
Concurrency Control in

Distributed MRA Index Structures

Neha Singh∗ S. Sudarshan

Indian Institute of Technology Bombay
Mumbai, India

s.neha@bcg.com, sudarsha@cse.iitb.ac.in

Abstract

Answering aggregate queries like sum, count, min,
max over regions containing moving objects is often
needed for virtual world applications, real-time moni-
toring systems, etc. Since the data set is usually very
large and some queries require significant processing
resources, quite often such data is stored in a dis-
tributed system wherein each system handles a parti-
tion of the whole space and manages all objects in that
partition. Objects keep switching from one system to
another as they change their location. Currently there
are no known efficient techniques for getting aggre-
gates over moving objects while ensuring that their
position updates remains atomic to the read.

We introduce an efficient technique for finding aggre-
gates over mobile objects with data stored in a dis-
tributed system by extending the multi-resolution ag-
gregate trees to work in a distributed system and over
mobile objects. We propose a multi-phase update al-
gorithm that is highly concurrent with respect to read
queries and at the same time makes modifications to
the aggregate tree atomic with respect to read queries.
The analysis and experimental results prove the effi-
cacy of this update algorithm as compared to the naive
update technique.

1 Introduction

We address the problem of answering aggregate queries
over a region in a multi-dimensional space contain-
ing mobile point data, when the data is stored in
a distributed system. Such aggregate queries occur
commonly in spatial applications like Networked Vir-
tual Environment(NVE), real-time traffic monitoring,
etc. In NVEs, the game characters, either the human
character of the computer generated characters can be

∗ Current affiliation: Boston Consulting Group

International Conference on Management of Data
COMAD 2008, Mumbai, India, December 17–19, 2008
c©Computer Society of India, 2008

treated as point data. Aggregation is an important op-
eration required in NVEs for either getting summary
data or for getting information about the surrounding
game state to make decision about the next step. In
many cases, state information needed in NVEs is in
the aggregate form rather than raw data. For instance
scripts like, “run in fear if the number of enemies ex-
ceed the number of friends around” or “find the mini-
mum health player”, etc., require aggregates like count
and min respectively on a region of the space. In many
real-time applications, such as traffic monitoring, it is
quite often required to get aggregates over a region, for
example the count of the number of cars in a particular
region.

In a centralized system, we can address this issue
by building a dynamic index for each type of aggregate
as done in [8]. In a distributed or peer-to-peer com-
puting system however, the data now is split across
various systems. We may need to read from multiple
systems to answer a query; the data that they store is
subject to concurrent updates as data points change
their location. This brings us to the question of how
the data points on a given space are mapped onto the
end systems or peers.

We observe that most such spatial applications re-
quire locality of data to be preserved and hence split
the data by partitioning the space and mapping the
partitions onto the peers. This partitioning is not
static and changes as the hot spots change, by splitting
of nodes. Every peer has a local state and they com-
municate asynchronously with each other by passing
messages over the communication channel. As enti-
ties move from one node’s region to another, they are
transferred using messages. Thus the problem of get-
ting the aggregate over a sub space reduces to getting
partial aggregates from multiple peers and combining
them, taking concurrent updates into account, to get
a consistent result.

In a distributed computing system absence of a
global common memory or clock makes it difficult to
record the global state of the system efficiently. Dis-
tributed snapshots can be obtained by recording the

local state of the different relevant peers. However,
even if peers read the time from a single common
clock (maintained at one process), various indetermi-
nate transmission delays during the read operation will
cause the peers to identify various physical instants as
the same time. Thus, inevitably the collection of local
state observations will be made at different times, with
the possibility of intervening updates. Thus recording
a consistent global state of a distributed system is not
a trivial task.

In this paper, we describe an efficient method to
get spatial aggregates over mobile data points. We
extend the multi-resolution tree, wherein aggregates
are stored with decreasing resolutions as the depth of
the partitioning tree increases, to support a dynamic
object set. Our read query and aggregate tree update
protocols ensure that updates are atomic to the read.
We first present the naive update protocol and then
a highly concurrent multi-phase update protocol. We
then present the analysis and experimental results to
substantiate our claims.

The rest of the paper is organized as follow. In
Section 2, we present some related work and in Sec-
tion 3, the system model. In Section 4, we describe
the reader’s protocol. In Section 5, we talk about the
update protocol required to maintain the distributed
aggregate tree and the data points move. Here, we first
describe the naive update protocol and then the highly
concurrent multi-phase update protocol. In Section 6,
we present a simplified update protocol for a very com-
mon special case of updates. Then we show the ana-
lytical results comparing the concurrency of described
update protocols. In Section 7, we present our exper-
imental results, and we conclude in Section 8.

2 Related Work

Several tree structures containing aggregate informa-
tion at internal nodes have been proposed for effi-
ciently answering aggregate queries on spatial regions,
with relatively static data; see e.g. Tao and Papadias
[7]. The Multi-Resolution Aggregate (MRA) tree [4]
is a recent example in this class of structures, which
addresses the issue of generating progressively more
accurate approximations to the aggregate result. How-
ever [7], [4], as well as other earlier structures, consider
a centralized architecture, and assume a relatively low
update rate.

Tanin et al. [5] propose a distributed quad-tree
structure for a peer-to-peer environment. We build
upon their approach for constructing a distributed
quad-tree, and add aggregate information. How-
ever, unlike our work, they address neither aggregate
queries, nor concurrency control issues. Gao et al.
[3] address several different kinds of aggregation com-
bined with selection, using distributed quadtrees. The
problems addressed are motivated by sensor networks.
However, they do not address concurreny control is-

sues.
Many problems of atomicity and consistency arise

when we assume a model with dynamic data wherein
the data points are exchanged among the different sys-
tems using message communication.

Much work on tracking and getting summary data
of continuously moving objects, for example in the case
of vehicular traffic movement, etc., has been done in
the context of spatio-temporal databases; in this body
of work, objects move along predictable paths, for ex-
ample as line segments at a constant speed for a period
of time, and this fact is exploited to minimize index
updates. Work in this area includes [2, 6, 1], all of
which consider centralized settings. We consider a case
where movement is not continuous and predictable, in
a distributed environment. Thus the solutions pro-
posed above do not match our model. Further, none
of this work considers the issue of concurrency control.

To the best of our knowledge, there has been no
work on concurrency control in index structures de-
signed for aggregate queries over moving objects in a
distributed or peer-to-peer systems.

3 System Model

The system consists of a distributed set of peers. These
peers may be end-systems in a distributed system or
peer-to-peer servers. The global space (Rspace) is di-
vided using quad-tree based spatial partitions. Quad-
tree based partitioning, like most other tree-based par-
titionings, preserves locality of data. The advantage of
quad-tree based partitioning over other candidate tree-
based partitioning data structures like R-tree, KD-
tree, etc., is that the partitions are independent of
the order in which the data points are inserted, the
decomposition implicitly known to all peers, and dy-
namic load balancing is relatively less expensive.

The index structure stores the point data rep-
resenting the objects in the form of 〈point loc,
state〉. These points objects are stored in the
leaf nodes of the quad-tree. Each node stores
the aggregate of the region indexed by it. The
leaf nodes store aggregates as 〈sum, count,min,max〉
whereas the intermediate nodes store the aggregate
in the form 〈sum, count,minarray,maxarray〉, where
minarray and maxarray is the list of min and max val-
ues for each of the child nodes. We will see later that
storing this list of values rather than a single overall
min and max helps reduce the cost of index mainte-
nance. The number of children nc (fanout) is constant
in the case of a quadtree (nc = 4) but may be variable
for other tree structures.

To map the nodes onto the peers, we use a hashing
function. We note that each quad-tree can be uniquely
identified by its centroid as described in [5]. Hence
we use this as the key for hashing. Each peer stores
the data points assigned to it, and optionally provides
processing resources for queries.

Since the data points are mobile, in case the location
of a data point moves out of a peer’s region, it passes
the object’s data to the relevant peer using message
communication. We assume these peers to be pro-
cesses connected by a bidirectional channel. Message
send and receive is asynchronous. They are delivered
reliably with finite but arbitrary time delay. We as-
sume FIFO ordering for the communication channel.
The read and the update protocols too use message
communication for getting the required aggregate data
and for updating the aggregate tree respectively. The
updates are processed at each node in the same order
in which they are received.

4 Reader’s Protocol

Consider an aggregate read query to get the aggre-
gates set 〈sum, count,min,max〉 over the query re-
gion Q ⊆ Rspace. It can be initiated from any peer by
sending message getAggregate to the root node of the
distributed MRA tree. The query traverses the index
structure top-down using message passing and selec-
tively exploring the nodes. The read protocol uses
locks for concurrency control.

A naive way to ensure concurrency control is to ac-
quire locks on the nodes while traversing down the tree
and release the locks only after the read is complete.
However keeping the nodes locked, especially the root
node for the entire duration of the read, will reduce
the concurrency of the index structure for concurrent
updates. Thus we need to release locks early and at
the same time ensure that the updates are atomic for
the read. To ensure both the above conditions, we
use the well known crabbing protocol. In the crabbing
protocol, the root is first locked in shared mode. Af-
ter acquiring locks on all required children in shared
mode, the lock on the parent node is released. This
prevents an update coming down from the root from
overtaking a read.

Algorithm 1 describes the function invoked at each
node on receiving the getAggregate message. Given a
query region Q and a node N , there can be the follow-
ing possible relations between Q and N - contained,
partially overlapping, enclosing and disjoint - as de-
scribed in [4]. The node’s aggregate is not relevant for
the query in case it is disjoint with Q (lines 2-3) while
the aggregate over all data points of N is needed in
case Q encloses it. In both these case further traversal
is not needed. Further traversal is needed only if Q
is partially overlaps or is contained in N (lines 8-21).
The crabbing protocol is used for acquiring locks on
the children nodes and releasing it (lines 19 and 21).

5 Maintenance of Index Structure

The points being indexed by the distributed MRA tree
are mobile and hence their location may change. Also
new data points may be added or deleted. All these ac-

Algorithm 1 Reader Protocol

deliverGetAggregate(Q: QueryRegion , Qnode:
QueryingNodeID)
Let N be the current node

1: if (N is the root node) Get S-lock
2: if (Q ∩ RN = Φ) then
3: Ignore {disjoint}
4: else if (N is a leaf node) then
5: Send Agg for region Q ∩ RN to Qnode
6: else if (Q ∩ RN = RN) then

{All data points of N contained in the query
region}

7: Send Agg of N to Qnode
8: else

{Enclosing or partially overlapping. Further
traversal necessary}

9: Let L ← List of nodes
10: for each child Ni of N
11: if (Q ∩ RNi = Φ) then
12: Ignore {disjoint}
13: else
14: Insert Ni into L
15: for each node Ni in L
16: if ((Q ∩ RN ⊇ RNi) ∧ (Query just for

min/max))
{Use cached data of child’s min/max}

17: Return Agg of RNi to Qnode
18: else
19: Get S-lock on Ni

20: Send getAggregate(Q, Qnode) to Ni

21: Release S-lock on N

tions require the distributed MRA tree to be updated,
and the aggregates stored in the internal nodes of the
MRA tree must be correspondingly updated. The up-
date to the data point is first received by the leaf node
responsible for that point. So the updates percolate
from the leaf nodes to the higher levels of the index
structure hierarchy. Our aim is to update the dis-
tributed MRA index such that these modifications are
atomic with respect to the aggregate read queries. To
understand the update protocols, we first present the
following definitions. We regard each update, whether
it is an insert, delete, move, as a transaction. We do
not consider transactions involving multiple updates.

Definition 1 (Update Tree): The set of all the
nodes (UT) of the distributed MRA tree whose stored
aggregate values can be affected by an update trans-
action T .

Note that the exact set of nodes of the distributed
MRA tree whose aggregate needs to be modified may
depend on the particular update transaction, and on
the current aggregate values of the nodes. However
the set UT contains all the nodes whose aggregate can
be affected by the update transaction, whatever be the
current value of aggregate in the nodes and the value
propagated up by the update.

A

B

L

M o v e

Figure 1: Update tree of
a move operation.

I n se r t i on / De le t i on

N

Figure 2: Update tree of
an insert or delete oper-
ation.

We mainly consider two broad classes of updates.
The first class consists of insert or delete operations
when the data point is either added or deleted from
Rspace. The second class consists of the move opera-
tion in which the location of an object changes. The
former case is simpler, and we discuss the latter case in
more detail. The move operation is also the more com-
mon update in our target applications. There are two
cases for the move operation. The first case is where
the new location of the object is in the same leaf par-
tition. This is simpler, and more frequent. In this
case there will be no change in aggregate for any node
and hence there is no need to update the MRA tree.
The second case, which is the less frequent but more
interesting, is when the object moves out of a nodes
indexed space of one leaf and needs to be transferred
to another leaf node. The nodes may be on different
peers of the distributed system. In the following sec-
tions, whenever we refer to the move operation, we
refer to the second case.

Let NT be the set of the leaf nodes affected by an
update transaction. The cardinality of this set is 1
in the case of insert or delete and 2 in case of move
operation. In both these cases, when the aggregate of
the leaf node changes, the aggregate of their ancestors
may need to be updated. We discuss the nature of the
update tree for these two classes of updates:

• Insert/Delete Operation: Consider a point in-
serted or deleted at the node Nleaf . All ancestor
nodes N of Nleaf are affected by this operation.
Hence the update tree consists of a single path
from the root to Nleaf as shown in Figure 2.

• Move Operation: Consider a point moving from
a location LA in a region belonging to leaf node
Aleaf to another location LB in a region belong-
ing to leaf node Bleaf . Let NAB be the lowest
common ancestor of nodes Aleaf and Bleaf . All
ancestors of Aleaf and Bleaf upto node NAB are

affected by this move transaction. For all ances-
tors of NAB , the move operation is just a transfer
of point within the same region and hence their
aggregate is not affected. This is also true for
NAB , but since it caches the min and max values
of its children which can change in this operation,
this node is also part of the update tree. Thus
the update tree consists of two legs, one connect-
ing NAB to Aleaf and the other connecting NAB

to Bleaf as shown in Figure 1.

Definition 2 (Conflicting Updates): Two up-
dates U1 and U2 are said to be conflicting updates if
U1T

⋂
U2T 6= φ, where U1T and U2T are the corre-

sponding update trees.
The above definition basically says that two updates

are conflicting if their corresponding update trees have
any common nodes. For any two conflicting updates
U1 and U2, let P be the subtree formed by joining the
common nodes in their update trees. We call P as
the conflicting upadate’s common twig pattern. Here
we discuss the nature of this pattern P . The nature
of the graph P is important we use its properties in
deciding the serial order of execution of two conflicting
updates. Let N1 and N2 be the root nodes of U1 and
U2. Without loss of generality, let us assume that the
height of N1 is less than or equal to that of N2. We
make the following observations about the graph P .

• P is a connected graph

• P always contains of N1

• P is either a single path or consists of two paths
rooted at N1

• N1 is the unique highest node of P

This is because the update tree is formed by connect-
ing a leaf node to all its ancestors (in the case of ad-
dition and deletion of data points) or two leaf nodes
to its ancestors until the two paths meet at a common
node which is their lowest common ancestor. Given
that updates U1 and U2 are conflicting, they have at
least one common node say N . Now due to the nature
of the update tree, all ancestors of N will also be in
both the updates until we reach the node in N1. An-
cestor nodes of N1 may be in the update tree of U2,
but are not in the update tree of U1. Thus P contains
a path rooted at N1. Similarly if the updates U1 and
U2 both have two legs and have a common node in the
other leg also, all its ancestor nodes up to N1 will also
be in P . Thus P can have a single path or two paths
rooted at N1 and so P is a connected graph. Also P
cannot have any node higher than N1 since U1 does
not have any node higher than that in its update tree.

Thus N1 is the unique highest node of P . We use
the order of lock point at this unique highest node of
P – N1 – for deciding the serial order between two
conflicting updates.

R o o t n o d e o f t h e c o m m o n t w i g p a t t e r n

U 2 U 1

N 2

N 1

C o m m o n N o d e s i n U 1 a n d U 2

U 1 U 2

R o o t n o d e o f t h e c o m m o n t w i g p a t t e r n

N 1 N 2

C o m m o n N o d e s i n U 1 a n d U 2

Figure 3: Common twig pattern of two conflicting updates (a) having one leg (b)having two legs

In the following sections, we present two algorithms
for maintaining the distributed aggregate index struc-
ture such that the updates appear atomic to concur-
rent read queries.

5.1 Naive Update Protocol

In both the update protocols that are described in this
section, we use locking for concurrency control. For ac-
quiring and releasing locks, we use the concept of the
update tree. Update tree represents all the nodes that
can be affected by that transaction. Thus the naive
way is to get an X-lock on all the nodes of this tree
and then update them. Now there are two ways to
acquire the locks – either top-down or bottom-up the
update tree. Acquiring the lock bottom-up can lead to
a deadlock with the read query coming from top-down.
Hence we acquire the locks top-down. The naive up-
date protocol consists of two main phases called the
acquire lock phase and the update phase. As the name
suggests, locks are acquired on the nodes top-down iin
the update tree in the acquire locks phase. In the up-
date phase, the aggregate tree is updated bottom-up
and locks released. Bottom-up propagation of updates
is essential for aggregates like min and max.

Consider a point that moves from a location LA in
a region belonging to leaf node Aleaf to another lo-
cation LB in a region belonging to leaf node Bleaf .
Let NAB be the lowest common ancestor of nodes
Aleaf and Bleaf . All ancestors of Aleaf and Bleaf

up to node NAB are affected by this move transac-
tion as explained in the previous section. We now
describe the naive protocol to update the aggregate
tree for the move operation. Insert and delete are
simpler cases and discussed later. The steps are as
follows. Aleaf sends the transfer message with ob-
ject data to Bleaf . Bleaf sends an updateInit mes-
sage to the root node of the corresponding update tree
(node NAB). After getting this message, the root node
starts the acquire lock phase. In this phase, X-locks

are acquired on all nodes of the update tree top-down
starting with the node NAB using messages. The root
node first acquires an X-lock on itself and then sends
the message getNaiveXLock(updateId, Aleaf) and get-
NaiveXLock(updateId, Bleaf) to its children in the
path to leaf nodes Aleaf and Bleaf respectively. Send-
ing the ids of the leaf nodes is important as the inter-
mediate nodes of the update tree use this information
to direct their messages along the path to that leaf
node. In our case, the node’s id consists of its coordi-
nates and hence it is easy to find the child containing
that leaf node.

On receiving the getNaiveLock message, each node
invokes the deliverGetNaiveXLock function as de-
scribed in Algorithm 2.

When this message reaches the leaf nodes, they
start the update phase. In this phase, the update to
the aggregate tree propagates bottom-up. The nodes
update their values and release locks. The root node
however releases the lock only after the update phase
is over in all the legs of the update tree. It uses the
map deliverCount to keep track of the number of up-
date messages received with a given updateId. Note
that the update phase may start at different points in
time in the different legs of the update tree depending
on their length.

For insert and delete operations, the root node of
the update tree, which is also the root node of the
aggregate tree, sends getNaiveXLock to its child along
the relevant leaf node. The rest of the steps are same
as in the move case.

Our locking algorithm uses messages to acquire and
release locks. Each message invokes the corresponding
deliver function at the nodes. Usually locks are held
by processes, but in our case, there is no one process
which is alive for the entire duration of the update at
each node. Hence we hold locks for a given updateId.
Each update has a unique updateId which can be gen-
erated by appending a monotonically increasing inte-

Algorithm 2 Acquire Lock Phase

deliverGetNaiveXLock(uId :UpdateID,
N :NodeID)

1: Get X-lock
2: if (this node itself is N)

// Start the Update Phase
3: Apply the update to aggregate
4: Let newAgg ← Change in the aggregate value
5: Send naiveUpdate(newAgg) to parent
6: Release X-lock
7: else
8: Let N’ ← Child node along the path to N
9: Send getNaiveXLock(uId, N) to N’

Algorithm 3 Update Phase

Require: deliverCount : UpdateID → Integer
deliverNaiveUpdate(uId :UpdateID , delAgg :
δAgg)

1: Apply delAgg to the aggregate
2: Let newAgg ← Change in the aggregate value
3: if (this node is the root node for the update tree)
4: deliverCount[uId] ++
5: if (updateOperation[uId] == MOVE)
6: if (deliverCount[uId] < 2) return
7: Release X-lock
8: else
9: Send naiveUpdate(newAgg) to parent

10: Release X-lock

ger to the id of the initiating leaf node. Each message
of that update carries this unique updateId.

The serialization order of this update protocol for a
read and an update transaction is the order of S-lock
by the read query and the X-lock by the update query.
For concurrent intersection update queries, the serial
order is same as the lock points at the highest (unique)
node of the common twig pattern.

5.2 Multi-Phase Update Protocol

In the naive update protocol, the root node is locked
for the entire duration of the update. Now the root
node is the first node to be read by any conflicting
read. So, it being locked implies that any conflict-
ing read query cannot read any of the common nodes
for the entire duration of the update. This results in
low concurrency and higher read time. In order to in-
crease concurrency we need to allow concurrent read
on common nodes while it is not being updated i.e.,
which locks are acquired and other nodes are being up-
dated. However this seems to be rather difficult if the
updates are to be atomic for the read queries. Read
queries come from top-down and updates are propa-
gated bottom-up. So the root node is the last node
to be updated and the first node to be read. In the
naive case, we prevented the read query from reading
any values of the update tree nodes until the update

S U X
S True True False
U False False
X False

Table 1: Compatibility Matrix

has been reflected on all the relevant nodes. We now
present the multi-phase update protocol which satisfy
the atomicity constraints, and yet is highly concurrent.

The key modifications introduced in this protocol
are as follows. First, the nodes are updated top-down
rather than bottom up as in the naive case. This is
done by splitting the update in three phases namely
acquire lock phase, propagate phase and refresh phase.
Second, we hold the X-lock on the nodes for a very
small duration during the update phase. Concurrent
read queries (using S-locks) are allowed while acquir-
ing locks and updating other nodes. This is done by
introducing a new locking mode that we call U-lock,
which is compatible with the S-lock. Third, to pre-
vent read query from overtaking top-down update and
reading inconsistent values, we use crabbing protocol
for acquiring X-locks to update nodes.

The new lock mode that has been introduced, U-
lock, is basically to lock nodes for possible future mod-
ifications. Its compatibility matrix is shown in Ta-
ble 5.2. Before updating the nodes, they are locked
in U-lock mode. U-lock can be upgraded to X-lock
when the node’s data is to be modified. The compat-
ibility matrix shows that U and S mode are compat-
ible, which signifies that the read query can proceed
while the update is modifying other nodes of the up-
date tree. However U and U modes are incompatible,
which means that conflicting updates need to wait for
each other.

Algorithm 4 Acquire Lock Phase

deliverGetULock(uId :UpdateID, N :NodeID)
1: Get U-lock
2: if (this node itself is the leaf node N)

// Start the propagate phase
3: Let updatedAgg ← Change in aggregate value
4: Store as pendingUpdate
5: Send mpUpdate(uId, updatedAgg) to parent
6: else
7: Let N’ ← Child node along the path to N
8: Send getULock(uId, N) to N’

The first phase of the multi-phase update protocol
is the acquire lock phase. As shown in Algorithm 4,
locks are acquired top-down starting from the root
node, similar to the naive case. However here the
nodes get locked in U-lock mode rather than in X-lock
mode. Once the leaf nodes get locked, they start the
propagate phase (Algorithm 5). In this phase, updates
get propagated from leaf nodes upwards. However the

Algorithm 5 Propagate Phase

Class Update
uID: update ID;
δAgg: δSUM: Real, δCOUNT: Real, newMAX:
Real, newMIN: Real
isResetMin: Boolean;
isResetMax: Boolean;
LCAid: nodeID //nodeID of the lowest common
ancestor for this update
updateOperation: Integer;

Require: updateCount : updateID → Integer
deliverUpdate(U: Update)

1: if (Node is the root node of this update tree)
2: updateCount [U.getID()] ++;
3: if (U.UpdateOperation == MOVE)
4: if (updateCount [U.getID()] < 2)

// propagate phase ends in one leg
5: Store U as pendingUpdate
6: Return

// else propagate phase ends on both legs
//start the refresh phase

7: Upgrade U-lock to X-lock
8: Apply U and pendingUpdate
9: Let L ← List of child nodes from which update

messages with this updateId were received
10: for all nodes Ni of L
11: Get X-lock on Ni

12: Send refresh(updateId) to Ni

13: Release X-lock
14: else
15: Let newAgg ← Change in aggregate
16: Add newAgg to pendingUpdate
17: Send update(newAgg) to parent

Algorithm 6 Refresh Phase

deliverRefresh(uId : updateID)
1: Let δAgg ← pendingUpdate with key uId ;
2: Apply δAgg to the aggregate
3: if (Node is a leaf node) Release X-lock
4: else
5: Let N ← Child node from which this update

message with this updateID was received
6: Get X-lock on N;
7: Send refresh(uId) to N;
8: Release X-lock

updates are not reflected in the nodes as yet. They
are just stored as pendingUpdates (lines 15-16). Class
Update shows how the pendingUpdates are stored at
each node. When this update message reaches the root
node of the update tree, it can conclude that the prop-
agate phase has ended in that leg of the tree.

After the propagate phase ends in both the legs of
the update tree, the root node starts the refresh phase
(lines 7-13). In this phase, the U-locks of the nodes get
upgraded to X-locks and the stored pendingUpdates

are reflected top-down. The crabbing protocol is used
for acquiring and releasing the X-locks on the nodes
(lines 10-13). When a refresh message reaches a node,
it invokes the deliverRefresh function (Algorithm 6).
Similar to the root node case, the crabbing protocol
is used for acquiring and releasing X-locks (lines 6-8).
When the refresh message reaches the leaf node (line
3), it implies that the update has ended in that leg of
the update tree.

The serialization order of this update protocol for
read and update transactions is the order of acquire of
S-lock by the read query and the X-lock by the update
query. For concurrent intersecting update queries, the
serial order is the same as the lock points at the unique
highest node of the common twig pattern.

5.2.1 Correctness and Efficiency

We now discuss the key features of the above proto-
col and show how each of these steps is important. We
also present scenarios that are essential to understand-
ing the correctness of the multi-phase update protocol.
The first key point is that in the acquire lock phase,
we acquire U-locks from top-down. For the naive case,
we had argued that acquiring the X-locks bottom-up
can lead to deadlock as the read queries come from
top-down. However in this case, the U-locks are com-
patible with the S-locks. This might make us curious
whether the U-locks can be acquired bottom-up thus
merging the acquire lock and the propagate phases.
However following example shows that this can lead
to a deadlock between concurrent conflicting updates.

A

B C

D E F G

R

U 1 U 2

U 1 U 2

Figure 4: (a) Conflicting Updates (b) Wait-for Graph

Let U1 and U2 be update trees of the two updates
(Figure 4). Consider the following order of acquiring
locks. Let U1 acquire U-lock on D, B and then A. Then
U2 acquires U-lock on G, C and then E. Now U2 waits
for U-lock on B and U1 waits for U-lock on C resulting
in a deadlock.

The other feature is the use of crabbing protocol.
For updating the values of the nodes, the U-locks are
upgraded to X-locks using crabbing protocol. This is
to ensure that once the updates start getting reflected
in all the nodes top-down, no read query overtakes
that update. Each read query sees either the state

U

1 0

1 0

1 0

6

6

82

4

A B

C

D

6 4

4

3

1 4

4

U p d a t e t r e e N o d e s

Figure 5: Scenario II

before the update or after the update on all common
nodes. Thus the update to the distributed MRA tree
is atomic with respect to read queries. We now present
the three scenarios that are essential in understanding
the correctness of the protocol.

Scenario I Consider the case wherein the max of a
leaf node N changes to say m such that it needs
to be propagated all the way up to the root node
of the corresponding update tree. This value m is
propagated up during the propagate phase. Now
what if the maximum value of that leaf node N
gets changed during the time between it being
propagated up the tree where the updates are
stored as pendingUpdates and the pendingUpdates
being executed at the nodes. However this cannot
happen as we acquire the U-locks before propagat-
ing any values and keep this lock for the entire
duration between propagate and refresh phase.
This ensures that no other update can change the
node’s value being propagated up the tree.

Scenario II Consider Figure 5 which shows the max
aggregate values at the different nodes in the ag-
gregate tree. Let the initial max values of nodes
be as shown. Consider an update U which trans-
fers the max value object from node B to node
D thus reducing the max at node B from 6 to 3.
So in the propagate phase, the max value of A
gets propagated up the node C. Now we may be
curious that since there is no U-lock on A, what
if its max value which has been propagated up
the tree, changes between the propagate and the
refresh phases. However we can argue that this
cannot happen. This is because the max value
of A is also cached at node C. For every update
transaction, our definition of update tree ensures
that if a node is part of the update, then all nodes

A

B

D

C

U 1

U 2

Figure 6: Multiple Updates to an object

containing the cached aggregate values are also
part of the update tree. Hence any transaction
attempting to modify the max value of A would
intersect with U on at least C. Thus they would
need to be executed serially.

At this point we may also note that caching the
min and max values on parent node in the MRA
tree helps reduce the update latency by greatly re-
ducing the number of nodes required to be locked.
If we had rather assumed the model in which these
values are not cached at the parent node, then
for updating the min or max at any intermediate
node of the tree we would have to lock not only
the child nodes whose values we propagate up but
also the other child nodes whose value we read.
This would imply that we have to acquire lock
on all the child nodes of the intermediate update
tree nodes, even if they are not themselves part of
the update tree. This would hugely increase the
number of nodes required to be locked for any up-
dates to the distributed MRA tree causing much
increase in the latency since the different nodes
may be located at different peers.

Scenario III We now consider the case of multiple
updates to an entity. With reference to the Fig-
ure 6 consider an entity to be transferred by an
update U1 from A to B and then by U2 from B
to C. Logically, U1 should get reflected on the
common nodes B and D before U2. In our model,
we had assumed that the communication channel
is FIFO, updates are executed at the nodes in the
order they are received. Thus serial order of exe-
cution of updates at node B makes sure that U1

completes before U2 begins.

6 Divisible Aggregates

The updates we had considered till now modify any or
all of the aggregates from the set 〈sum, count, min,
max 〉. However, while most update transactions will

modify aggregates like sum and count, very few of
them will result in change in min and max aggregates.
We now consider the special case of the update trans-
actions in which the changes are only to the divisible
aggregates like sum and count. As defined in [8], an
aggregate agg is divisible if there exists a function f
such that

agg(A B) = f(agg(A), agg(B))

whenever B ⊆ A. The aggregate sum is an example of
this aggregate since sum(A B) = sum(A) − sum(B),
whenever B⊂ of A. However, min and max are not
divisible aggregates.

For the cases wherein only the divisible aggregates
like sum and count are modified, we observe that the
change to be made to all nodes of the update is known
and does not depend on the current aggregate values
at the nodes as in the case of non-divisible aggregates
like min and max. Thus there is no need to propa-
gate these changes bottom-up, as now the nodes can
be updated top-down. Hence the propagate phase is
not needed. This also eliminates a separate phase for
acquiring lock top-down. Thus such updates can have
only one phase called update phase. In this phase, X-
locks are acquired top-down using crabbing protocol so
that no read query overtakes the update, the nodes are
updated, and the locks released (Algorithm 7). Thus
the updates are still atomic with respect to the read
queries.

Algorithm 7 Update Phase

deliverMPUpdate(U : Update)
1: Apply U to the aggregate
2: if (Node is a leaf node) Release X-lock
3: else
4: Let N ← Child node along this update tree
6: Get X-lock on N;
7: Send update(U) to N;
8: Release X-lock

6.1 Comparative Analysis of Update Methods

To get an estimate of the difference in concurrency
provided by the naive and the multi-phase update pro-
tocol, we show the relative time for which the root
node of the update tree remains locked in each pro-
tocol. This is an important indicator of their relative
concurrency because the read query accesses the ag-
gregate tree top down. Thus the read query can read
any node of the update tree only after it is able to read
its root node.

Consider U to be the update tree and UR to be its
root node. Note that the time taken for each update
phase depends on the length of the longest leg of the
update tree. Let the number of nodes in the longer leg
of the update tree be m+1 nodes and m be the number
of edges. Consider that the processing delay at each

A c q u i r e L o c k

p h a s e

U p d a t e p h a s e

A c q u i r e L o c k

p h a s e

R e f r e s h p h a s eP r o p a g a t e

p h a s e

d m d m

d m d m 2 d (m - 2) d

U p d a t e p h a s e

2 d (m - 2) d

(a) N a i v e U p d a t e P r o t o c o l

(b) M u l t i P h a s e U p d a t e P r o t o c o l

(c) U p d a t i n g o n l y D i v i s i b l e A g g r e g a t e s

t

R o o t n o d e o f t h e u p d a t e t r e e l o c k e d f o r r e a d q u e r y

Figure 7: Timeline of the state of update tree’s root
node under the update protocols

node on the 0 and the transmission delay between all
nodes to be a constant time d. Figure 7 shows the
time for which the node UR is locked for read queries.
For the naive algorithm, the root node acquires and
X-lock and retains it for the entire duration of the
update. For each phase, the message has to travel the
tree leg once and hence each phases takes duration dm.
For the multi-phase protocol, the node UR is locked
in X-lock mode only for the first 2d duration of the
refresh phase (d for sending the getXlock messages to
the child nodes and another d for getting the ack).
The third bar in the figure refers to the special case
when the updates is only to the divisible aggregates.

To get an idea of the amount of time the MRA
tree index structure is locked for the read operations,
recall that among the updates arising from the move
operation, we only considered the one in which the
new location of the object is in a different leaf node
(partition). We ignored the more frequent case where
the new location of the object is in the same leaf, since
the aggregate index structure need not be updated in
this case. Also among the former category of updates,
most updates will modify only the divisible aggregates.
For the remaining few updates that change the min
and the max aggregates, we have a choice between the
naive and multi-phase update protocols.

7 Experimental Evaluation

We implemented the system in Java. The peer-to-
peer overlay setup uses the Pastry DHT for hashing.
The quadtree node to peer mapping is determined by
hashing the unique centroid of each node onto the peer
overlay. The Pastry implementation used is the freely-
available version called FreePastry provided by Rice
University.

The DHT is run on all the participating peer nodes
and our application runs on top of it. We ran the
simulation on 25 peers by running 5 instances of the
application and the underlying DHT on each peer.

Testing of the protocols was done using synthetic
data. We generated a dataset with various number of
objects as follows. The total number of data points
varied from 100 to 10000. These were organized into
10-100 clusters of points depending on the total num-
ber of points needed. The number of data points in
each cluster is taken from a normal distribution whose
mean and variance varied depending on the total num-
ber of data points required for that experiment.

Each cluster spans 10% of the [0, 1]2 space on
each dimension. Its centroid is uniformly distributed
around the space. Each object’s data value is ran-
domly taken from distribution (µ = 100, σ = 50) with
care to avoid negative values.

Each peer specifies its threshold which defines the
number of point objects it can support. In case the
number of objects exceed the threshold of a system,
the quad-tree node having the maximum entities is
chosen and split into into four sub-regions. To avoid
splitting of regions to very small sub-regions, we fix the
maximum and minimum resolution of the quadtree by
using bounds on tree depth of fmax = 14 and fmin =
1 respectively.

For the experiments in the following sections, we
need to get the partitioning quad-tree of varying depth
so that we can get update trees of various depths. In
order to vary the tree depth, we vary the threshold
of the peers; all peers have the same threshold in our
experiments. To understand this, assume that there
are N data points and P is the number of peers. Thus
the average number of data points supported by each
peer is µ = N/P . Assuming all peers have the same
threshold, say T , the minimum value of T required
for running the application is µ. If T is very large,
say T = N , or equivalently T/µ = P , then all the
entities can be supported on one single peer and it
then becomes a centralized system, with no partition
and hence the depth of the partitioning tree is 0.

As we decrease this value of T and make it closer to
µ, the minimum and the maximum depth of the tree
keeps steadily increasing. When T becomes very close
to µ, the tree needs to split such that the threshold
is satisfied for all the peers. Thus to get update tree
with greater number of nodes, we move this value of
threshold closer to µ. The graph in Figure 8 shows the

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Threshold / µ

D
ep

th Min Depth
Max Depth

Figure 8: Variation of the minimum and maximum
depth of the partitioning quad-tree with threshold

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80

 Area of Query Region / TotalArea (in %)

T
im

e
 (

m
s)

Figure 9: Variation of the read query duration as the
query region increases, with no updates

minimum and the maximum depth of the quad-tree at
different values of the threshold.

7.1 Read Query with no Updates

Figure 9 shows the variation of the read query time as
the area of the query region increases, with no simul-
taneous updates. The read protocol is the same for
both the naive and the multi-phase update protocol,
and in the absence of updates the read performance is
identical (this was also experimentally verified).

We can see that as the area of the query region is in-
creased, there is no corresponding increase in the time
take for the read query. This is because the increase in
area of the query does not relate to any corresponding
increase in the number of nodes explored in the aggre-
gate tree. If a node is completely contained within the
query region, then the query is not propagated to the
subtree.

200

220

240

260

280

300

320

340

360

380

400

0 5 10 15 20 25

Nodes Covered

T
im

e
 (

m
s)

Figure 10: Variation of read query duration with the
number of nodes read, with no updates

Figure 10 shows the variation of the read query du-
ration with the increase in the number of nodes in the
read query tree, again with no updates. As can be
seen from the graph, the duration of the read query
directly depends on the number of nodes explored by
the query. One point to note is that the increase in
the read query duration as the number of nodes in-
crease does not happen in steps of the communication
delay between the nodes, rather it increases by a lesser
amount. This is because the tree nodes at the same
depth are traversed essentially in parallel. However the
increasing trend in the graph is due to the queue at the
querying node and the processing time to recompute
the new aggregate after receiving the read reply, which
amounts to the increase in the read query duration as
the number of nodes read increases.

7.2 Comparison of the Update Protocols

To evaluate the relative duration of the update pro-
tocols, we studied the time taken for the update as
the number of nodes in the update tree increases. As
expected, Figure 11 shows that the time taken for up-
date using both the protocols is directly proportional
to the number of nodes in the update tree. This is due
to the proportional increase in the communication de-
lay. Another observation is that the update duration is
greater in the multi-phase update protocol than then
naive one. This is because the number of messages ex-
changed in the multi-phase update protocol is greater
than in the naive case on account of more number of
phases.

7.3 Read Query with Simultaneous Updates

We evaluated the read query duration under different
workloads, under the naive update protocol and the
multi-phase update protocol. The results are shown
in Figure 12 (a) and (b). We show the read time un-

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12

Number of Nodes

T
im

e
 T

a
k

e
n

 (
m

s)

Naive MultiPhase Locking Protocol

Figure 11: Variation of average time taken for an up-
date with the number of nodes in the update tree

der three different workloads – no update, and with F1

and F2 frequencies of update, where F1 and F2 corre-
spond to one update in every 3 seconds and 1.5 seconds
respectively. As expected the time taken by the read
query increases as the frequency of updates increase.
This is because the read query has to wait for a longer
time at the nodes for getting the read lock. The time
taken by a read query also increases with the number
of nodes read increases; this increase is much larger in
the case of the naive update protocol, as compared to
the multi-phase update protocol. This is because the
nodes remain exclusive locked for a much longer time
in the naive protocol, as compared to the multi-phase
update protocol.

8 Conclusion

In this paper we have addressed the problem of find-
ing aggregate over mobile point data. We extend
the multi-resolution aggregate index to support mo-
bile data and also run on a distributed system. The
protocols proposed here can be used for supporting an
aggregate index over mobile point data in a central-
ized system as well. The key function is to update the
aggregate index when the location of the data objects
change, while ensuring that the updates are atomic
with respect to the read queries. We proposed a multi-
phase update protocol which shows high concurrency
for the read queries and compared it with the naive
update protocol. We showed how the read query and
multiple simultaneous updates to the index structure
are serializable with respect to each other. We then
established through analysis and detailed experimen-
tation that the multi phase update protocol enables
the aggregate index structure to remain locked for read
queries for a fraction of the time as compared to in the
naive case.

As part of future work, we plan to extend our ap-

Naive Update Protocol

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

Number of Nodes

T
im

e
 T

a
k

e
n

 (
m

s)

F2

F1

No Updates

Multi-Phase Update Protocol

0

100

200

300

400

500

600

700

800

0 5 10 15 20

Number of Nodes

T
im

e
 T

a
k

e
n

 (
m

s)

No Updates

F1

F2

Figure 12: Time taken by the read queries with concurrent updates for different workloads with the (a) Naive
Update Protocol (b) Multi-phase Update Protocol. F stands for the frequency of updates. Here F2 > F1

proach to handle more complex update transactions,
involving multiple updates affecting more than two in-
dex tree leaf nodes.

References

[1] M. Erwig, R. H. Güting, M. Schneider, and
M. Vazirgiannis. Spatio-temporal data types: An
approach to modeling and querying moving objects
in databases. Geoinformatica, 3(3):269–296, 1999.

[2] L. Forlizzi, R. H. Güting, E. Nardelli, and
M. Schneider. A data model and data structures
for moving objects databases. In SIGMOD, pages
319–330, 2000.

[3] J. Gao, L. J. Guibas, J. Hershberger, and L. Zhang.
Fractionally cascaded information in a sensor net-
work. In Symp. on Information Processing in Sen-
sor Networks (IPSN), 2004.

[4] I. Lazaridis and S. Mehrotra. Progressive approxi-
mate aggregate queries with a multi-resolution tree
structure. SIGMOD, pages 401–412, 2001.

[5] E. Tanin, A. Harwood, and H. Samet. Using a dis-
tributed quadtree index in peer-to-peer networks.
The VLDB Journal, 16(2):165–178, 2007.

[6] Y. Tao and D. Papadias. Mv3r-tree: A spatio-
temporal access method for timestamp and interval
queries. In VLDB, pages 431–440, 2001.

[7] Y. Tao and D. Papadias. Range aggregate pro-
cessing in spatial databases. IEEE Transactions
on Knowledge and Data Engineering, 16(12):1555–
1570, 2004.

[8] W. White, A. Demers, C. Koch, J. Gehrke, and
R. Rajagopalan. Scaling games to epic proportions.
In SIGMOD, pages 31–42, New York, NY, USA,
2007. ACM.

