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Abstract

Transformation of a source schema with its conforming
data to a target schema with its conforming data is an
important activity in XML as two schemas in XML can
represent same real world information. Specifically in
XML data integration, transformation of a source to a
target is regarded as an important task. An XML
source schema can often be defined with XML key
which is an important integrity constraint. Thus when
a source schema with keys is transformed, keys need
to be transformed as they are defined on the schema.
Moreover there is a need to investigate whether the
transformed keys are valid and preserved. In this pa-
per, we study how XML keys are transformed, and
whether the transformed keys are valid and preserved
to the target schema. Towards this problem, we firstly
define XML keys and their satisfactions. We then show
how the XML keys are transformed using transforma-
tion operations. Finally, we study the key preservation
property of important XML transformation operators.
We show that the important XML transformation op-
erations are key preserving with necessary and suffi-
cient conditions.

1 Introduction

Transformation of data plays an important role in data
integration with any data model[1, 2, 3, 4, 7, 8]. In
recent years, with the advent of XML as an widely
used data representation and storage format over the
world wide web, transformation of data from an XML
source to an XML target is also considered as an im-
portant activity[5, 6, 10, 11, 12]. An XML source
schema can be defined with XML keys. Thus, when an
XML source schema is transformed to a target schema,
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XML keys can also be transformed. We note here that
though the transformation of XML data is researched
in past[9, 13, 14, 16], but the transformation of data
with keys solely in XML(XML to XML) is little inves-
tigated to the best of our knowledge[15, 17, 18, 19].
We illustrate the research problems using motivating
examples.

<!ELEMENT enroll(dept+) >
<!ELEMENT dept(dname, (cid, sid+)+) >

Figure 1: XML DTD Da

Example 1: Consider the DTD Da in Fig.1 that
describes the enrollment of students in the courses
of departments where dname stands for department
name, cid stands for course id, and sid stands for stu-
dent id(for simplicity, we omit the type (#PCDATA)
from the DTD). We see that for each department,
student ids are grouped under each course id. Now
consider the key ka1(enroll/dept, {cid}) on Da where
enroll/dept is called the selector and cid is called
the field. We say the key ka1 is valid because both
the selector and the connection of the selector and the
field as selector/field, enroll/dept/cid, is a valid
path on Da, and the type of last element of the field
is #PCDATA. The ka1 requires that cid values un-
der all selector nodes are distinct. This requirement
is satisfied by Ta in Fig.2 because under the selec-
tor nodes v1 and v2(as last element of the selector
path enroll/dept is dept), the values (cid : Phys01),
(cid : Phys02), and (cid : Chem02) are distinct. Now
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Figure 2: XML Tree Ta



we want to transform the DTD Da in Fig.1 with its
document Ta in Fig.2 to the DTD Db in Fig.3 and its
document Tb in Fig.4 where the cid value is distributed
to each of the associated sid values and hence we ex-
pect to get the flat structure in Db. We term this
transformation as unnest(a technical definition will
be given later). After transformation, we see that
the key ka1 needs no change as it is valid on Db.
But ka1 is not satisfied by Tb as there are two val-
ues (cid : Phys01) and (cid : Phys01) which are not
distinct under the selector node v1 and also there are
two values (cid : Chem02) and (cid : Chem02) which
are not distinct under the selector node v2. We say
the key ka1 is not preserved by the unnest operator in
this case.

<!ELEMENT enroll(dept+) >
<!ELEMENT dept(dname, (cid, sid)+) >

Figure 3: XML DTD Db
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Figure 4: XML Tree Tb

Observation 1 XML key(s) may not be preserved
after the transformation of a DTD and its conforming
document.

Example 2: Consider the key
ka2(enroll/dept, {cid, sid}) on Da in Fig.1. We
note that there are two fields in ka2 . In this case, ka2

is satisfied if the tuples of (cid, sid) are value distinct
under all selector nodes. By tuple, we mean the value
of a close pair of the fields(a technical definition will
be given later). So the tree Ta satisfies the key ka2 as
the tuples under nodes v1 ((cid : Phys01)(sid : 001)),
((cid : Phys01)(sid : 002)), and ((cid : Phys02)(sid :
003)) are all value distinct and also the tuples
under node v2, ((cid : Chem02)(sid : 004)), and
((cid : Chem02)(sid : 002)) are all value distinct. We
note here that ((cid : Phys02)(sid : 002)) is not a
correct tuple under node v1 as the two nodes are not
close. Similarly, ((cid : Phys01)(sid : 003)) is not a
correct tuple under node v1.

<!ELEMENT enroll(dept+) >
<!ELEMENT dept(dname, course+) >
<!ELEMENT course(cid, sid+) >

Figure 5: XML DTD Dc

We now consider another transformation that trans-
forms the DTD Da in Fig.1 to Dc in Fig.5. In the

transformation, we use a new element course to push
away the structure (cid, sid+) from enroll/dept. We
term this transformation as expand.

 

Vr 

V8 V11 

enroll 

Phys01 

V9 V13 V12 

dname 

V6 

cid V14 V15 cid sid cid 

004 001 002 Chem02 

V10 

V1 V2 

V3 

dname 

dept dept

sid sid sid sid 

Physics Chemistry 

Phys02 003 002 

V4 V5 V7 course course course 

Figure 6: XML Tree Tc

Now the key ka2(enroll/dept, {cid, sid}) defined
on Da is no longer valid as the connection of
the selector and the fields: enroll/dept/cid and
enroll/dept/sid are not valid paths on Dc. So there
is a need to transform the key to make the key valid.
There are two options to transform ka2 : One is to
add the course element to the beginning of fields
as k′a2

(enroll/dept, {course/cid, course/sid}) and the
other is to add the course element at the last of selec-
tor as k′′a2

(enroll/student/course, {cid, sid}).
Observation 2 How XML keys should be trans-

formed needs to be defined when the DTD is trans-
formed.

While addressing the problems, our paper aims at
the following contributions.

• Firstly, we define XML keys over XML DTDs and
the satisfaction of XML keys[25]. This definition
is between the strong key definition and the weak
key definition [20] and addresses some shortages
of both definitions. At the same time, the key
satisfaction uses a novel concept called P-tuple
which is more precise in capturing the semantics
than existing definitions [20, 22].

• Secondly, We show how XML keys are trans-
formed so that the transformed keys have valid
syntax and contain valid paths of the transformed
DTD. This is presented on the basis of impor-
tant transformation operations. As full transfor-
mation operations use many operators proposed
in [33], but for space reasons, this paper considers
only the commonly used operators namely nest,
unnest, expand and collapse which are also ap-
peared in [10, 11]. These operators are core ones
when XML data is transformed and the study
of key transformation against these operators has
great importance.

• Lastly, we show whether a key is preserved by a
transformation. Again this is studied based on the
operators. In general, key preservation against
some of the operators does not hold. However,
we identified sufficient and necessary conditions
indicating cases where keys are preserved.



Our paper is organized as follows. In section 2, we
give basic definitions and notations used throughout
the paper. We define the transformation definitions
on XML keys using operators in section 3. In section
4, we show the key preservation properties of trans-
formation operations using the transformed and valid
keys. We note our research on preservation of XML
functional dependency and XML referential integrity
in XML data transformation in section 5. A list of
future research issues are discussed in section 6. We
conclude in section 7.

2 Basic Definitions

In this section, we give some preliminary definitions
that are used throughout the paper.

Our model is XML Document Type
Definition(DTD)[23] with some restrictions. We
allow the same element names to appear in disjunc-
tions, but not among conjunctions in DTD. We do
not allow recursion. We do not consider attributes be-
cause there is an one-to-one correspondence between
an attribute and an element with multiplicity ’1’.

We define operations on multiplicities. The mean-
ing of a multiplicity can be represented by an integer
interval. Thus the intervals of ?, 1, +, and ∗ are [0, 1],
[1, 1], [1,m], [0,m] respectively. The operators for mul-
tiplicities c1 and c2 are ⊕, ª and ⊇. c1 ⊕ c2 is the
multiplicity whose interval encloses those of c1 and c2:
+⊕? = ∗ and 1⊕? =?. c1ªc2 is the multiplicity whose
interval equals to the interval of c1 and c2 adding that
of ′1′. Thus ?ª? = 1 and ∗ ª + =?. c1 ⊇ c2 means
that c1’s interval contains c2’s interval.

Definition 2.1 An XML DTD is defined as D =
(EN, G, β, ρ) where

(a) EN contains element names.
(b) G is the set of element definitions and g ∈ G
is defined as
(i) g = Str where Str means #PCDATA;
(ii) g = e where e ∈ EN ;
(iii) g = ε means EMPTY type;
(iv) g = g1×g2 or g1|g2 is called conjunctive or

disjunctive sequence respectively where g1 =
g is recursively defined, g1 6= Str ∧ g1 6= ε;

(v) g = gc
2 ∧ g2 = e∧ e ∈ EN , or g2 = [g× · · · ×g]

or g2 = [g| · · · |g], called a component where
c ∈ {?, 1, +, ∗} is the multiplicity of g2, [] is
the component constructor;

(c) β(e) = [g]c is the function defining the type of
e where e ∈ EN and g ∈ G.

(d) ρ is the root of the DTD and that can be only
be used as β(ρ). ¤

Example 2.1 The DTD in Fig.1 can be
represented as D = (EN, G, β, ρ) where
EN = {enroll, dept, dname, sid, cid}, G =
{Str, [dept]+, [dname×[cid×sid+]+]}, β(enroll) =

[dept]+, β(dept) = [dname×[cid×sid+]+],
β(dname) = Str, β(sid) = Str and β(cid) = Str.

Definition 2.2 An XML tree T parsed from an XML
document in our notation is a tree of nodes and each
is represented as T = (v : e (T1T2 · · ·Tf )) if the node
is internal or T = (v : e : txt) if the node is a leaf node
with the text txt. v is the node identifier which can be
omitted when the context is clear, e is the label on the
node. T1· · ·Tf are subtrees. ¤

Example 2.2 The XML tree Ta in Fig.2 can be rep-
resented as Tvr

= (vr : enroll(Tv1Tv2)), Tv1 =
(v1 : dept(Tv3Tv4Tv5Tv6Tv7Tv8)), Tv2 = (v2 :
dept(Tv9Tv10Tv11Tv12)), Tv3 = (v3 : dname : Physics),
Tv4 = (v4 : cid : Phys01), Tv5 = (v5 : sid : 001),
Tv6 = (v6 : sid : 002), Tv7 = (v7 : cid : Phys02), Tv8 =
(v8 : sid : 003), Tv9 = (v9 : dname : Chemistry),
Tv10 = (v10 : cid : Chem02), Tv11 = (v11 : sid : 004),
and Tv12 = (v12 : sid : 002).

Now we give an example to show the important con-
cept hedge. Consider g1 = [cid×sid+]+ for the DTD
Da in Fig.1. The trees Tv4Tv5Tv6Tv7Tv8 form a se-
quence conforming to g1 for node v1 and the trees
Tv10Tv11Tv12 form a sequence for node v2. However,
when we consider g2 = cid×sid+, there are two se-
quences conforming to g2 for node v1: Tv4Tv5Tv6 and
Tv7Tv8 . For node v2, there is only one sequence con-
forming to g2: Tv10Tv11Tv12 . To reference various
structures and their conforming sequences, we intro-
duce the concept hedge, denoted by Hg, which is a
sequence of trees conforming to the structure g. Thus
Hg2

1 = Tv4Tv5Tv6 , Hg2
2 = Tv7Tv8 for node v1 and

Hg2
3 = Tv10Tv11Tv12 for node v2.

Definition 2.3 (Hedge) A hedge H is a sequence of
consecutive primary sub trees T1T2 · · ·Tn of the same
node that conforms to the definition of a specific struc-
ture g, denoted by Hbg or Hg:

(1) if g = e ∧ β(e) = Str,H = T = (v : e : txt);
(2) if g = e ∧ β(e) = g1, H = T = (v : e : H ′) and
H ′ b g1;

(3) if g = ε, H = T = φ;
(4) if g = g1×g2, H = H1H2 and H1 b g1 and
H2 b g2;

(5) if g = g1|g2, H = H0 and H0 b g1 or H0 b g2;
(6) if g = gc

1 ∧ g1 = e, H = (eH1) · · · (eHf ) and
∀i = 1, · · · , f (Hi b β(e)) and f satisfies c;

(7) if g = gc
1 ∧ g1 = [g], H = H1 · · ·Hf and ∀i =

1, · · · , f(Hi b g) and f satisfies c. ¤

Because gs are different substructures of an element
definition, then Hgs are different groups of child nodes.
Because of the multiplicity, when there are multiple
Hgs, we use Hg

j to denote one of them and Hg∗ to
denote all of them.



Definition 2.4 (Tree Conformation) Given a
DTD D = (EN, G, β, ρ) and XML Tree T , T con-
forms to D denoted by T b D if T=(ρ Hβ(ρ)).
¤

Definition 2.5 (Hedge Equivalence) Two trees
Ta and Tb are value equivalent, denoted by Ta =v Tb,
if

(1) Ta = (v1 : e : txt1) and Tb = (v2 : e : txt1), or
(2) Ta = (v1 : e : T1 · · ·Tm) and Tb = (v2 : e :
T
′
1 · · ·T

′
n) and m = n and for i = 1, · · · ,m(Ti =v

T
′
i ).

Two hedges Hx and Hy are value equivalent, denoted
as Hx =v Hy, if

(1) both Hx and Hy are empty, or
(2) Hx = T1 · · ·Tm and Hy = T

′
1 · · ·T

′
n and m = n

and for i = 1, · · · ,m(Ti =v T
′
i ) ¤

Tx ≡ Ty if Tx and Ty refer to the same tree. We note
that, if Tx ≡ Ty, then Tx =v Ty.

Definition 2.6 (Minimal hedge) Given a DTD
definition β(e) and two elements e1 and e2 in β(e),
the minimal structure g of e1 and e2 in β(e) is the
pair of brackets that encloses e1 and e2 and any other
structure in g does not enclose both.
Given a hedge H of β(e), a minimal hedge of e1 and
e2 is one of Hgs in H. ¤

Example 2.3 Let β(dept) = [dname×[cid×sid+]+] in
Da. Thus, The minimal structure of dname and sid
is g1 = [dname×[cid×sid+]+]. Thus the minimal hedge
conforming to g1 is Hg1

1 = Tv3Tv4Tv5Tv6Tv7Tv8 for
node v1 and Hg1

2 = Tv9Tv10Tv11Tv12 for node v2 in Ta.
But the minimal structure of cid and sid is g2 =

[cid×sid+]. So the the minimal hedges conforming to
g2 are Hg2

1 = Tv4Tv5Tv6 , Hg2
2 = Tv7Tv8 for node v1

and Hg2
3 = Tv10Tv11Tv12 for node v2 in Ta.

Definition 2.7 (Paths) Given a D = (EN, G, β, ρ),
a simple path ℘ on D is a sequence e1/ · · · /em, where
∀ei ∈ EN and ∀ ew ∈ [e2, · · ·, em] (ew is a symbol in
the alphabet of β(ew−1)). A simple path ℘ is a com-
plete path if e1 = ρ. A path ℘ is empty if m = 0,
denoted by ℘ = ε. We use function last(℘) to return
em, beg(℘) = e1, par(ew) = ew−1, the parent of ew.
We use len(℘) to return m. Paths satisfying this def-
inition are said valid on D. ¤

Example 2.4 In Fig.1 on the DTD Da, dept/sid
is a simple path and enroll/dept/sid is a com-
plete path. The function beg(enroll/dept/sid) returns
enroll. The function last(enroll/dept/sid) returns
sid, par(sid) returns dept, and len(enroll/dept/sid) =
3.

Definition 2.8 (XML Key) Given a DTD D =
(EN, G, β, ρ), an XML key on D is defined as

k(Q, {P1, · · · , Pl}), where l ≥ 0, Q is a complete path
called the selector, and {P1, · · ·, Pi, · · ·, Pl} (often de-
noted by P ) is a set of fields where each Pi is defined
as:

(a) Pi = ℘i1 ∪ · · · ∪ ℘ini ,where ”∪” means
disjunction and ℘ij (j ∈ [1, · · · , ni]) is a simple
path on D, and β(last(℘ij)) = Str, and ℘ij has
the following syntax:
℘ij = seq
seq = e | e/seq where e ∈ EN ;

(b) Q/℘ij is a complete path. ¤

A path ℘ is in P if ∃ Pi ∈ P (℘ ∈ Pi). ℘ ∈ k if
℘ = Q or ℘ ∈ P . We use ℘i to mean a path in Pi if
there is no ambiguity. A key following this definition
is called a valid key on D, denoted by k@D. A key is
not valid if some conditions in the definition 2.8 is not
satisfied.

Example 2.5 Let ka1(enroll/dept, {cid}) be a key
notation on Da in Fig.1. The selector is Q =
enroll/dept which is a complete path and field is P1 =
℘11 = cid is a simple path, β(cid) = Str. We see that
Q/℘11 = enroll/dept/cid is a complete path. This no-
tation represents a valid key.

We give here an example where the disjunctive
paths are considered in XML key definition according
to the DTD.

<!ELEMENT db(stud+) >
<!ELEMENT stud(sname, (email|tellno)+) >

Figure 7: XML DTD D

Example 2.6 Using our DTD notation, we rep-
resent D as β(db) = [stud+], β(stud) =
[sname×[email|tellno]+] in Fig.7. We define a key
as k(db/stud, {sname, email|tellno} on D where se-
lector is Q = db/stud and the fields are P1 =
℘11 = sname, P2 = ℘21|℘22 = email|tellno.
Q/℘11 = db/stud/sname, Q/℘21 = db/stud/email,
and Q/℘22 = db/stud/tellno are complete paths. The
type of sname, email, and tellno are Str.

We define some additional notation. T e means a
tree rooted at a node labeled by the element name
e. Given path e1/· · ·/em, we use (v1 : e1).· · ·.(vm−1 :
em−1).T em to mean the tree T em with its ancestor
nodes in sequence, called the prefixed tree or the pre-
fixed format of T em . Given path ℘ = e1/· · ·/em,
T℘ = (v1 : e1).· · ·.(vm−1 : em−1).T em . 〈T℘〉 is the
set of all T℘ and 〈T℘〉 = {T℘

1 , · · · , T℘
f }. |〈T℘〉| returns

the number of T℘ in 〈T℘〉. Because Pi = ℘i1| · · · |℘ini ,
we use 〈TPi〉 to mean all T℘ij s and TPi = T℘i to mean
one of T℘ij s. We use T℘i ∈ TQ to mean that T℘i is a
sub tree of TQ. Similarly, 〈TPi〉 ∈ TQ means that all
trees TPi are sub trees of TQ.



Example 2.7 We define T dept to mean the tree Tv1 or
Tv2 in Ta of Fig.2. Consider a path Q = enroll/dept.
Then last(Q) = dept. We use TQ to mean the tree
Tv1 or Tv2 , 〈TQ〉 = {Tv1 , Tv2}, and |〈TQ〉| = 2. Now
let a path be ℘ = cid. So 〈T℘〉 = {Tv4 , Tv7} ∈ Tv1 and
〈T℘〉 = {Tv10} ∈ Tv2 in Ta.

We now introduce the novel concept P-tuples using an
example 2.8.

<!ELEMENT db(univ+) >
<!ELEMENT univ(dept, staff+)+ >
<!ELEMENT staff(fname, lname) >

Figure 8: XML DTD D

Example 2.8 Consider an XML key on D in Fig.8
as k(db/univ, {dept, staff/fname, staff/lname})
where Q = db/univ, P1 = dept, P2 = staff/fname,
P3 = staff/lname. All the pair combinations of
the fields are (P1, P2), (P1, P3), and (P2, P3). Then
in Fig.9, the tuple (Tv3Tv8Tv9) is a P-tuple because,
with regard to (P1, P2) and (P1, P3), Tv3 and Tv4 (the
parent of both Tv8 and Tv9) are from the same min-
imal hedge of [dept×staff+] under Tv1 ; with regard
to (P2, P3), Tv8 and Tv9 are from the same minimal
hedge of [fname×lname] under Tv4 . In the same way
of reasoning, (Tv3Tv10Tv11) is another P-tuple under
Tv1 , and (Tv6Tv12Tv13) is a P-tuple under Tv2 . On
the contrary, the tuple (Tv3Tv8Tv11) is not a P-tuple
because Tv8 and Tv11 are not in the same minimal
hedge of [fname×lname] with regard to (P2, P3).
Another non-P-tuple under Tv1 is (Tv3Tv10Tv9). The
tuples prevent incorrect trees from being combined
in the key satisfaction test, for example, when the
first name of one staff member combines with the last
name of another staff member, the tuples does not
make sense in the application.
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Definition 2.9 (P-tuple) Given a key
k(Q, {P1, ..., Pl}) and a tree T , let TQ be a tree
in T . A P-tuple under TQ is a tuple of pair-wise close
subtrees (TP1 · · ·TPl) as we define next.
Let ℘i = e1/· · ·/ek/ek+1/· · ·/em where ℘i ∈ Pi, and
℘j = e′1/· · ·/e′k/e′k+1/· · ·/e′n where ℘j ∈ Pj, for any Pi

and Pj. Let (v1 : e1).· · ·.(vk : ek).(vk+1 : ek+1).· · ·.TPi

and (v′1 : e′1).· · ·.(v′k : e′k).(v′k+1 : e′k+1).· · ·.TPj

be the prefixed formats of TPi and TPj where
(vm : em) = root(TPi) and (v′n : e′n) = root(TPj ).
Then TPi and TPj are pair-wise close if
(a) If e1 6= e′1, then (v1 : e1) and (v′1 : e′1) are the
nodes of the same minimal hedge of e1 and e′1 in
β(last(Q)).
(b) If e1 = e′1, · · ·, ek = e′k, ek+1 6= e′k+1, then
vk = v′k, (vk+1 : ek+1) and (v′k+1 : e′k+1) are two nodes
in the same minimal hedge of ek+1 and e′k+1 in β(ek).
¤

A P-tuple (TP1 · · ·TPl) is complete if ∀ TPi ∈
(TP1 · · ·TPl)(TPi 6= φ). We use 〈TP 〉 to denote all
possible P-tuples under a TQ tree and |〈TP 〉| means
the number of such P-tuples. Two P-tuples F1 =
(TP1

1 · · ·TPl
1 ) and F2 = (TP1

2 · · ·TPk
2 ) are value equiv-

alent, denoted by F1 =v F2 if l = k and for each
i = 1, · · ·, k (TPi

1 =v TPi
2 ).

Definition 2.10 (Key Satisfaction) An XML tree
T satisfies a key k(Q, {P1, ..., Pl}), denoted by T ≺ k,
if the followings are hold:

(i) If {P1, ..., Pl} = φ in k, then T satisfies k iff
there exists one and only one TQ in T ;

(ii) else,
(a) ∀ TQ ∈ 〈TQ〉 (exists at least one P-tuple in

TQ);
(b) ∀ TQ ∈ 〈TQ〉 (every P-tuple in TQ is com-

plete);
(c) ∀ TQ ∈ 〈TQ〉 (every P-tuple in TQ is value

distinct);
(d) ∀TQ

1 , TQ
2 ∈ 〈TQ〉( exists two P-tuples

(TP1
1 · · ·TPl

1 ) ∈ TQ
1 ∧ (TP1

2 · · ·TPl
2 ) ∈ TQ

2 ∧
(TP1

1 · · ·TPl
1 ) =v (TP1

2 · · ·TPl
2 )

⇒ TQ
1 ≡ TQ

2 ). This requires that P-tuples
under different selector nodes must be dis-
tinct. ¤

Example 2.9 Let ka3(enroll, {dept/cid, dept/sid})
be a key on Da in Fig.1. We want to check whether ka3

is satisfied by the XML document Ta in Fig. 2. In Ta,
we have only one node vr for the selector Q = enroll.
For the node vr, we have the P-tuples F1 = (Tv4Tv5),
F2 = (Tv4Tv6), F3 = (Tv7Tv8), F4 = (Tv10Tv11) and
F5 = (Tv10Tv12). As as F1, F2, F3, F4, F5 are all value
different, so Ta ≺ ka3 .

Now consider another key ka4(enroll, {dept/sid}).
So, for vr, there are P-tuples F1 = (Tv5), F2 = (Tv6)
, F3 = (Tv11) and F4 = (Tv12). But as F2 =v F4, so
Ta ⊀ ka4 .

Theorem 2.1 Let k(Q,P ) be a key and P 6= φ.
T≺k(Q, P ), iff there exists a P-tuple for every TQ and
all P-tuples are complete and value distinct in T .



2.1 Discussion

Our definition for XML key has some advantages over
other definitions proposed in the literature [20, 21, 22,
27].
(i) Our definition uses leave nodes for key fields and

these leave nodes must appear in the tree to sat-
isfy the key definition. This prevents empty sub-
trees from being under last(Pi).

(ii) Our definition directly corresponds to the rela-
tional keys in the sense that both types of keys
uses value comparison.

(iii) Our key definition addresses the ambiguity in tu-
ple production for key fields in [20]. As shown in
Example 2.8, our definition prevents semantically
incorrect combinations in tuple production.

(iv) There are two types of key definitions proposed
in the literature[20, 24], strong key definition and
weak key definition. Strong key definition allows
only one P-tuple of fields in the key to appear
under each target node. While the weak key def-
inition allows multiple P-tuples for the key fields
under each target node and some of these P-tuples
can be the same(duplicate) but tuples between
different target nodes must be different. However,
our definition is between the two definitions in the
sense that we allow multiple tuples, but all tuples
of the key fields must be distinct in the tree.

3 Transformation on Key Validity and
Compliance

Given a DTD D and a document T such that T bD,
a transformation τ transforms D to D̄ and T to T̄ ,
denoted by τ(D,T ) → (D̄, T̄ ). We use top bar(−)
to mean the transformation of DTD D, or XML doc-
ument T , or XML key k. The problem whether T̄
conforms to D̄ was investigated in [12]. In this pa-
per, we investigate how the transformation affects
the properties of a key defined on D. More for-
mally, given D, T , k and a transformation τ such that
k@D ∧ T bD ∧ T≺k, and τ(D, T, k) → (D̄, T̄ , k̄)), we
would like to know what k̄ is, whether k̄ is valid on
D̄, and whether T̄ satisfies k̄. In this section, we an-
swer two questions: how a key can be transformed in
correspondence to the transformation of the DTD and
the document, and whether a transformed definition is
valid. Recall that key validity means that every path
℘ in k̄ is valid on D̄; Q in k̄ is not empty; if ℘ ∈ P ,
℘ must be ended with a leaf element having Str type
and Q/℘ is a complete path.

3.1 Transformation Operations

Before answering the two questions, we introduce four
transformation operations. These transformation op-
erators are expand, collapse, nest, and unnest. We
note that these transformation operators are consid-
ered in most literatures [10, 11, 12] for transforming

XML data. We refer to [32] for a complete set of op-
erators for XML data transformation to the interested
readers. To understand the effect of these operators on
XML key transformation and preservation, we need to
know how they work.

Definition 3.1 (Expand) The expand operator uses
a new element name to push a component one level
away from the root. Let enew be the new element and
gd be the component to be pushed. If g = gd 6= ε
where gd is a component in β(e) and enew /∈ β(e),
then expand(gd, enew) → g = enew ∧ β(enew) = gd.
With documents, expand(H) → H̄ where H = Hg

and H̄ = (enewHg). ¤

Example 3.1 Let β(ρ) = [A×[B×C]+]+. Let the tree
be T = (ρ(A : 1)(B : 2)(C : 3)(B : 4)(C : 5)(A :
6)(B : 7)(C : 8)). Note that we can expand either
[B×C](without ’+’) or [B×C]+(with ’+’). Then, af-
ter expand([B×C], E), β1(ρ) = [A×E+]+, β1(E) =
[B×C] and T̄ = (ρ(A : 1)(E(B : 2)(C : 3))(E(B :
4)(C : 5))(A : 6)(E(B : 7)(C : 8))). If we
do expand([B×C]+, E), β1(ρ) = [A×E]+, β1(E) =
[B×C]+ and T̄ = (ρ(A : 1)(E(B : 2)(C : 3)(B : 4)(C :
5))(A : 6)(E(B : 7)(C : 8))).

Definition 3.2 (Collapse) The collapse operator
uses the definition of an element to replace that ele-
ment name. Let ecoll be the element to be collapsed. If
g = ec

coll ∧ β(ecoll) = [gecoll
]c1 and gecoll

∩ par(ecoll) =
φ, then the transformation collapse(ecoll) → g =
[gecoll

]c⊕c1 . With documents, collapse(H) → H̄ where
H = Hg = (ecollH

[gecoll
]∗

1 ) · · · (ecollH
[gecoll

]∗
m ), m satis-

fies c and H̄ = H
[gecoll

]∗

1 · · ·H [gecoll
]∗

m . ¤

Example 3.2 Let β(ρ) = [A×B]+,β(B) = [C]. Let
the tree be T = (ρ(A : 1)(B(C : 3))(A : 1)(B(C :
5))). Then, after collapse(B),β1(ρ) = [A×C]+ and
T̄ = (ρ(A : 1)(C : 3)(A : 1)(C : 5)). Note that we can’t
collapse(C) because β(C) = Str.

Definition 3.3 (UnNest) The unnest operation on
g2 in [g1 × gc2

2 ]c is defined as, if g = [g1 ×
gc2
2 ]c ∧ c2 = +|∗, then unnest(g2) → [g1 ×

gc2ª+
2 ]c⊕+. Also, unnest(H) → H̄ where H = Hg =

Hg1
1 Hg2

11 · · ·Hg2
1n1

· · ·Hg1
m Hg2

m1 · · ·Hg2
mnm

and the trans-
formed hedge is H̄ = Hg1

1 Hg2
11 · · ·Hg1

1 Hg2
1n1

· · ·
Hg1

m Hg2
m1 · · ·Hg1

m Hg2
mnm

. ¤

Example 3.3 Let β(ρ) = [A×B+] and the tree T =
(ρ(A : 1)(B : 2)(B : 3)(A : 4)(B : 5)). Then, after
unnest(B), β1(ρ) = [A×B]+ and T̄ = (ρ(A : 1)(B :
2)(A : 1)(B : 3)(A : 4)(B : 5)).

Definition 3.4 (Nest) The nest operation on g2 in
[g1 × gc2

2 ]c is defined as, if g = [g1 × gc2
2 ]c ∧ c ⊇ +,

then nest(g2) → [g1 × gc2⊕+
2 ]c. Also, nest(H) → H̄

where H = Hg = Hg1
1 Hg2

1
∗ · · ·Hg1

n Hg2
n
∗ and H̄ =



Hg1
1 Hg2

11

∗ · · ·Hg2
1f1

∗ · · ·Hg1
h Hg2

h1

∗ · · ·Hg2
hfh

∗ where ∀i =

1, · · ·h(Hg1
i1

Hg2
i1

∗ · · ·Hg1
ifi

Hg2
ifi

∗ in H s.t. Hg1
i = Hg1

i1
=

· · · = Hg1
ifi

) and @i, j ∈ [1, · · · , h](i 6= j ⇒ Hg1
i 6= Hg1

j ).
¤

Example 3.4 Let β(ρ) = [A×B]∗. Let the tree be T =
(ρ(A : 1)(B : 2)(A : 1)(B : 3)(A : 2)(B : 5)). Then,
after nest(B),β1(ρ) = [A×B∗]∗ and T̄ = (ρ(A : 1)(B :
2)(B : 3)(A : 2)(B : 5)).

3.2 Transformation of Key Definition

We now define the transformation of keys. We assume
that τ be a primitive transformation operator because
if every τ transforms a key to a key valid, then a se-
quence of operators also transforms the key valid. In
defining the transformation, we need to refer to the
DTD type structure g and the paths ℘ of a key. We
now define the notation.

To describe the relationship between a type struc-
ture g and a path ℘ on a DTD, we define g ♦℘ . e,
reading g crossing ℘ at e, to mean that element e
is in the type structure g and is also a label on path
℘, that is g = [· · · e · · ·] ∧ ℘ = e1/ · · · /e/ · · · em. e is
called the cross point of g and ℘. Given D, τ , and
k(Q, {P1, · · ·, Pl}), if a path ℘ in k is not crossed by
the transformed structure g ∈ D, then ℘̄ = ℘. We
note that each operator changes either Q or a path in
{Pi}, but not both as Pi is a path that connects to Q
to form a complete path. We now present the trans-
formation of keys with regard to the transformation
operations.

Let ℘ = e1/ · · · ek−1/ek/ek+1/ · · · /em be a path in
k. The operators nest and unnest do not change a key
because they manipulate the multiplicities of a type
structure but do not change paths. In other words,
τ(k) = k meaning ∀℘ ∈ k, τ(℘) = ℘. We note that
these two operators may still affect the satisfaction of
a key, which will be shown in the next section.

3.2.1 Transformation on key using expand

If g ∈ β(ek−1) ∧ ek ∈ g and τ = expand(g, enew) then
(a) If ℘ ∈ ({Q} ∪ P ) and (g ♦℘ . e) and (last(℘) 6=

ek−1), then
τ(℘) → ℘̄ = e1/· · ·/ek−1/enew/ek/ek+1/· · ·/em.

(b) If last(Q) = ek−1 ∧ ∀ ℘ ∈ P (beg(℘) ∈ g), then
(1) Option 1: Q̄ = Q/enew and ∀ ℘ ∈ P (℘̄ = ℘).
(2) Option 2: Q̄ = Q and ∀ ℘ ∈ P (℘̄ = enew/℘).

(c) If last(Q) = ek−1 ∧ ∃ ℘ ∈ P (beg(℘) 6∈ g), then
Q̄ = Q and ∀ ℘ ∈ P ∧ beg(℘) = ek(℘̄ = enew/℘).

Example 3.5 We recall the example 2 in the intro-
duction. In example, ka2(enroll/dept, {cid, sid})
on Da in Fig.1 is transformed to
k′a2

(enroll/dept, {course/cid, course/sid}) as the
DTD Da is transformed to the DTD Dc in Fig.5.
Note that we use the option 2 of (b) of the transfor-
mation rules using expand operation.

3.2.2 Transformation on key using collapse

If (β(ek) = g ∧ ek+1 ∈ g) and τ = collapse(ek) , then
τ(℘) → ℘̄ = e1/· · ·/ek−1/ek+1/· · ·/em.

<!ELEMENT enroll(dname, (cid, sid+)+)+ >

Figure 10: XML DTD Dd

Example 3.6 Again, we recall the example 2 in
the introduction. In example, if the transformation
collapse(dept) is applied on Da in Fig.1, the key
ka2(enroll/dept, {cid, sid}) on Da is transformed to
k′′′a2

(enroll, {cid, sid}). We show only the transformed
DTD Dd in Fig.10 using collapse(dept). Note that the
path Q = enroll/dept is transformed to Q̄ = enroll.

Theorem 3.1 Let τ be a transformation defined
above such that τ(k) = k. Then k̄ is valid on D̄, de-
noted as k̄ @ D̄.

Proof sketch: τ doesn’t transform Q to empty and Q
is a valid complete path on D̄. collapse operator does
not collapse a leaf node. So ∀ ℘ ∈ P , β(last(℘)) = Str
is true in k̄. collapse and expand ensure that ∀ ℘ ∈ P ,
Q/℘ is a valid complete path on D̄.

4 Satisfaction of Transformed Keys
and Key preservation

In this section, we investigate how a transformation af-
fects the satisfaction of transformed keys. More specif-
ically, given τ(D, T, k) → (D̄, T̄ , k̄) ∧ k̄@D̄, we inves-
tigate whether T̄ satisfies k̄.

Definition 4.1 (Key Preservation) Given the
transformations on D, T, k as τ(D, T, k) →
(D̄, T̄ , k̄) ∧ k̄@D̄, if T≺k and T̄≺ k̄, we say that
k is preserved by the transformation τ . ¤

4.1 Key Preserving Properties of Operators

We recall the definition of key satisfaction in which
for the key k(Q, {P1, · · ·, Pl}), the satisfaction re-
quires that, if every P-tuple (TP1

1 · · ·TPl
1 ) under TQ

1 is
value different, every P-tuple (TP1

2 · · ·TPl
2 ) under TQ

2 is
value different, and for every TQ

1 , TQ
2 , (TP1

1 · · ·TPl
1 ) 6=v

(TP1
2 · · ·TPl

2 ), then TQ
1 and TQ

2 are different. The def-
inition indicates that when key satisfaction is stud-
ied, our focus is to see (a) whether any TQ ∈ 〈TQ〉
is changed by the transformation, (b) how the P-
tuple (TP1

1 · · ·TPl
1 ) is changed by the transformation,

(c) whether new P-tuples like (TP1
k · · ·TPw

k ) are pro-
duced as the fields in k are changed by the transfor-
mation. We now present two lemmas relating to DTD
and document transformation and the proofs of the
lemmas are straight forward from the definitions.



Lemma 4.1 Given a P-tuple (TP1
k · · ·TPl

k ), a tree TQ

in a document s.t. (TP1
k · · ·TPl

k ) ∈ TQ, and a transfor-
mation τ , if τ does not change TQ, τ does not change
(TP1

k · · ·TPl

k ).

Lemma 4.2 If ∀p ∈ k(τ(℘) = ℘) and τ(T ) = T , then
k is preserved.

We now show the key preservation property of each
operators.

Theorem 4.1 The unnest operator is key preserving
if a) the element structure g1 doesn’t cross the selector
Q, or b) the element structure g1 doesn’t cross some
fields Pi.

Proof:With H = Hg1
1 Hg2

1 Hg2
2 , unnest(H) → H̄ =

Hg1
1 Hg2

1 Hg1
1 Hg2

2 . Note that Hg1
1 is duplicated and

Hg2
1 ,Hg2

2 are unchanged in H̄. So if g2 crosses a path
Q or a path ℘ ∈ P , then either the number of TQ or
the number of P-tuples is not changed in T̄ . But g1

crosses a path Q or a path ℘ ∈ P , then either the num-
ber of TQ or the number of P-tuples can be changed
in T̄ as Hg1

1 is duplicated using unnest. Now if g1 and
g2 cross ℘1 ∈ P1 and ℘2 ∈ P2 respectively, then the
number of P-tuples are unchanged as P-tuples are pro-
duced with the combination of paths ℘1 and ℘2. Note
that both g1 and g2 can’t cross Q. Now we discuss this
as:
Case 1:[g2 ♦Q . e]. Let T e be a tree. Because e ∈ Q,
so either TQ ∈ T e or TQ = T e and (T e ∈ Hg2

1 ∧ T e ∈
Hg2

2 ). In either case, by Lemma 4.1, because T e is not
changed, so TQ as well as P-tuple (T℘1 · · ·T℘l) is not
changed. Moreover, |〈TQ〉| is not changed after unnest
because Hg2

1 and Hg2
2 are not changed. Because T≺k,

so T̄≺k.
Case 2: [g crosses some ℘ ∈ P ]. There are two sub-
cases to consider.
Subcase 1 (g2 ♦℘i . e).
Consider a P-tuple F1 = (T℘1

1 · · ·T℘i

1 · · ·T℘l

1 ) under a
tree TQ

1 and another P-tuple F2 = (T℘1
2 · · ·T℘i

2 · · ·T℘l

2 )
under a tree TQ

2 where ℘1 ∈ P1, · · ·, ℘i ∈ Pi, · · ·℘l ∈ Pl,
T℘i

1 ∈ Hg2
1 and T℘i

2 ∈ Hg2
2 . As T ≺ k, so F1 6=v F2.

After unnest, Hg2
1 and Hg2

2 are not changed. So F1

and F2 are not changed. Because T≺k, so T̄≺k.
Subcase 2 (g1 ♦℘ . e1 and g2 ♦℘ . e2).
Consider a P-tuple F1 = (T℘1

1 · · ·T℘j

1 · · ·T℘k

1 · · ·T℘l

1 )
under TQ

1 where ∃℘ ∈ ℘j ∧ e1 ∈ ℘ and (T℘j

1 ∈
Hg1

1 ∧ T℘k

1 ∈ Hg2
1 ), and another P-tuple F2 =

(T℘1
2 · · ·T℘j

2 · · ·T℘k

2 · · ·T℘l

2 ) under TQ
2 where ∃℘ ∈ ℘k∧

e2 ∈ ℘ and (T℘j

2 ∈ Hg1
1 ∧ T℘k

2 ∈ Hg2
2 ). If T ≺ k,

then F1 6=v F2 in T . After unnest, F1 and F2 are
not changed because the P-tuple F1 is produced from
Hg1

1 Hg2
1 and P-tuple F2 is produced form Hg1

1 Hg2
2 in

H̄. So, T̄ ≺ k, if T ≺ k.
Note 1: g1 ♦Q . e. In this case, though TQ and

(T℘1 · · ·T℘l) are not changed according to Lemma 4.1,
but |〈TQ〉| can be changed because Hg1

1 is duplicated

in H̄ after the unnest operation. Thus, the duplication
of TQ as TQ

1 , TQ
2 having P-tuples as F1 = (T℘1

1 · · ·T℘l

1 )
and F2 = (T℘1

2 · · ·T℘l

2 ) respectively where F1 =v F2,
can cause violation of key satisfaction in T̄ . So, T̄ ⊀ k,
if T ≺ k.
Note 2: g1 ♦℘i . e. In this case, the element struc-
ture g1 of g crosses ℘i. Consider a P-tuple F1 =
(T℘1

1 · · ·T℘i

1 · · ·T℘l

1 ) under a tree TQ
1 where ℘1 ∈

P1, · · ·, ℘i ∈ Pi, · · ·℘l ∈ Pl and another P-tuple F2 =
(T℘1

2 · · ·T℘i

2 · · ·T℘l

2 ) under a tree TQ
2 . As T ≺ k, so

F1 6=v F2. After unnest, there are duplicate P-tuples
as F1 and F ′1 under TQ

1 where F1 =v F ′1, or F2 and
F ′2 under TQ

2 where F2 =v F ′2 in T̄ because Hg1
1 is

duplicated in H̄. Thus, after unnest, T̄ ⊀ k, if T≺k.

Example 4.1 We recall the example given in the in-
troduction as motivation. We showed that the tree Ta

satisfies the key ka1(enroll/dept, {cid}) on the DTD
Da. In Da, g = [cid×sid+]+ where g1 = cid and
g2 = sid+. So, g1 = cid crosses ℘1 = cid. After
unnest(sid), g = [cid×sid]+ and the hedge Hg1 = Hcid

is duplicated in Tb. Thus there are duplicated P-tuples
(v4 : cid : Phys01), (v6 : cid : Phys01) in Tv1 and
(v11 : cid : Chem02), (v13 : cid : Chem02) in Tv2 and
ka1 is not satisfied by Tb. The reason for this is that
g1 crossed the field path.

Theorem 4.2 The nest operator is key preserving.

Proof sketch: With hedges H = Hg1
1 Hg2

1 Hg1
2 Hg2

2 ,
If Hg1

1 =v Hg1
2 , then nest(H) → H̄ = Hg1

1 Hg2
1 Hg2

2 ;
Otherwise, H = H̄. So if g1 crosses Q or a path ℘ ∈ P ,
then Hg1

1 6=v Hg1
2 and thus H = H̄. So the key is

preserved because of lemma 4.2. If g2 crosses Q or a
path ℘ ∈ P , then key is preserved as Hg1

1 and Hg2
2 are

not changed in T̄ and thus the number of TQ or the
number of P-tuples are not changed in T̄ . If g1 and g2

cross ℘1 ∈ P1 and ℘2 ∈ P2 respectively, then H = H̄
and key is preserved by lemma 4.2.

Theorem 4.3 The expand operator is key preserving
if when Q̄ = Q/enew, then every TQ/enew has a P-
tuple.

Proof: We consider the following cases.
Case 1[℘ ∈ ({Q}∪P )∧ g ♦℘ . ek]. Let T ek be a tree.
The expand adds enew between ek−1 and ek in ℘. By
lemma 4.1, because T ek is not changed, so T℘ is not
changed.
Case 2[last(Q) = ek−1 ∧ ∀ ℘ ∈ P (beg(℘) ∈ g)].
Option 1: The path Q is transformed to Q/enew and
all paths in P are not changed. A TQ corresponds to Q
before the transformation and a TQ/enew corresponds
to Q/enew after the transformation. Under each TQ,
there may be multiple TQ/enews, all TQ/enews will di-
vide the P-tuples of TQ, and each TQ/enew may con-
tain less number of P-tuples in comparison to TQ, but
there is at least one P-tuple in each TQ/enew because



of the condition of the theorem. By theorem 2.1, be-
fore the transformation, all P-tuples are distinct in T
as T≺k and in this case the transformation does not
change any path in P and therefore any P-tuples. So
all P-tuples are still distinct after the transformation.
So T̄≺ k̄.
Option 2: The path ℘ ∈ P are transformed to ℘̄ =
enew/℘. So the last(℘) = last(℘̄) and thus T℘ =v T ℘̄.
So the P-tuples are not changed. Thus T̄ ≺ k̄.
Case 3[last(Q) = ek−1 ∧ ∃ ℘ ∈ P (beg(℘) 6∈ g)]. As-
sume g ♦℘ . ek and two trees: T℘

1 as · · ·.ek−1.ek.· · ·.T℘
1

and T℘
2 as · · ·.ek−1.ek.· · ·.T℘

2 . The transforma-
tion changes the trees to · · ·.ek−1.enew.ek.· · ·.T℘

1 and
· · ·.ek−1.enew.ek.· · ·.T℘

2 . So if T℘
1 6=v T℘

2 before the
transformation, T℘

1 6=v T℘
2 after the transformation.

If (T℘1
1 · · ·T℘l

1 ) 6=v (T℘1
2 · · ·T℘l

2 ) before the transforma-
tion, (T℘1

1 · · ·T℘l

1 ) 6=v (T℘1
2 · · ·T℘l

2 ) after the transfor-
mation. So, T̄≺ k̄ if T≺k.

Theorem 4.4 The collapse operator is key preserv-
ing.

Proof: We discuss the following cases.
Case 1[g ♦Q . ek]. Let T ek be a tree. The collapse
operator changes the path Q according to the transfor-
mation of key definition. Now, either TQ = T par(ek) or
TQ ∈ T par(ek) in T̄ . In either case, (TP1 · · ·TPl) is not
changed and (TP1 · · ·TPl) ∈ TQ. However, there can
be the change(possibly the decrease of TQ) of |〈TQ〉|
which doesn’t cause the violation of key satisfaction.
Thus, as T≺k, so T̄≺ k̄.
Case 2[g crosses some ℘i at ek]. Consider a P-tuple
F1 = (T℘1

1 · · ·T℘i

1 · · ·T℘l

1 ) under a tree TQ
1 and another

tree sequence F2 = (T℘1
2 · · ·T℘i

2 · · ·T℘l

2 ) under a tree
TQ

2 . If g ♦℘i . ek, after the transformation, the two
P-tuples F1 and F2 become F̄1 = (T℘1

1 · · ·T ℘̄i

1 · · ·T℘l

1 )
and F̄2 = (T℘1

2 · · ·T ℘̄i

2 · · ·T℘l

2 ) where transformation of
℘i to ℘̄i follows the transformation definition of key
using collapse operator. Also, the number of P-tuples
under TQ

1 , TQ
2 are not changed. If F1 6=v F2, then

F̄1 6=v F̄2. This means that if T≺k, T̄≺ k̄.

4.2 Reversibility of Transformation Operators
with Key Preservation

We showed the key preservation properties of impor-
tant transformation operators for XML. Another im-
portant property of these operators is that these op-
erators have reversibility in terms of key preservation.
By reversibility, we mean that if an operator is key
preserving(with or without any condition), then its
reverse operation is also key preserving(with or with-
out any condition). For example, we showed that
unnest operator is key preserving(surely with some
conditions). The reverse operation of unnest is nest
which is also key preserving. Note that the nest oper-
ator is key preserving without any conditions.

4.3 Transition of Keys in XML Data Trans-
formation

We showed that the nest and collapse operators are
key preserving without any conditions. Other two
operators, unnest and expand are key preserving
when necessary conditions are met. As we transform
XML key using operators, there is a natural ques-
tion whether XML keys are transformed to XML func-
tional dependency(XFD) when keys are not preserved
by transformation. The motivation behind this ques-
tion is because we already showed that XML key is
a special case of XFD[25] and unnest operator intro-
duces the redundant tuple values in the transformed
document due to multiplicity change in the DTD. We
discussed this research issue in our paper [28] where
we defined the XFD and how XML key can be trans-
formed XFD when unnest operator is used and we
termed this problem as Key Transition.

5 Preservation of Other XML Con-
straints in XML Data Transforma-
tion

In XML to XML data transformation, we not only
consider XML key preservation, but also we con-
sider XFD, another important integrity constraints for
XML. We showed how XFDs are defined on the DTD
and their satisfactions by XML documents, how XFDs
are transformed by the transformation operations and
to what degree the transformed XFDs are preserved af-
ter transformations in [29]. We note here that the XFD
preservations are very different because of important
reasons: (a)In key preservation, multiplicity in DTD
is important and nest and unnest operations are more
important and (b) In XFD preservation, XFDs can ei-
ther Local XFD(LXFD) or Global XFD(GXFD) due
to scope of the XML document and hence the opera-
tors expand and collapse are very important because
these operators transform the scope. On the other
hand, nest and unnest operators are always XFD pre-
serving. We refer our paper[29] for interested readers.

Another important integrity constraint is XML for-
eign key(XFK). It can also be a natural question
whether XFKs are preserved or not by the transfor-
mations. In this case, we note here that we already
defined referential integrity for XML, namely XML in-
clusion dependency (XID) and XFK in [26]. We found
that XIDs are always preserved after transformation
but the preservation of XFKs are dependent on the
preservation of XML keys because XFK is a restricted
case of XID and XFK uses the definition of XML key.

6 Future Work

We showed the transformation of XML keys and the
preservation of keys in XML data transformation using
a set of primitive transformation operators. We now
discuss the use of transformation and preservation of



XML keys in XML data transformation in the context
of XML data integration.

6.1 Preserving Keys in XML Data Integration

In XML data integration, multiple source schemas
are transformed and integrated to the target schema.
When schemas are transformed and integrated to the
target schema, XML data conforming to the schemas
and the XML keys over the schemas, satisfying the
XML data, can also be transformed and integrated.
Thus, there is a problem of integrating the transformed
keys to the target schema. We term the notion of in-
tegrating the transformed XML keys as key merging
in XML data integration.

We plan to use the transformation operators ojoin
and xunion [12, 32] for integrating the XML sources
to the target schema. Thus, the effects on XML con-
straints using these two operators in XML data trans-
formation and integration needs to be investigated.
We argue that these operators are mainly for join-
ing two XML DTDs with conforming data. So, the
full treatment of these operators in the context of key
transformation and preservation in XML data integra-
tion is different from the other operators perviously
described.

When we use ojoin of two XML sources to the tar-
get schema for the key preservation checking, we need
to consider different join of the relational database
perspective. The task can be related with the ref-
erential integrity constraints(inclusion constraints, or
foreign key). We argue that the key preservation of
ojoin operator in XML can be done with the same
line of relational database.

We also plan to use xunion operator for integrating
two XML sources to the target schema. The operator
xunion actually does the aggegating or merging of
two XML sources. We don’t show the key preserva-
tion of both ojoin and xunion operators in this paper
because the task of integrating multiple sources to the
target schema needs different approach which is be-
yond the scope of this paper.

6.2 XML Constraints in Peer-to-Peer Data
Exchange and Data Integration

In recent years, XML data exchange and XML data
integration in peer-to-peer(P2P) settings are getting
much attention[30, 31]. In both cases, there is a need
to transform the source XML schema with its con-
forming document to the target schema. Thus how
XML constraints specially XML keys and XFDs are
transformed and preserved in P2P setting need to be
investigated. In addition, how XML constraints can
be utilized for query processing and updating is also
important.

6.3 Heterogeneous Data Model in Data
Transformation and Integration

Another research worth investigating is to consider the
different data models in transformation of schemas and
their conforming data with constraints for integration
purposes. For example, one source schema can be in
relational data model with constraints(e.g., primary
key, foreign key, functional dependency) and another
source schema can be in XML schema(e.g., DTD) with
XML constraints(e.g., XML keys, XML functional de-
pendency). The target schema can be either in XML
or in relational data model with or without constraints.
Then how we should transform source schemas with
constraints in any data model to target schema in any
data model with constraints preservation becomes an
obvious research issue. The main challenge will be how
to define the XML constraints so that we can capture
the characteristics of relational constraints. We argue
here that our definition for XML key can capture the
semantics of relational key and hence the task of key
preservation issues in data transformation and integra-
tion with heterogeneous data model can be achieved
with great ease.

7 Conclusions

We showed the preservation of key in XML data
transformation. To accomplish this task, we defined
the XML keys on DTD and their satisfactions. Then
we showed the transformation of XML keys using
important transformation operations and the trans-
formed keys are valid on the transformed DTD. Last
we showed the key preservation of the transformation
operations with necessary and sufficient conditions.
We plan to study the performance of checking XML
key satisfactions for preservation along with transfor-
mation operations. Our study of key preservation in
data transformation is towards the handling of XML
constraints in XML data integration.
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