discusses related work. In section 3, we present the ne@mbiguities. Cohen et al [6] circumvent the problem of
Sector-based Labeling scheme. In section 4, we analyzéelimiters by allocatingrefix-freebinary codes to sibling
the label size complexity and update performance of the exaodes. They discuss two methods to generate such codes.
isting labeling schemes. In section 5 we give experimentaln section 4, we analyze these two methods.
results. Section 6 concludes the paper and discusses someWu et al[15] propose a new prefix-based labeling

future avenues for research in labeling schemes. scheme based on the property of prime numbers. In this
labeling scheme, each node is assigned a prime-number

2 Related work and the label of a node is formed as the product of all
it's ancestors’ prime numbers. Checking for an ancestor-

2.1 Static Labeling Schemes descendant relationship between two nodes labeled with

Dietz labeling scheme [7, 16], an early static-labelingth® Prime number labeling scheme is equivalent to deter-
scheme, assigns each node two values:“pre” and “post'Mining if the descendant's label is perfectly divisible by
The pre (pos) value of a noded is the position of4 in the ancestor’s label.

the pre-order (post-order) traversal of the tree. Ndde Li et al propose two schemes, QED[8] and CDBSJ[9],
an ancestor oB if-and-only-if which include novel encoding methods to support code (a
guaternary or binary string) insertion into a sequence of ex
Apre < Apre N A.post > B.post. isting codes without disturbing the order between them and

without requiring to relabel them. An important feature
However, such a labeling scheme does not allow any inself these approaches is that they compare codes based on
tions into the labeled tree without relabeling a large pért o the lexicographical order rather than the numerical order
the tree. The XISS System [10] employs a labeling schem&hich allows a code insertion between two existing codes
which assigns every node two values as its label: “order’by increasing the size of the inserted code. For example, a

*x O origin (O)
R -X

Ay

(&) An example XML tree (b) XML nodes and their la-
bels/sectors Figure 2: Node 'A and it's SL labe{A,., A,)

D

size=1

Figure 1: Assigning sectors as labels to nodes
3.1 Sector-based Labeling (SL) Scheme

new code 1101 can be inserted between two existing codeﬁ e sectors are allocated to nodes in such a wav that the
11 and 111 without disturbing existing codes. Such an en-) o y
ngle formed by a parent’s sector at the origin completely

ggﬁlenrgenswethod can be used with static or dynamic Iabellnincloses that of all its children. Figures 1(a) and 1(b) show
Th b di dd . h handl dan example tree and the sectors assigned to its nodes. See
€ above discussed dynamic schemes can handie ﬁgure 2 for an example of a node labeled by SL scheme.

f?amfa”L changmgh XML documents ef?sllly (533. hS.eC'The horizontal line which originates at the origin and ex-
tion)'. owever, they are not space efficient. With In- 45 towards the negative X direction (labeled as -X) is
crease in depth and fan-ou; ofatree, the size of labels 9€0Re reference axis. Angles are measures w.r.t this axis. SL
erated by these schemes increase faster than range-bage‘aeme incorporates two optimizations to make the label-

labeling schemes. Apart from such high storage COStSmg scheme space efficient. The optimizations are given
these labels are also inefficient to process on, compared

the range-based labels, especially in cases when they can-

not be accommodated into native machine words. (1) only sectors of unit size and with their center at origin
Silberstein et al[13] present two I/O-efficient data struc- are considered by the labeling scheme. For example
tures to maintain labels of large and dynamic XML docu- in Figure 2 the sector allocated tbis of size 1 and

ments. The two data structures, W-BOX (Weight-balanced has its center at the origin.

B-tree for Ordering XML) and B-BOX (Back-linked B-tree

for ordering XML), are B-tree based data structures which (2) only sectors with radius a power of 2 are considered.
organize the labels for efficient updates. The ideas pro- In Figure 2, the radius of the sector allocated4ds
vided here are fairly general and can be incorporated into 24r,

any labeling scheme. . oo .
With these two optimizations in place, each sector con-

sidered for a label can be uniquely identified by two values:
3 Sector-based Labeling (1) the logarithr of its radius, and (2) the offset it makes
w.r.t the reference axis. These two values are assigned as
The Sector-based Labeling (SL) scheme chooses sectoaslabel to the node to which the sector is assigned. For ex-
for nodes in such a way that the ancestor-descendant remple, in Figure 2, the node A is assigned a lgbgl, A;)
lationship and the document-order between any two nodewhere24- is the radius of the sector assigned to A ahds
can be determined from their labels. In this section, wetheradial-distancé of thestarting pointof the sector from
explain the proposed SL scheme in detail. Section 3.1he reference-axis. Such a representation for sectors en-
proposes an algorithm to efficiently label nodes of an XML sures that the space required to store a label is consigerabl
tree with sector-based labels and analyzes the complexitymaller as the sector-length is not stored and only the log-
of the generated labels. Section 3.2 presents an efficiemtrithm of the sector’s radius is stored. Section 3.1.2,gjive
scheme to handle new insertions. a detailed analysis of the size complexity of SL scheme’s
We use the following notation in the coming sections.labels.
Labels are denoted by, B. Since each node is assigned ~ The algorithm to label a given XML tree is given in Fig-
exactly one unique label, symbolsandB are also used to ure 3. Given a nodd, algorithmLabel-Tree labels all the
denote the respective nodes to which these labels were adescendants ofl by traversing the subtree rooted 4tin
signed. If a label has two f[elds, the first fieId_ is dgnoted T this paper, all logarithms are to the base 2
by A; and the second field is denoted Hy; A is written 3The radial-diystance between two points on a circle is thelsstalis-

as (Ax, A2> The X,Y co-ordinates of a poin on atWo tance one point has to traverse on the perimeter of the ddleach the
dimensional plane are denoted By: andP.y respectively. other point.

Label-Tree(A,(A,, Ay)) origin (0)
II'A'is the XML tree node with label A,., A;)
/I This function labels all the descendants of 'A

1. Find mink s.t. 28 > A.num — children
2. i=0
3. for-each D a child of A
4. D.=A. +k
5. D,=Agx2F 4+
6. Label-Tree(D,(D,, Ds))
7. Q=i+l at .
8. return >
Figure 3: Algorithm to label an XML tree with SL labels A
origin (0) Figure 5: Accommodating As children
/ C2Ar Proof 1 LetC, denote a circle with radius and center at
origin. From figure 4, D will be a descendant ofiffA the
projection of D’s sector ont@, ., overlaps with A’s sector
which means the poinD’, should lie onA'’s sector. The
5 radial distance ofD’, from the reference axis is given by:
27 e
DS * QTT
D This projection should lie on A’'s sector, which means the
following should hold true:
Figure 4: Nodes A and D, where A is an ancestor of D N
Ay € Dox 5 < A+l
a depth first fashionLabel-Tree is first invoked with the
root node and the root node’s laki@l 0). It initially finds 24,
minimumk such thae* is atleast the number of children of = | Ds 9D, =4

A (step 1 in Figure 3)Label-Tree ensures that each child
of A is assigned a sector that is a part ofexpandedd’s = [Ds > (Dr = Ar) | = 45

sector (denoted a4’ in Figure 5). The radius oft’ is 2¥ subject to the condition thab, > A,. Hence, A is an
times to that ofA and hence it's sector starts At x 2. ancestor of Diff

Also, the size of sector’ will be 2* times of A’s sector

size. As the sector size of is of unit magnitude, sector D.> A, N |Ds> (D, —A)| = A,

size of A’ will be 2%. Steps 2-7 break secteY into unit

length sectors and distribute them to the immediate chil-

dren of A. Figure 5 shows one descenddntof node A

being labeled with the first unit-sector starting frotps 2" Node A is an ancestor of D if4,, A;) and (D, Ds)
on radiug4r+*k, satisfy Equation 1. Further, A appears before D in the

document-order if the projection dd, on the circle with
3.1.1 Checking for Ancestor-Descendant relationship radiusA, is greater thaml,. When the projection oD,
and Document-Order coincides withA,, the node with the smaller radius will
come first in the document order. The following condition

The next theorem gives a necessary and sufficient conditio aluates true wher appears befor®:

the sectors allocated to an ancestor and its descendant wi
satisfy. A. A

LxD,>A,) vV | xD,=A, N A, <D,
Theorem 1 Node A is an ancestor of node iff, their allo- (Dr) (Dr)
cated labels (sectorsjA,, A,) and(B,, B,) respectively,

satisfy the following equation: 1.2 Label Size Complexity
_ The size of the label plays an important role because the
D, > A, AN |Ds> (D, —A,)| = A, 1 _ : use t
LDs > ()] @) storage requirement of the labeling scheme has a direct im-
where >’ stands for the standard right-shift bit-operation. pact on the performance of the XML query processor. The

origin (0) case-1The position at which the insertion is requested
is free. For example in Figure 5, when an insertion is
requested at nod#’s second child (i.e. afteb).

A
2 " .
case-2The parent has space, but the position at which
As/,] the new insertion has to be made is not free. For ex-
’ ample, in Figure 6 when an insertion is requested at
¥ A RVl nodeA'’s first child.
s , case-3 The parent has no space left to accommodate
,V,ﬂ 7

D, the new child irrespective of the position requested. In
’ Figure 8, noded has2® children that have completely
occupied the available sector space.

Insertion to

D .
be made here 2 -
Free Space

) N]) o Whenever a new insertion is made, the child node (in-
Figure 6: Position at which the new insertion is requestedgerted node) should be allocated a sector such that the
ancestor-descendant relationships between the already ex
. . isting nodes in the XML tree are not disturbed, and new
number of nodes in the tree is usually huge and hence ar- . .
o . o ancestor-descendant relationships are formed between the
bitrarily large labels will attract significant I/O cost dtet

; . L . child node and its ancestor nodes. While inserting a node,
time of query processing. Further, processing times will be

. . L ? . ~"Wwe may encounter any of the above three cases. For the
higher for labels which cannot be fit into native machine-_. . : L
irst case, the new insertion can be accommodated trivially
words. SL generates the smallest labels when compared {0 . . .
labeling the inserted node with the requested sector. For

any other labeling scheme and hence improves the quer xample, in Figure 5 nodd has only one descendaht

response time. Lef be the fan-out of an XML tree and If an insertion is requested by the user at position-2 amon
be its maximum depth. The below theorem gives the max- q y P 9

imum number of bits required to store an SL label A's children (i.e. after nodd), the request can be pro-
q ' cessed without disturbing any existing labels. The sedtor a

dDosition-z is available and is allocated to the insertedenod
For the second case, the position at which the insertion
is requested is already occupied. In Figure 6, the insertion
requestis at the position occupied by. To insert the new
node, first the subtrees &; and D, are moved right by
one sector, i.e.D; is assignedDs’s sector andD; is as-
signed the sector currently to its right. Such a relocation
frees the sector earlier allocatedfy which can now be
assigned to the new node (see Figure 7). To move a subtree
one position to its right, the labels of all the nodes which
label (0,0), a leaf node’s radius will be?*osf . Since appear in that subtreg have to b_e.changed. Moving the_ sub-
we only store the logarithm of the radius, the maximumtreesD1 andD to their next positions amounts to rotating

number of bits required to represent the radius of any nodeIhem by an anglé in the label space where
is: g 1
Lyaz(Ar) =log (d x log f). ~ 9Di, "
The number of leaves in the XML tree gi¢ These leaves FOr every node3 that is a descendant @, , the radius of
are assigned unit-length sectors starting from the refegen it's sector remains unchanged. Hence, if the new label as-
axis on the circle with radiug?1°¢ /. The lastamong these Signed taB is (B, By“*), thenB;* = By'?. Because

leaves is labeled with a sector that startsfdt1. Hence: B’ sector is rotated by an angle the offset at which it's
new sector starts will be:

Theorem 2 The maximum number of bits an SL generate
label would require is

Lyaz(SL) < dxlog f + log (d x log f)

Proof 2 Since the SL scheme labels every nadm the
tree with a unit-length sector, the children dfshould be
allocated sectors on radius that jstimes the radius ofi.
Radius ofd is 2, hence the radius of any of it’s children
would be24-*1°g f Thus, if the root node is assigned the

Lmaw(As) = IOg (fd - 1) Brew — B(,)ld + QBT x0 = B(,)ld + QBT*DIT.
< dxlog f For the third case, no space is available to accommodate
the new insertion irrespective of its requested positiath an
Limaz(SL) = Lmaz(Ar) + Limaz(As) hence the radius of the current children is increased so as to

create more sector space. Figure 8 shows a situation where
the parent nodel has no space to accommodate new in-
sertions. The childrefiDy, D, ..., Dy }, which were la-
beled with sectors of radius!~** have occupied the avail-
When a new node is inserted the following three cases cable space completely. To make space for the new inser-
occur. tion, they are moved to a larger radié +*" (k' > k) so

< log(dxlog f)+ dxlog f

3.2 Handling Insertions

origin (0 putes the position of); among its siblings. The new ra-
dius of D; will be 24-+5+1 which is twice that of it's old
radius. ButD; stores the exponent @¥;'s radius. Hence,
Dpew = DOld + 1. Theorem 3, given below, calculates the
new label of any descendant df

Theorem 3 Let B be a descendant of (the node whose
children are to be relocated), and it's label prior to the re-

location be(B2!4, B24), If A’s children are moved to sec-
tors with their radius twice larger, the®’s label after the
relocation can be calculated as:

Free Spact

2Ar+k

Inserted Node
B;Le'w _ Bﬁld +1

Figure 7: Insertion Accommodated by relocatibg and
D2 B?ew — B;}ld + As % QBfld—Ar

origin (0) Proof 3 The set{ D1, D5, ..., D, } constitutes the child
nodes ofA4, and hence the nod8 has to be a descen-
dant of one among them. Let that node bg From

A Equation 3,D;’s new label isDrev = D¢'¢ 4+ 1 and
Drew = Dol Ay« 2F wherel = D¢ — A,. Since

A no updates ‘are performed inside the subt@g radii of

’ A all descendants ab; increase by the same amount thiat

2Ar+k has undergone. Hence,

The descendants @#; remain in same positiorelativeto

D;. This means, h‘D(BT) denotes the projection ab;,

B,
Figure 8: Space not available for the insertion irrespectiv 0nto the circle of radiusB,, then the quantity D" —

of its requested position B,) remains unchanged after the relocation of the subtree
rooted atD;. By equaling the new and old values of this
qguantity:

that extra sector-space can be created to accommodate the

insertion (see Figure 3.2). The requested insertion could 9B 9By

have been at any position occupied by the children nodes. —pwew * D" — B{" = « DOl — potd
After relocating all the children to a higher radius, the new v

node can be inserted as explained in the handling of case-
2. Value ofk’, the exponential increase in the radius of 28
the sectors, can be chosen to be any value greaterkthan
Notice that after relocation, the parent nodi€an accom- But By'*” — Djv = Bt — D¢ as bothB, and D;
modate2® —* times more children than before. We choosenave mcreased by 1 (see Equat|0ns 2 and 4). Substltutmg
k' = k+1 to ensure that whenever a relocation is triggeredtnis result, and also foD;** calculated from Equation 3

the space available at nodeis doubled. In the process of

this relocation, the entire subtree bf is moved to a new By = 9B =DE" (D' + A, x2")

sectorD; without disturbing the relationships between the ‘
nodes. Let the label of this sector @7, D7'*"). Then:

old
pais

w_prew new new __ oBCld_pold old old
ir *Dis — B = 27r ir *Dis — By

old old
+ Bol — 2B LTy peld

DY = D41)
! ’ — pold 4 9B=D7" y 4 4 ok
Drew = Ay 2K 4 (D9 — A, x2F)

_ D_old +A5 % (2k+1 _ Qk), I{/’I — k/’+ 1 — Bgld —"—QBgld_AT_k *As *2/67
= D'+ A, % 2" ©) DO = A,k

In the above equation, = 2¥" is the new starting point old - apeld_ A
for children of A (see Figure 9) antiD¢'? — A, « 2%) com- = By +27 Tk A

origin (0) Root Node
R

2Al'+k

“~_Nodes that
! require relabeliny

- Free Spac

D’i(= |

New Insertion

Figure 9: Space created by relocating all children to a farge

radius Figure 10: Siblings occurring after the insertion need to be
relabeled.

3.2.1 Cost of Relocation while Updates

As explained at the beginning of this section, three caseBUMPer of nodes in the XML tree. 3‘“ from Equation 5,
arise while inserting a new node into an XML tree. For 1€ number of nodey is greater tharf®. Hence, the num-
case-1, no relocation cost is incurred as the requested pB—er of bits required to store one field of a range-based label
sition for the new node is empty. For case-2, the positior|S 9réater thaa x log f. Therefore:

is not available and hence sibling subtrees of the inserted

node to its right is relabeled (see Figure 10). For case-3, Lmaz(RL) > 2 dlog f ()

no space is available for the new node irrespective of it§rom Theorem 2, the maximum number of bits an SL gen-
requested position. Hence all the sibling subtrees of the ingrated label can take is:

serted node are relabeled (see Figure 11). Note that when-

ever a subtree is relabeled, the space created at its root is Limaz(SL) < dxlog f+log(d*log f)

doubled. This ensures that nodes which actively undergo)) .

updates are allocated more space than compared to othlptice thatl,...(RL) is approximately twice off «log f,
nodes. This happens dynamically, and allows each nod&hile L. (SL) has the term appearing only once. But it
to find the right sector space through the updating environcontains another tertog (d + log f), which is only loga-
ment. As part of section 4, we analyze the update costdthmic to that of the earlier term.

of various labeling schemes and compare them against SL Whenever a new node is inserted into the tree, RL
scheme. scheme relabels all the ancestor nodes of the new node as

well as nodes which have a higher pre-order position than
i, . the inserted node (see Figure 12). However, the proposed
4 Complexities of other Labeling Schemes SL scheme requires relabeling only a subset of the descen-
In the previous section (Section 3), we analyzed the labeflants of the inserted node’s parent; as shown in Figure 10
size complexity of SL scheme and the cost of relocationand occasionally as shown in Figure 11. Notice that the
associated with relabeling the XML tree when updates aréodes relabeled by SL scheme are a subset of the ones rela-
made. In this section, we analyze and compare the conbeled by RL scheme. Hence, SL not only generates smaller
plexities of labeling schemes on two dimensions: (1) Condabels than that of RL but also has better update perfor-
ciseness of the generated labels, and (2) cost of updates. A¥nce.

in Section 3,f andd are defined as the maximum fan-out

and maximum depth of an XML tree respectively.will 4.2 Prefix-based Labeling Scheme
denote the total number of nodes in the tree which can bgne prefix-based labeling schemes assign each node a code
calculated as: . and the label of the node is formed by combining it's par-
N = Z 1k) ent's label and it's code. Kaplan et al[6] propose a labeling
o scheme which assigns the codg*10" to the i’th child

of a node. The node’s label is formed by concatenating
it's binary-string to it's parent’s label. For example, if a
node’s code is 10" and it's parent’s label is “0110” then
Range-based labeling (RL) scheme assigns each node tvtloe node’s label would be0110-10 = 011010". No-
numbers that denote the start and end points of an intetice that this assignment ensures that siblings are always
val. The maximum value that these numbers can take is thassignedrefix-freebinary-strings. For this reason, no two

4.1 Range-based Labeling Scheme

Root Node R_ogtﬁl\\lode

B
// -
Nodes that ’\i/ | ,’/ Nodes that
require relabeling D\‘ ‘,\ require relabeling
DL , \ D2 D3
~ New Insertion New Insertion

Figure 11: All the children of the ancestdr need to be Figure 12: All the nodes with pre-order position greater
relabeled. than the inserted node need to be relabeled.

nodesin atree are assigned the same label. But the problegpnime is approximately * log (k); [15] shows that the er-
with such a labeling scheme is, label-size increases lipear ror of such an assumption is negligible. Keeping to this
as f increases. Hence, an improved labeling is suggestedssumption and from the condition thst> f<, the num-
in which the children of a node are assigned the codes ber of bits required to store th¥’th prime will be greater
thand * log f+log (d = log f)*. Also, the label assigned to
0, 10, 1100, 1101, 1110, 11110000, 11110001, ... a node by this scheme is not just the code of the node but
the product of all the codes of its ancestors. Hence, the
Namely, the(i+1)’st string is obtained by incrementing the maximum size of a PNL scheme generated label could be
binary representation of thh string and if the string con- much larger than that of an SL scheme generated label.
tains all1’s, the string size is doubled by adding at its PNL scheme uses the concept©hinese Remainder
end. Notice that all the strings generated in such a fashfheoremto determine the document order using a single
ion remainprefix-free The maximum size of théth child value called Simultaneous Congruence (SC). A node’s ex-
in the second method is- log (7) [6], a marked improve- act document-order position can be calculate®&snod
ment. We consider only the second form of labeling chil-node’s prime(see [15] for more details). With such a for-
dren in the remaining part of our discussion and refer to thenulation, only a new SC value has to be computed to reflect
corresponding labeling scheme Bynary-Prefix Labeling the change in positions of the nodes whenever a new node
schemgBPL). The maximum size for a label in BPL is is inserted. However, computing this new value requires
(4-d-log f)[6] while an SL scheme’s label can take utmost accessing all the labels of the tree which is computation-
d xlog f + log (d x log f). ally heavy.
When updates are made on the tree, prefix-based label-
ing schemes require relabeling parts of the tree when thé.4 QED and CDBS based Labeling Schemes

position at which the insertion is requested is not avail- . . i
able (see Figure 10). This is because, prefix-based Iabe.-I[he primary advantage with QED or CDBS based encod

) .) ; - _ing methods is that they allow arbitrary code insertions int
ing schemes assign chlldr(_an of a node consecutive blnarg gsequence of existiné codes withogt requiring any rela-
strings from an infinite prefix-free sequence. Since the asf)eling. They order the set of binary-strings (integers) us-

signmentis done from the b(_egmnmg of this sequence, Ord%g a lexicographical approach instead of a numerical ap-
is maintained among the children.

proach. Approaches like RL scheme or ORDPATHS, which
use a numerically ordered domain of integers to build la-
bels, can use these encoding methods to generate compo-
Wu et al[15] proposes a prime number based labelingients of their labels and benefit from their ordering method
scheme (referred to as PNL scheme from here on) whiclat the time of new insertions by not requiring to relabel
assigns each node a prime-number and forms the label @y of the existing labels. Li et al [9] show that CDBS

a node by multiplying it's prime-number with it's parent’s generates smaller codes than QED and requires the same
label. For example, if a node’s prime-number is 11 andnumber of bits as that of integers to represent a given num-
it's parent’s label is 6 then the node’s label will be 66. ber of codes. Hence, any existing scheme used together
We know that, from the characteristics of prime numbers; 4Note that thed = log f+log (d + log f) bound on size of theV'th

the £'th prime-number is .approxi.matel}y * log (k) [15]. prime is a very weak bound considering that the condifion> < from
Hence, the number of bits required to representithie Equation 5 is very weak

4.3 Prime Number based Labeling Scheme

with the CDBS encoding method will not see its maximum labels 25% smaller than that of the RL scheme (the most

label-size decrease. Thus the SL scheme will remain comeoncise labeling scheme available before) and 45% smaller

paratively label-efficient than the CDBS based schemes. than that of the BPL scheme. As expected, the average
When a new node is inserted into an already labeled tredabel size of the RL scheme is lesser than the other dynamic

CDBS based labeling schemes do not need to relabel arlgbeling schemes because of its tight-labeling of the tree

of the existing nodes. However, SL scheme may requirgodes.

relabeling the descendants of the node at which the new in-

sertion is_made. Hence, CDBS based schemes are more up- Update-Performance Analysis

date efficient than the SL scheme. But, the labels generated

by these schemes for new insertions are much larger sind&hile it is important that a labeling scheme generate con-

the size of a newly inserted code between two already exis®ise labels, it also should have the ability to efficiently ac

ing codes is larger than any of them by atleast 1 bit. In thecommodate new insertions onto an already labeled tree. To

case of SL scheme, whenever a relabeling operation is petest the update performance of the labeling schemes we use

formed at a node, the increase in the label size will be by Zwo experiments that were first given in [13].

bit but the label space at that node doubles. Hence, though Concentrated-Insertions Experiment Initially a two-

CDBS based labeling schemes do not require to perfornevel XML tree with 2000 elements is chosen and a new

the relabeling operation dynamic labels generated by thenwo-level subtree with 1000 elements is inserted at the root

increase in size at a much faster rate. node of the base tree amongst the middle of it's children.
The insertion is done one element at a time. Specifically,
5 Experimental Results the subtree’s root is inserted first at the root node of the bas

document. Then it’s first and last children are insertedt nex
We implemented in C++, the four labeling schemes: rangethe second and it's second-to-last children, and so on. The
based labeling scheme, prefix-based labeling schemeew nodes are constantly inserted at the middle of a par-
prime-number labeling scheme and the proposed sectoent’s children, the most probable position of an insertion.
based labeling scheme. Five XML datasets chosen fromve refer to this experiment a®ncentrated-insertions ex-
the Niagara XML dataset repository [2] were labeled us-periment The number of nodes updated by the four label-
ing these schemes. Table 1 shows the characteristics @fig schemes in the presence of such a sequence of inser-
these datasets. Column 3 in the table gives the number afons is given in Table-2.
XML files in the dataset. All the XML files in a dataset
are concatenated to form one large file corresponding ti
the dataset and experiments are conducted on this file. Tt
GNOME XML parser libxml [1] is used to parse the given
XML datasets. All the experiments were carried out on an

Intel Celeron 2.3GHz machine with 256 MB RAM.] :::t
Dataset Name Files| Nodes | Leaves p |
D1 NASA 1475| 774,602| 348,724
D2 Shakespeare| 37 | 327,132| 147,448 .
D3 Sigmod Record 990 | 98,914 | 35,633 5
D4 Movies 490 | 42,779 | 16,745 1
D5 Club 12 5,002 2,073
D1 D2 D3 D4 D5

Table 1:Characteristics of the Datasets

120 4

osL

-

[=3

o
L

ORL

=]
o

B
I=)

Avg. Label Size (in bits)
=)
o

[
o

o

Datasets

igure 13: Average label size for each of the labeling

(1) use small prime numbers to label the root node an chemes

it's children, and (2) allocaté¢2!,22 23 ... 2¢} as codes

to leaves. FurtheR’ is allocated as a code to a leaf only ~ The number of relabellings required by the labeling
when no primes less than this number are already assigneghemes are divided by 100 for better readability. In this
to other nodes. We included both these optimizations in outable, see that the RL scheme requires the maximum num-

For the PNL scheme, [15] mentions two optimizations:(5

implementation of the PNL scheme. ber of relabellings. This is because, a new node can be ac-
commodated in a RL scheme only by relabeling all the old
5.1 Label-Size Analysis nodes occurring after the new node in the document order.

However, BPL relabels only descendants of the inserted

Figure 13 shows the results of our experimental study on,,qe’s right-siblings. Hence, it's update performance in
In

the space requirements of the four labeling schemes.
all th.e five datasets, SL performs better_than every Other spesyits are provided in a table instead of a graph plot toranadate
labeling scheme. The SL scheme consistently generatediferent ranges of numbers of different labeling schemes.

this experimentis comparatively better than the otherlfabe| Insertions| RL/100 | PNL/100 | BPL/100 | SL/100
ing schemes. Although SL's update requests are handled jn 1000 990957 | 198191 555 555
a similar fashion as that of BPL, sometimes it has to rela; 2000 1992089 398417 1140 1140
bel descendants of the inserted node’s left-siblings ak well 3000 2978442| 595688 1746 1748
This happens when there is no sector space available to ac- 4000 3972529| 794505 2382 2393
commodate the new insertion, and new space can only he 5000 4976614 995322 3044 3070
created by increasing the radius of the siblings. But sincé 6000 5988452 1197690| 3737 3792
the sector space doubles after every increase in the radius, 7000 7000148 1400029| 4456 4563
such a necessity decreases with the increase in insertions. gpo0 8008439| 1601687 5199 5368
This is evident from the Table 2 as difference between SI—gg00 | 9006590] 1801318| 5955 6221
and BPL decreases with the increase in the number of inser=—75000 | 9987864| 1997572| 6731 7100
tions. Note that though PNL's performance was not as good

as BPL and SL |n|t|a”y, with the increase in the number 0fTab|e 3: Number of nodes relabeled by each |abe|ing
updates it's performance has come very close to BPL. Thigcheme in aScattered-I nsertions Experiment

is because PNL requires relabeling one fifth of the nodes
relabeled by RL. But SL and BPL require relabeling a por-

tion of the parent’s descendants which have increased dugew insertions to the tree gracefully. We gave a theoret-

to the concentrated insertions.

Insertions| RL/100 | PNL/100 | BPL/100 | SL/100
100 1786 202 24 25
200 8507 417 98 100 o
300 25153 642 222 227
400 56725 877 396 401
500 108221 1122 620 625
600 184642 1376 894 904
700 290988 | 1641 1218 1228
800 432260| 1916 1592 1602
900 613456 2201 2016 2026
1000 839577 | 2496 2490 2500

Table 2: Number of nodes relabeled by each labeling
scheme in aConcentrated-1 nsertions Experiment

Scattered-Insertions ExperimentIn this experiment,

the insertions are scattered over the tree instead of being

concentrated at one node. The base-tree is the same as th
explained in the first experiment. The maximum number

of insertions in this experiment are 10000 instead of 100045]

as done in the first experiment. This was done to decreas
the effect of scattering the insertions which gave too few
insertions per node. Further, the insertions take place onl
on the non-leaf nodes as insertions on leaves is a no cos
operation for SL and BPL. The results of this experiment
are given in Table 3. As before, the number of relabellings
required by the labeling schemes are divided by 100 for bet-
ter readability. Notice that the labeling schemes BPL and
SL require same relabellings initially which changes as the
number of updates increase. This is because, more node
would come closer to the first powers of 2 with increase in
insertions. SL's relabellings remain far lesser than tHat o
PNL and RL.

6 Conclusion

In this paper we proposed a new approach to label nodes

in an XML tree such that the labels are concise and allow

ical analysis of the proposed SL scheme as well as other
existing schemes and show that our labeling scheme gen-
erates labels comparatively smaller than existing labelin
schemes. Our experiments on a variety of datasets confirm
ur theoretical analyses.

References

[1] Libxml: The XML C parser and toolkit of GNOME.
http://iwww.xmlsoft.org/, 2005.

repository,

[2] Niagara XML dataset

www.cs.wisc.edu/niagaral.

T. Amagasa, M. Yoshikawa, and S. Uemura. Qrs: A
robust numbering scheme for xml documents(poster).
In International Conference on Data Engineerjng
2003.

(3]

Scott Boag, Don Chamberlin, Mary F. Fernan-
dez, Daniela Florescu, Jonathan Robie, and Jerome
Simeon. XQuery 1.0: An XML query language, W3C
working draft. 2001.

[4]

at

J. Clarke and S. DeRose. XML path language (XPath)
version 1.0, W3C recommendation. 1999.

Edith Cohen, Haim Kaplan, and Tova Milo. Labeling
dynamic XML trees. InSymposium on Principles of
Database Systempages 271-281, 2002.

[6]
t

Paul F. Dietz. Maintaining order in a linked list. In
proceedings of the 14th Annual ACM Symposium on
Theory of Computingpages 122-127, 1982.

[7]

i8]

Changging Li and Tok Wang Ling. QED: A novel
quaternary encoding to completely avoid re-labeling
in xml updates. InConference on Information and
Knowledge Management (CIKMpages 501-508,
2005.

Changging Li, Tok Wang Ling, and Min Hu. Efficient
processing of updates in dynamic xml data.lriter-
national Conference on Data EngineerirgP06.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expressions. In
The VLDB Journglpages 361-370, 2001.

Jason McHugh and Jennifer Widom. Query optimiza-
tion for XML. In The VLDB Journalpages 315-326,
1999.

Patrick O'Neil, Elizabeth O’Neil, Shankar Pal, Istvan
Cseri, Gideon Schaller, and Nigel Westbury. ORD-
PATHs: insert-friendly XML node-labels. 1ACM
SIGMOD International Conference on Management
of Data, pages 903—-908, 2004.

Adam Silberstein, Hao He, Ke Yi, and Jun Yang.
BOXes: Efficient maintenance of order-based label-
ing for dynamic XML data. Innternational Confer-
ence on Data Engineeringages 285-296, 2005.

Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,
Jayavel Shanmugasundaram, Eugene Shekita, and
Chun Zhang. Storing and querying ordered XML us-
ing a relational database system. AGM SIGMOD
Conference on Management of Dapeges 204—215,
2002.

Xiaodong Wu, Mong Li Lee, and Wynne Hsu. A
prime number labeling scheme for dynamic ordered
XML trees. Ininternational Conference on Data En-
gineering 2004.

M. Yoshikawa and T. Amagasa. XRel: A path-based
approach to storage and retrieval of xml documents
using relational databases. ACM Transactions on
Internet Technologie2001.

