
A Concise Labeling Scheme for XML Data

Risi Thonangi

Software Engineering and Technology Labs,
Infosys Technologies Limited,

Bangalore, India.
Risi Thonangi@infosys.com

Abstract

In this paper, we look at the problem of assigning labels to
nodes of a dynamic XML tree such that the labels encode
all ancestor-descendant relationships between the nodes
and the document-order between the nodes. Such labeling
facilitates efficient XML query processing. A number of
labeling schemes have been designed for this task. These
schemes can be broadly classified into (1) Static Labeling
Schemes and (2) Dynamic Labeling Schemes. While static
schemes generate short labels, their performance degrades
in update intensive environments. Dynamic schemes have
nice update performance, but their size of labels is high. A
good labeling scheme should generate concise labels and
should perform better when there are arbitrary updates on
the XML tree. In this paper, we present a new labeling
scheme called Sector-based Labeling (SL) scheme which
labels nodes with sectors. We analyze the proposed SL
scheme and show that it generates smaller labels than the
static schemes and has update performance as good as the
dynamic schemes. We conduct experiments and show that
the obtained results substantiate our analyses.

1 Introduction

The growing popularity of XML standard for communi-
cation on the Internet has led to ubiquitous existence of
XML data. This triggered the need for systems which can
store and query XML data efficiently. An XML document
consists of a hierarchy of properly nested tagged elements.
Query languages such as XPath [5] and XQuery [4] fa-
cilitate searching a document by traversing its hierarchy.
Using such languages, a user can define path/tree-pattern
queries. The document order in which the XML elements
appear plays an important role in query formation.

Older XML query processors stored XML data in its na-
tive tree form and searched it by traversing its hierarchy.
The tree traversal was either top-down or bottom-up [11].
While traversing the tree, the query processor book-keeps
all partial matches that were found. When a new node is

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14–16, 2006
c©Computer Society of India, 2006

read by the search procedure, any old partial matches which
convert to complete matches are output to the user. These
query processors were time consuming and inefficient as
they traverse the complete tree for every query.

To overcome this problem, each node in a tree is as-
signed a label such that these labels capture ancestor-
descendant relationships between the nodes[10, 16]. They
should also capture thedocument-order1 among the nodes.
Once the nodes are labeled, they become independent en-
tities and can be stored in a back-end relational database
without the pointers. This method allows indexing the
nodes onelement-nameand other important fields which
improves query processing performance.

In this paper, our topic of interest is labeling the nodes
so as to preserve relationships between them. A number
of labeling schemes have been proposed until now to solve
this problem. They can be broadly classified into two cate-
gories.

(1) Static Labeling Schemes
These schemes are mainly designed to label XML
documents which are static. Cost of inserting a new
element into a document labeled by a static scheme
is high but the labels generated by these schemes are
concise.

(2) Dynamic Labeling Schemes
Schemes in this category are useful to label update in-
tensive XML documents. The size of the labels gener-
ated by these schemes is comparatively high, but they
can accommodate new insertions efficiently into the
XML tree.

Earlier proposed schemes were mainly static labeling
schemes and were typically range-based [10, 7, 3]. The
Range-Labeling (RL) [10] scheme assigns each node a
range on a one-dimensional axis such that a node’s range
will include all it’s children’s ranges. The average label-
size generated by this scheme is2 ∗ log N whereN is the
number of nodes, but labeling new insertions into the XML
tree may frequently require relabeling many nodes.

1The order in which elements appear in an XML document. This order
is the same as the pre-order of a tree.



Newer labeling schemes like [15, 6] are dynamic
schemes which design prefix-based labels that increase in
length as the node’s depth increases. The update perfor-
mance of these schemes is much better than static schemes
but the labels generated are larger in size. The extra stor-
age space required to store these labels affects the query
processing performance as more hard-disk reads would be
necessary. The labels might also be inefficient to process if
they cannot fit into native machine words.

The main contributions of this paper are summarized as
follows:

• we propose a new labeling scheme which generates la-
bels smaller than that of static schemes and has update
performance as good as the dynamic schemes. The
new labeling scheme called as Sector-based Labeling
(SL) scheme allocates sectors in a two-dimensional
plane as labels.

• We present algorithms to label a given tree with
sector-based labels and to insert nodes into it at run
time.

• We derive mathematical formulae to quickly find
ancestor-descendant and document-order relation-
ships between two labels.

• We give an in-depth label-size analysis of the pro-
posed SL scheme as well as other existing schemes
and show that SL scheme is relatively concise and is
efficient at handling updates.

• We conduct experiments on standard datasets and
compare label-size conciseness and efficiency at han-
dling updates between the proposed SL scheme and
existing schemes.

The rest of the paper is organized as follows. Section 2
discusses related work. In section 3, we present the new
Sector-based Labeling scheme. In section 4, we analyze
the label size complexity and update performance of the ex-
isting labeling schemes. In section 5 we give experimental
results. Section 6 concludes the paper and discusses some
future avenues for research in labeling schemes.

2 Related work
2.1 Static Labeling Schemes

Dietz labeling scheme [7, 16], an early static-labeling
scheme, assigns each node two values:“pre” and “post”.
The pre (post) value of a nodeA is the position ofA in
the pre-order (post-order) traversal of the tree. NodeA is
an ancestor ofB if-and-only-if

A.pre < A.pre ∧ A.post > B.post.

However, such a labeling scheme does not allow any inser-
tions into the labeled tree without relabeling a large part of
the tree. The XISS System [10] employs a labeling scheme
which assigns every node two values as its label: “order”

and “size”. The two values form a range (order, order+size)
and hence this scheme is called asrange-labeling (RL)
scheme. The labels are assigned such that a child’s interval
is contained in all it’s parents’ intervals. Two nodesA and
B form an ancestor-descendant pair if-and-only-if

A.order < B.pre < A.order + A.size.

Thesize of a node determines the number of children it can
hold and is inversely proportional to the depth of the node.
Theorder values of the nodes in the tree increase in pre-
fix order. This labeling scheme allows insertions to a node
until space in its interval is available. When it runs out of
space at a node, a new insertion at it can only be accommo-
dated by “size” of the node. This might require relabeling
nodes with pre-order positions larger than the current node.
Although Dietz and RL schemes are effective in generating
concise labels they cannot handle updates efficiently. It is
also difficult, in the case of RL scheme, to determine how
much space to allocate to each node. There by, a situation
can occur where parts of the XML tree with frequent up-
dates might run out of space while other parts of the tree
might be left with free space.

2.2 Dynamic Labeling Schemes

Dynamic labeling schemes like [14, 6, 12] assign a code
to each node and the label of a node is the concatenation
of all the codes of nodes appearing on its incoming path
from the root node. For such labeling schemes, checking
for an ancestor-descendant relationship between two nodes
is equivalent to determining if one node’s label is a prefix
of the other. The integer-based prefix labeling scheme [14],
called as the Dewey labeling scheme, assigns an integer ‘n’
(code) to then’th child of a node. A node’s label is the
concatenated string of the integers assigned to all it’s an-
cestors. A delimiter is used while concatenation to remove
ambiguities. Cohen et al [6] circumvent the problem of
delimiters by allocatingprefix-freebinary codes to sibling
nodes. They discuss two methods to generate such codes.
In section 4, we analyze these two methods.

Wu et al[15] propose a new prefix-based labeling
scheme based on the property of prime numbers. In this
labeling scheme, each node is assigned a prime-number
and the label of a node is formed as the product of all
it’s ancestors’ prime numbers. Checking for an ancestor-
descendant relationship between two nodes labeled with
the prime number labeling scheme is equivalent to deter-
mining if the descendant’s label is perfectly divisible by
the ancestor’s label.

Li et al propose two schemes, QED[8] and CDBS[9],
which include novel encoding methods to support code (a
quaternary or binary string) insertion into a sequence of ex-
isting codes without disturbing the order between them and
without requiring to relabel them. An important feature
of these approaches is that they compare codes based on
the lexicographical order rather than the numerical order
which allows a code insertion between two existing codes
by increasing the size of the inserted code. For example, a



A B

R

DC
(a) An example XML tree

x

R

A
B

C

D

O

(b) XML nodes and their la-
bels/sectors

Figure 1: Assigning sectors as labels to nodes

new code 1101 can be inserted between two existing codes
11 and 111 without disturbing existing codes. Such an en-
coding method can be used with static or dynamic labeling
schemes.

The above discussed dynamic schemes can handle dy-
namically changing XML documents easily (see Sec-
tion 4). However, they are not space efficient. With in-
crease in depth and fan-out of a tree, the size of labels gen-
erated by these schemes increase faster than range-based
labeling schemes. Apart from such high storage costs,
these labels are also inefficient to process on, compared to
the range-based labels, especially in cases when they can-
not be accommodated into native machine words.

Silberstein et al[13] present two I/O-efficient data struc-
tures to maintain labels of large and dynamic XML docu-
ments. The two data structures, W-BOX (Weight-balanced
B-tree for Ordering XML) and B-BOX (Back-linked B-tree
for ordering XML), are B-tree based data structures which
organize the labels for efficient updates. The ideas pro-
vided here are fairly general and can be incorporated into
any labeling scheme.

3 Sector-based Labeling

The Sector-based Labeling (SL) scheme chooses sectors
for nodes in such a way that the ancestor-descendant re-
lationship and the document-order between any two nodes
can be determined from their labels. In this section, we
explain the proposed SL scheme in detail. Section 3.1
proposes an algorithm to efficiently label nodes of an XML
tree with sector-based labels and analyzes the complexity
of the generated labels. Section 3.2 presents an efficient
scheme to handle new insertions.

We use the following notation in the coming sections.
Labels are denoted byA, B. Since each node is assigned
exactly one unique label, symbolsA andB are also used to
denote the respective nodes to which these labels were as-
signed. If a labelA has two fields, the first field is denoted
by A1 and the second field is denoted byA2; A is written
as〈A1, A2〉. The X,Y co-ordinates of a pointP on a two
dimensional plane are denoted byP.x andP.y respectively.

origin (O)

A
s

size=1

A

−X

A r
2

Figure 2: Node ’A’ and it’s SL label〈Ar, As〉

3.1 Sector-based Labeling (SL) Scheme

The sectors are allocated to nodes in such a way that the
angle formed by a parent’s sector at the origin completely
encloses that of all its children. Figures 1(a) and 1(b) show
an example tree and the sectors assigned to its nodes. See
Figure 2 for an example of a node labeled by SL scheme.
The horizontal line which originates at the origin and ex-
tends towards the negative X direction (labeled as -X) is
the reference axis. Angles are measures w.r.t this axis. SL
scheme incorporates two optimizations to make the label-
ing scheme space efficient. The optimizations are given
below.

(1) only sectors of unit size and with their center at origin
are considered by the labeling scheme. For example
in Figure 2 the sector allocated toA is of size 1 and
has its center at the origin.

(2) only sectors with radius a power of 2 are considered.
In Figure 2, the radius of the sector allocated toA is
2Ar .

With these two optimizations in place, each sector con-
sidered for a label can be uniquely identified by two values:
(1) the logarithm2 of its radius, and (2) the offset it makes
w.r.t the reference axis. These two values are assigned as
a label to the node to which the sector is assigned. For ex-
ample, in Figure 2, the node A is assigned a label〈Ar, As〉
where2Ar is the radius of the sector assigned to A andAs is
theradial-distance3 of thestarting pointof the sector from
the reference-axis. Such a representation for sectors en-
sures that the space required to store a label is considerably
smaller as the sector-length is not stored and only the log-
arithm of the sector’s radius is stored. Section 3.1.2, gives
a detailed analysis of the size complexity of SL scheme’s
labels.

The algorithm to label a given XML tree is given in Fig-
ure 3. Given a nodeA, algorithmLabel-Tree labels all the
descendants ofA by traversing the subtree rooted atA in

2in this paper, all logarithms are to the base 2.
3The radial-distance between two points on a circle is the smallest dis-

tance one point has to traverse on the perimeter of the circleto reach the
other point.



Label-Tree(A,〈Ar, As〉)
// ’A’ is the XML tree node with label〈Ar , As〉
// This function labels all the descendants of ’A’
1. Find mink s.t. 2k > A.num − children
2. i = 0
3. for-eachD a child ofA
4. Dr = Ar + k

5. Ds = As ∗ 2k + i
6. Label-Tree(D,〈Dr, Ds〉)
7. i = i + 1
8. return

Figure 3: Algorithm to label an XML tree with SL labels

origin (O)

A

D

sD
2

Dr

2
Ar

As

C
2Ar

Ds’

Figure 4: Nodes A and D, where A is an ancestor of D

a depth first fashion.Label-Tree is first invoked with the
root node and the root node’s label〈0, 0〉. It initially finds
minimumk such that2k is atleast the number of children of
A (step 1 in Figure 3).Label-Tree ensures that each child
of A is assigned a sector that is a part of anexpandedA’s
sector (denoted asA′ in Figure 5). The radius ofA′ is 2k

times to that ofA and hence it’s sector starts atAs ∗ 2k.
Also, the size of sectorA′ will be 2k times ofA’s sector
size. As the sector size ofA is of unit magnitude, sector
size ofA′ will be 2k. Steps 2-7 break sectorA′ into unit
length sectors and distribute them to the immediate chil-
dren ofA. Figure 5 shows one descendantD of nodeA
being labeled with the first unit-sector starting fromAs ∗2k

on radius2Ar+k.

3.1.1 Checking for Ancestor-Descendant relationship
and Document-Order

The next theorem gives a necessary and sufficient condition
the sectors allocated to an ancestor and its descendant will
satisfy.

Theorem 1 Node A is an ancestor of node D,iff their allo-
cated labels (sectors),〈Ar , As〉 and〈Br, Bs〉 respectively,
satisfy the following equation:

Dr > Ar ∧ ⌊Ds ≫ (Dr − Ar)⌋ = As (1)

where ‘≫’ stands for the standard right-shift bit-operation.

origin (O)

A

2
Ar

A
s

2Ar+k

As*2
k

A’

D

Figure 5: Accommodating A’s children

Proof 1 LetCr denote a circle with radiusr and center at
origin. From figure 4, D will be a descendant of Aiff the
projection of D’s sector ontoC2Ar overlaps with A’s sector
which means the pointD′

s should lie onA’s sector. The
radial distance ofD′

s from the reference axis is given by:

Ds ∗
2Ar

2Dr

.

This projection should lie on A’s sector, which means the
following should hold true:

As ≤ Ds ∗
2Ar

2Dr

< As + 1

⇒ ⌊ Ds ∗
2Ar

2Dr

⌋ = As

⇒ ⌊ Ds ≫ (Dr − Ar) ⌋ = As

subject to the condition thatDr > Ar . Hence, A is an
ancestor of Diff

Dr > Ar ∧ ⌊Ds ≫ (Dr − Ar)⌋ = As

Node A is an ancestor of D if〈Ar , As〉 and 〈Dr, Ds〉
satisfy Equation 1. Further, A appears before D in the
document-order if the projection ofDs on the circle with
radiusAr is greater thanAs. When the projection ofDs

coincides withAs, the node with the smaller radius will
come first in the document order. The following condition
evaluates true whenA appears beforeD:
(

Ar

Dr

∗ Ds > As

)

∨

(

Ar

Dr

∗ Ds = As ∧ Ar < Dr

)

3.1.2 Label Size Complexity

The size of the label plays an important role because the
storage requirement of the labeling scheme has a direct im-
pact on the performance of the XML query processor. The



origin (O)

A

2
Ar

A
s

2Ar+k

As*2
k

D1

D
2

Free Space

Insertion to
be made here

Figure 6: Position at which the new insertion is requested.

number of nodes in the tree is usually huge and hence ar-
bitrarily large labels will attract significant I/O cost at the
time of query processing. Further, processing times will be
higher for labels which cannot be fit into native machine-
words. SL generates the smallest labels when compared to
any other labeling scheme and hence improves the query
response time. Letf be the fan-out of an XML tree andd
be its maximum depth. The below theorem gives the max-
imum number of bits required to store an SL label.

Theorem 2 The maximum number of bits an SL generated
label would require is

Lmax(SL) < d ∗ log f + log (d ∗ log f)

Proof 2 Since the SL scheme labels every nodeA in the
tree with a unit-length sector, the children ofA should be
allocated sectors on radius that isf times the radius ofA.
Radius ofA is 2Ar , hence the radius of any of it’s children
would be2Ar+log f . Thus, if the root node is assigned the
label 〈0, 0〉, a leaf node’s radius will be2d∗log f . Since
we only store the logarithm of the radius, the maximum
number of bits required to represent the radius of any node
is:

Lmax(Ar) = log (d ∗ log f).

The number of leaves in the XML tree arefd. These leaves
are assigned unit-length sectors starting from the reference
axis on the circle with radius2d∗log f . The last among these
leaves is labeled with a sector that starts atfd-1. Hence:

Lmax(As) = log (fd − 1)

< d ∗ log f

Lmax(SL) = Lmax(Ar) + Lmax(As)

< log (d ∗ log f) + d ∗ log f

3.2 Handling Insertions

When a new node is inserted the following three cases can
occur.

case-1The position at which the insertion is requested
is free. For example in Figure 5, when an insertion is
requested at nodeA’s second child (i.e. afterD).

case-2The parent has space, but the position at which
the new insertion has to be made is not free. For ex-
ample, in Figure 6 when an insertion is requested at
nodeA’s first child.

case-3 The parent has no space left to accommodate
the new child irrespective of the position requested. In
Figure 8, nodeA has2k children that have completely
occupied the available sector space.

Whenever a new insertion is made, the child node (in-
serted node) should be allocated a sector such that the
ancestor-descendant relationships between the already ex-
isting nodes in the XML tree are not disturbed, and new
ancestor-descendant relationships are formed between the
child node and its ancestor nodes. While inserting a node,
we may encounter any of the above three cases. For the
first case, the new insertion can be accommodated trivially
by labeling the inserted node with the requested sector. For
example, in Figure 5 nodeA has only one descendantD.
If an insertion is requested by the user at position-2 among
A’s children (i.e. after nodeD), the request can be pro-
cessed without disturbing any existing labels. The sector at
position-2 is available and is allocated to the inserted node.

For the second case, the position at which the insertion
is requested is already occupied. In Figure 6, the insertion
request is at the position occupied byD1. To insert the new
node, first the subtrees atD1 andD2 are moved right by
one sector, i.e.D1 is assignedD2’s sector andD2 is as-
signed the sector currently to its right. Such a relocation
frees the sector earlier allocated toD1 which can now be
assigned to the new node (see Figure 7). To move a subtree
one position to its right, the labels of all the nodes which
appear in that subtree have to be changed. Moving the sub-
treesD1 andD2 to their next positions amounts to rotating
them by an angleθ in the label space where

θ =
1

2D1r

.

For every nodeB that is a descendant ofD1, the radius of
it’s sector remains unchanged. Hence, if the new label as-
signed toB is 〈Bnew

r , Bnew
s 〉, thenBnew

r = Bold
r . Because

B’s sector is rotated by an angleθ, the offset at which it’s
new sector starts will be:

Bnew
s = Bold

s + 2Br ∗ θ = Bold
s + 2Br−D1r .

For the third case, no space is available to accommodate
the new insertion irrespective of its requested position and
hence the radius of the current children is increased so as to
create more sector space. Figure 8 shows a situation where
the parent nodeA has no space to accommodate new in-
sertions. The children{D1, D2, . . . , D2k}, which were la-
beled with sectors of radius2Ar+k have occupied the avail-
able space completely. To make space for the new inser-
tion, they are moved to a larger radius2Ar+k′

(k′ > k) so



origin (O)

A

2
Ar

A
s

2Ar+k

As*2
k

Free SpaceD
2

D
1

D’

Inserted Node

Figure 7: Insertion Accommodated by relocatingD1 and
D2

origin (O)

A

2
Ar

A
s

2Ar+k

As*2
k

D1

D
2

D
2k

Figure 8: Space not available for the insertion irrespective
of its requested position

that extra sector-space can be created to accommodate the
insertion (see Figure 3.2). The requested insertion could
have been at any position occupied by the children nodes.
After relocating all the children to a higher radius, the new
node can be inserted as explained in the handling of case-
2. Value ofk′, the exponential increase in the radius of
the sectors, can be chosen to be any value greater thank.
Notice that after relocation, the parent nodeA can accom-
modate2k′

−k times more children than before. We choose
k′ = k+1 to ensure that whenever a relocation is triggered,
the space available at nodeA is doubled. In the process of
this relocation, the entire subtree ofDi is moved to a new
sectorD′

i without disturbing the relationships between the
nodes. Let the label of this sector be〈Dnew

ir
, Dnew

is
〉. Then:

Dnew
ir

= Dold
ir

+ 1 (2)

Dnew
is

= As ∗ 2k′

+ (Dold
is

− As ∗ 2k)

= Dold
is

+ As ∗ (2k+1 − 2k), ∵ k′ = k + 1

= Dold
is

+ As ∗ 2k (3)

In the above equation,As ∗ 2k′

is the new starting point
for children ofA (see Figure 9) and(Dold

is
−As ∗ 2k) com-

putes the position ofDi among its siblings. The new ra-
dius ofDi will be 2Ar+k+1 which is twice that of it’s old
radius. ButDir

stores the exponent ofDi’s radius. Hence,
Dnew

ir
= Dold

ir
+ 1. Theorem 3, given below, calculates the

new label of any descendant ofA.

Theorem 3 Let B be a descendant ofA (the node whose
children are to be relocated), and it’s label prior to the re-
location be〈Bold

r , Bold
s 〉. If A’s children are moved to sec-

tors with their radius twice larger, thenB’s label after the
relocation can be calculated as:

Bnew
r = Bold

r + 1

Bnew
s = Bold

s + As ∗ 2Bold

r
−Ar

Proof 3 The set{D1, D2, . . . , D2k} constitutes the child
nodes ofA, and hence the nodeB has to be a descen-
dant of one among them. Let that node beDi. From
Equation 3,Di’s new label isDnew

ir
= Dold

ir
+ 1 and

Dnew
is

= Dold
is

+ As ∗ 2k wherek = Dold
ir

− Ar. Since
no updates are performed inside the subtreeDi, radii of
all descendants ofDi increase by the same amount thatDi

has undergone. Hence,

Bnew
r = Bold

r + 1. (4)

The descendants ofDi remain in same positionrelativeto
Di. This means, ifD(Br)

is
denotes the projection ofDis

onto the circle of radiusBr, then the quantity(D(Br)
is

−
Bs) remains unchanged after the relocation of the subtree
rooted atDi. By equaling the new and old values of this
quantity:

2Bnew

r

2Dnew

ir

∗ Dnew
is

− Bnew
s =

2Bold

r

2Dold

ir

∗ Dold
is

− Bold
s

2Bnew

r
−Dnew

ir ∗Dnew
is

−Bnew
s = 2Bold

r
−Dold

ir ∗Dold
is

−Bold
s

But Bnew
r − Dnew

ir
= Bold

r − Dold
ir

as bothBr and Dir

have increased by 1 (see Equations 2 and 4). Substituting
this result, and also forDnew

is
calculated from Equation 3

Bnew
s = 2Bold

r
−Dold

ir ∗ (Dold
is

+ As ∗ 2k)

+ Bold
s − 2Bold

r
−Dold

ir ∗ Dold
is

= Bold
s + 2Bold

r
−Dold

ir ∗ As ∗ 2k

= Bold
s + 2Bold

r
−Ar−k ∗ As ∗ 2k,

∵ Dold
ir

= Ar + k

= Bold
s + 2Bold

r
−Ar ∗ As



origin (O)

2A

As*2k

D1

D’
1

D’

D

Free Space

r+k’

2Ar+k

2k’
*sA

2k

2k

Figure 9: Space created by relocating all children to a larger
radius

3.2.1 Cost of Relocation while Updates

As explained at the beginning of this section, three cases
arise while inserting a new node into an XML tree. For
case-1, no relocation cost is incurred as the requested po-
sition for the new node is empty. For case-2, the position
is not available and hence sibling subtrees of the inserted
node to its right is relabeled (see Figure 10). For case-3,
no space is available for the new node irrespective of its
requested position. Hence all the sibling subtrees of the in-
serted node are relabeled (see Figure 11). Note that when-
ever a subtree is relabeled, the space created at its root is
doubled. This ensures that nodes which actively undergo
updates are allocated more space than compared to other
nodes. This happens dynamically, and allows each node
to find the right sector space through the updating environ-
ment. As part of section 4, we analyze the update costs
of various labeling schemes and compare them against SL
scheme.

4 Complexities of other Labeling Schemes

In the previous section (Section 3), we analyzed the label
size complexity of SL scheme and the cost of relocation
associated with relabeling the XML tree when updates are
made. In this section, we analyze and compare the com-
plexities of labeling schemes on two dimensions: (1) Con-
ciseness of the generated labels, and (2) cost of updates. As
in Section 3,f andd are defined as the maximum fan-out
and maximum depth of an XML tree respectively.N will
denote the total number of nodes in the tree which can be
calculated as:

N =

d
∑

k=0

fk (5)

4.1 Range-based Labeling Scheme

Range-based labeling (RL) scheme assigns each node two
numbers that denote the start and end points of an inter-
val. The maximum value that these numbers can take is the

Root Node

R

BA

D

New Insertion

require relabeling

Nodes that

D3D2D1

Figure 10: Siblings occurring after the insertion need to be
relabeled.

number of nodes in the XML tree. But from Equation 5,
the number of nodesN is greater thanfd. Hence, the num-
ber of bits required to store one field of a range-based label
is greater thand ∗ log f . Therefore:

Lmax(RL) > 2 ∗ d ∗ log f (6)

From Theorem 2, the maximum number of bits an SL gen-
erated label can take is:

Lmax(SL) < d ∗ log f + log (d ∗ log f)

Notice thatLmax(RL) is approximately twice ofd ∗ log f ,
while Lmax(SL) has the term appearing only once. But it
contains another termlog (d ∗ log f), which is only loga-
rithmic to that of the earlier term.

Whenever a new node is inserted into the tree, RL
scheme relabels all the ancestor nodes of the new node as
well as nodes which have a higher pre-order position than
the inserted node (see Figure 12). However, the proposed
SL scheme requires relabeling only a subset of the descen-
dants of the inserted node’s parent; as shown in Figure 10
and occasionally as shown in Figure 11. Notice that the
nodes relabeled by SL scheme are a subset of the ones rela-
beled by RL scheme. Hence, SL not only generates smaller
labels than that of RL but also has better update perfor-
mance.

4.2 Prefix-based Labeling Scheme

The prefix-based labeling schemes assign each node a code
and the label of the node is formed by combining it’s par-
ent’s label and it’s code. Kaplan et al[6] propose a labeling
scheme which assigns the code “1i−10” to the i’th child
of a node. The node’s label is formed by concatenating
it’s binary-string to it’s parent’s label. For example, if a
node’s code is “10” and it’s parent’s label is “0110” then
the node’s label would be “0110 · 10 = 011010”. No-
tice that this assignment ensures that siblings are always
assignedprefix-freebinary-strings. For this reason, no two



Root Node

R

BA

D

New Insertion

require relabeling

Nodes that

D1 D2 D3

Figure 11: All the children of the ancestorA need to be
relabeled.

nodes in a tree are assigned the same label. But the problem
with such a labeling scheme is, label-size increases linearly
asf increases. Hence, an improved labeling is suggested
in which the children of a node are assigned the codes

0, 10, 1100, 1101, 1110, 11110000, 11110001, . . .

Namely, the(i+1)’st string is obtained by incrementing the
binary representation of thei’th string and if the string con-
tains all1’s, the string size is doubled by adding0’s at its
end. Notice that all the strings generated in such a fash-
ion remainprefix-free. The maximum size of thei’th child
in the second method is4 · log (i) [6], a marked improve-
ment. We consider only the second form of labeling chil-
dren in the remaining part of our discussion and refer to the
corresponding labeling scheme byBinary-Prefix Labeling
scheme(BPL). The maximum size for a label in BPL is
(4 ·d · log f)[6] while an SL scheme’s label can take utmost
d ∗ log f + log (d ∗ log f).

When updates are made on the tree, prefix-based label-
ing schemes require relabeling parts of the tree when the
position at which the insertion is requested is not avail-
able (see Figure 10). This is because, prefix-based label-
ing schemes assign children of a node consecutive binary
strings from an infinite prefix-free sequence. Since the as-
signment is done from the beginning of this sequence, order
is maintained among the children.

4.3 Prime Number based Labeling Scheme

Wu et al[15] proposes a prime number based labeling
scheme (referred to as PNL scheme from here on) which
assigns each node a prime-number and forms the label of
a node by multiplying it’s prime-number with it’s parent’s
label. For example, if a node’s prime-number is 11 and
it’s parent’s label is 6 then the node’s label will be 66.
We know that, from the characteristics of prime numbers,
the k’th prime-number is approximatelyk ∗ log (k) [15].
Hence, the number of bits required to represent thek’th

Root Node

R

BA

D

New Insertion

require relabeling
Nodes that

D1 D2 D3

Figure 12: All the nodes with pre-order position greater
than the inserted node need to be relabeled.

prime is approximatelyk ∗ log (k); [15] shows that the er-
ror of such an assumption is negligible. Keeping to this
assumption and from the condition thatN > fd, the num-
ber of bits required to store theN ’th prime will be greater
thand ∗ log f+log (d ∗ log f)4. Also, the label assigned to
a node by this scheme is not just the code of the node but
the product of all the codes of its ancestors. Hence, the
maximum size of a PNL scheme generated label could be
much larger than that of an SL scheme generated label.

PNL scheme uses the concept ofChinese Remainder
Theoremto determine the document order using a single
value called Simultaneous Congruence (SC). A node’s ex-
act document-order position can be calculated asSCmod
node’s prime(see [15] for more details). With such a for-
mulation, only a new SC value has to be computed to reflect
the change in positions of the nodes whenever a new node
is inserted. However, computing this new value requires
accessing all the labels of the tree which is computation-
ally heavy.

4.4 QED and CDBS based Labeling Schemes

The primary advantage with QED or CDBS based encod-
ing methods is that they allow arbitrary code insertions into
a sequence of existing codes without requiring any rela-
beling. They order the set of binary-strings (integers) us-
ing a lexicographical approach instead of a numerical ap-
proach. Approaches like RL scheme or ORDPATHs, which
use a numerically ordered domain of integers to build la-
bels, can use these encoding methods to generate compo-
nents of their labels and benefit from their ordering method
at the time of new insertions by not requiring to relabel
any of the existing labels. Li et al [9] show that CDBS
generates smaller codes than QED and requires the same
number of bits as that of integers to represent a given num-
ber of codes. Hence, any existing scheme used together

4Note that thed ∗ log f+log (d ∗ log f) bound on size of theN ’th
prime is a very weak bound considering that the conditionN > fd from
Equation 5 is very weak



with the CDBS encoding method will not see its maximum
label-size decrease. Thus the SL scheme will remain com-
paratively label-efficient than the CDBS based schemes.

When a new node is inserted into an already labeled tree,
CDBS based labeling schemes do not need to relabel any
of the existing nodes. However, SL scheme may require
relabeling the descendants of the node at which the new in-
sertion is made. Hence, CDBS based schemes are more up-
date efficient than the SL scheme. But, the labels generated
by these schemes for new insertions are much larger since
the size of a newly inserted code between two already exist-
ing codes is larger than any of them by atleast 1 bit. In the
case of SL scheme, whenever a relabeling operation is per-
formed at a node, the increase in the label size will be by 1
bit but the label space at that node doubles. Hence, though
CDBS based labeling schemes do not require to perform
the relabeling operation dynamic labels generated by them
increase in size at a much faster rate.

5 Experimental Results

We implemented in C++, the four labeling schemes: range-
based labeling scheme, prefix-based labeling scheme,
prime-number labeling scheme and the proposed sector-
based labeling scheme. Five XML datasets chosen from
the Niagara XML dataset repository [2] were labeled us-
ing these schemes. Table 1 shows the characteristics of
these datasets. Column 3 in the table gives the number of
XML files in the dataset. All the XML files in a dataset
are concatenated to form one large file corresponding to
the dataset and experiments are conducted on this file. The
GNOME XML parser libxml [1] is used to parse the given
XML datasets. All the experiments were carried out on an
Intel Celeron 2.3GHz machine with 256MB RAM.

Dataset Name Files Nodes Leaves
D1 NASA 1475 774,602 348,724
D2 Shakespeare 37 327,132 147,448
D3 Sigmod Record 990 98,914 35,633
D4 Movies 490 42,779 16,745
D5 Club 12 5,002 2,073

Table 1:Characteristics of the Datasets

For the PNL scheme, [15] mentions two optimizations:
(1) use small prime numbers to label the root node and
it’s children, and (2) allocate{21, 22, 23 . . . , 2i} as codes
to leaves. Further,2i is allocated as a code to a leaf only
when no primes less than this number are already assigned
to other nodes. We included both these optimizations in our
implementation of the PNL scheme.

5.1 Label-Size Analysis

Figure 13 shows the results of our experimental study on
the space requirements of the four labeling schemes. In
all the five datasets, SL performs better than every other
labeling scheme. The SL scheme consistently generated

labels 25% smaller than that of the RL scheme (the most
concise labeling scheme available before) and 45% smaller
than that of the BPL scheme. As expected, the average
label size of the RL scheme is lesser than the other dynamic
labeling schemes because of its tight-labeling of the tree
nodes.

5.2 Update-Performance Analysis

While it is important that a labeling scheme generate con-
cise labels, it also should have the ability to efficiently ac-
commodate new insertions onto an already labeled tree. To
test the update performance of the labeling schemes we use
two experiments that were first given in [13].

Concentrated-Insertions Experiment Initially a two-
level XML tree with 2000 elements is chosen and a new
two-level subtree with 1000 elements is inserted at the root-
node of the base tree amongst the middle of it’s children.
The insertion is done one element at a time. Specifically,
the subtree’s root is inserted first at the root node of the base
document. Then it’s first and last children are inserted, next
the second and it’s second-to-last children, and so on. The
new nodes are constantly inserted at the middle of a par-
ent’s children, the most probable position of an insertion.
We refer to this experiment asconcentrated-insertions ex-
periment. The number of nodes updated by the four label-
ing schemes in the presence of such a sequence of inser-
tions is given in Table-25.

Figure 13: Average label size for each of the labeling
schemes

The number of relabellings required by the labeling
schemes are divided by 100 for better readability. In this
table, see that the RL scheme requires the maximum num-
ber of relabellings. This is because, a new node can be ac-
commodated in a RL scheme only by relabeling all the old
nodes occurring after the new node in the document order.
However, BPL relabels only descendants of the inserted
node’s right-siblings. Hence, it’s update performance in

5Results are provided in a table instead of a graph plot to accommodate
different ranges of numbers of different labeling schemes.



this experiment is comparatively better than the other label-
ing schemes. Although SL’s update requests are handled in
a similar fashion as that of BPL, sometimes it has to rela-
bel descendants of the inserted node’s left-siblings as well.
This happens when there is no sector space available to ac-
commodate the new insertion, and new space can only be
created by increasing the radius of the siblings. But since
the sector space doubles after every increase in the radius,
such a necessity decreases with the increase in insertions.
This is evident from the Table 2 as difference between SL
and BPL decreases with the increase in the number of inser-
tions. Note that though PNL’s performance was not as good
as BPL and SL initially, with the increase in the number of
updates it’s performance has come very close to BPL. This
is because PNL requires relabeling one fifth of the nodes
relabeled by RL. But SL and BPL require relabeling a por-
tion of the parent’s descendants which have increased due
to the concentrated insertions.

Insertions RL/100 PNL/100 BPL/100 SL/100
100 1786 202 24 25
200 8507 417 98 100
300 25153 642 222 227
400 56725 877 396 401
500 108221 1122 620 625
600 184642 1376 894 904
700 290988 1641 1218 1228
800 432260 1916 1592 1602
900 613456 2201 2016 2026
1000 839577 2496 2490 2500

Table 2: Number of nodes relabeled by each labeling
scheme in aConcentrated-Insertions Experiment

Scattered-Insertions Experiment In this experiment,
the insertions are scattered over the tree instead of being
concentrated at one node. The base-tree is the same as that
explained in the first experiment. The maximum number
of insertions in this experiment are 10000 instead of 1000
as done in the first experiment. This was done to decrease
the effect of scattering the insertions which gave too few
insertions per node. Further, the insertions take place only
on the non-leaf nodes as insertions on leaves is a no cost
operation for SL and BPL. The results of this experiment
are given in Table 3. As before, the number of relabellings
required by the labeling schemes are divided by 100 for bet-
ter readability. Notice that the labeling schemes BPL and
SL require same relabellings initially which changes as the
number of updates increase. This is because, more nodes
would come closer to the first powers of 2 with increase in
insertions. SL’s relabellings remain far lesser than that of
PNL and RL.

6 Conclusion

In this paper we proposed a new approach to label nodes
in an XML tree such that the labels are concise and allow

Insertions RL/100 PNL/100 BPL/100 SL/100
1000 990957 198191 555 555
2000 1992089 398417 1140 1140
3000 2978442 595688 1746 1748
4000 3972529 794505 2382 2393
5000 4976614 995322 3044 3070
6000 5988452 1197690 3737 3792
7000 7000148 1400029 4456 4563
8000 8008439 1601687 5199 5368
9000 9006590 1801318 5955 6221
10000 9987864 1997572 6731 7100

Table 3: Number of nodes relabeled by each labeling
scheme in aScattered-Insertions Experiment

new insertions to the tree gracefully. We gave a theoret-
ical analysis of the proposed SL scheme as well as other
existing schemes and show that our labeling scheme gen-
erates labels comparatively smaller than existing labeling
schemes. Our experiments on a variety of datasets confirm
our theoretical analyses.

References
[1] Libxml: The XML C parser and toolkit of GNOME.

http://www.xmlsoft.org/, 2005.

[2] Niagara XML dataset repository,
www.cs.wisc.edu/niagara/.

[3] T. Amagasa, M. Yoshikawa, and S. Uemura. Qrs: A
robust numbering scheme for xml documents(poster).
In International Conference on Data Engineering,
2003.

[4] Scott Boag, Don Chamberlin, Mary F. Fernan-
dez, Daniela Florescu, Jonathan Robie, and Jerome
Simeon. XQuery 1.0: An XML query language, W3C
working draft. 2001.

[5] J. Clarke and S. DeRose. XML path language (XPath)
version 1.0, W3C recommendation. 1999.

[6] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling
dynamic XML trees. InSymposium on Principles of
Database Systems, pages 271–281, 2002.

[7] Paul F. Dietz. Maintaining order in a linked list. InIn
proceedings of the 14th Annual ACM Symposium on
Theory of Computing, pages 122–127, 1982.

[8] Changqing Li and Tok Wang Ling. QED: A novel
quaternary encoding to completely avoid re-labeling
in xml updates. InConference on Information and
Knowledge Management (CIKM), pages 501–508,
2005.

[9] Changqing Li, Tok Wang Ling, and Min Hu. Efficient
processing of updates in dynamic xml data. InInter-
national Conference on Data Engineering, 2006.



[10] Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expressions. In
The VLDB Journal, pages 361–370, 2001.

[11] Jason McHugh and Jennifer Widom. Query optimiza-
tion for XML. In The VLDB Journal, pages 315–326,
1999.

[12] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan
Cseri, Gideon Schaller, and Nigel Westbury. ORD-
PATHs: insert-friendly XML node-labels. InACM
SIGMOD International Conference on Management
of Data, pages 903–908, 2004.

[13] Adam Silberstein, Hao He, Ke Yi, and Jun Yang.
BOXes: Efficient maintenance of order-based label-
ing for dynamic XML data. InInternational Confer-
ence on Data Engineering, pages 285–296, 2005.

[14] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,
Jayavel Shanmugasundaram, Eugene Shekita, and
Chun Zhang. Storing and querying ordered XML us-
ing a relational database system. InACM SIGMOD
Conference on Management of Data, pages 204–215,
2002.

[15] Xiaodong Wu, Mong Li Lee, and Wynne Hsu. A
prime number labeling scheme for dynamic ordered
XML trees. InInternational Conference on Data En-
gineering, 2004.

[16] M. Yoshikawa and T. Amagasa. XRel: A path-based
approach to storage and retrieval of xml documents
using relational databases. InACM Transactions on
Internet Technologies, 2001.


