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Abstract

A read-only transaction (ROT) does not modify any
data. Efforts are being made in the literature to
improve the performance of ROTs without correct-
ness and data currency issues. The widely used two-
phase locking protocol (2PL) processes the transac-
tions without any correctness and data currency issues.
However, the performance of 2PL deteriorates with
data contention. Snapshot isolation (SI)-based pro-
tocols proposed in the literature improve the perfor-
mance of ROTs, but they compromise on correctness
and data currency issues. Speculative locking (SL)
protocols are proposed in the literature for improv-
ing the performance of ROTs by carrying out spec-
ulative executions only for ROTs and following 2PL
for update transactions. In SL-based protocols, up-
date transactions are blocked if they conflicting with
ROTs. In this paper, we have proposed an improved
approach to improve parallelism among update trans-
actions and ROTs by exploiting a new notion called
“compensatability”. In this protocol, an ROT which
can be “compensatable” can complete the execution
and carry out compensating operation to incorporate
the effect of conflicting update transactions. As a
result, the parallelism is improved over SL protocols
as the update transactions which are conflicting with
‘compensatable’ ROTs need not block. In this paper,
we have proposed a protocol by exploiting both “com-
pensatability” property of ROTs and speculation. The
simulation results show that the proposed protocol im-
proves the performance by carrying out less number of
speculative executions. Further, the proposed protocol
does not violate serializability criteria.

1 Introduction

Processing read-only transactions (ROTs) with high
performance and without any correctness and data
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currency issues is an important problem in web-based
information systems. A read-only transaction (ROT)
does not modify any data. The main issues in process-
ing ROTs are correctness (serializability), data cur-
rency and performance. The widely used two-phase
locking (2PL) protocol [30] [14] processes the transac-
tions with serializability as correctness criteria. 2PL
performs poorly, as both ROTs and update transac-
tions (UTs) are made to wait whenever conflicts occur.
Snapshot isolation (SI)-based methods [3] are widely
used to process ROTs. Note that, ROTs processed at
SI violate serializability criteria [9]. A new mechanism
is discussed in [9] which requires the analysis of trans-
action programs, without requiring any modification
of the database management engine, to make SI seri-
alizable. In [27], automating the task of modifying the
program logic is discussed.

Data currency refers to how current or up-to-date
we can guarantee a data object to be, for a transaction.
The definition for data currency in a data warehous-
ing environment and in a replicated environment are
discussed in [24] [16] respectively. We can define data
currency for a general DBMS environment as follows.
Let Ti and ‘t’ denote a transaction and time duration,
respectively. The data currency of the data object
provided to Ti is the value of ‘t’ which is the time
difference between the commit time of the transaction
which created the latest version of the data object and
the commit time of the transaction which created the
version of that data object that was read by Ti. If ‘t’
is less/more, it means that transactions are provided
with high/low data currency. It can be noted that
2PL provides high data currency and SI-based proto-
cols provide low data currency for ROTs.

In the protocol proposed in [5], the execution of
ROTs is completely independent of the underlying
concurrency control and replica control mechanisms.
An approach has been proposed in [11] for distributed
environment in which ROTs are processed with a spe-
cial algorithm that is different from the one used for
update transactions (UTs). In [26], an approach has



been discussed for maintaining multiple versions of
data objects. In this technique, based on the arrival
time, ROTs read particular versions of the data.

In [21], speculation has been extended to improve
the performance of distributed database systems by
considering transactions which contain both the read
and writes operations. Based on speculative locking
protocol, two protocols have been proposed namely
synchronous speculative locking protocol for ROTs
[18] and asynchronous speculative locking protocol for
ROTs [20]. In these approaches, ROTs are processed
with speculation and UTs are processed using 2PL.
The speculation-based approaches which require ex-
tra processing resources, improve the performance of
the ROTs without any data currency and correctness
issues.

In [13],the use of commutative property of arith-
metic operations plus and minus is briefly discussed to
reduce the lock contention for data objects. The use of
commutative property of operations in increasing con-
currency is also discussed in [28] [31] [32]. In [10], how
commutative steps of distributed transactions can be
interleaved to improve the performance is discussed.
A multi-copy algorithm for replicated environment is
discussed in [22], which exploits the application seman-
tics. In [25], the authors identified a property known
as recoverability which can be used to decrease the de-
lay involved in processing non-commuting operations
while still avoiding cascading aborts. In [15], the au-
thors presented a locking protocol for object databases
which uses method commutativity. A semantic locking
protocol which supports referentially shared objects
was proposed in [4]. Recently an experimental study
[6] has been performed on an object-based industrial
application used in telecommunications sector. This
study shows that there is a potential in real-world
applications for improving the performance through
semantic-based approaches.

In this paper, we propose an approach which ex-
ploits the semantics of the applications and specula-
tion to process the ROTs. We have identified that
an ROT which performs compensatable computations
can be executed without speculation and without wait-
ing for the conflicting UTs. Also, we have observed
that the UTs conflicting with such ROTs can be exe-
cuted without blocking. Based on these observations,
we have come up with a notion called “compensatabil-
ity” for classifying the ROTs. Also, we have proposed
a speculation-based approach which can process the
ROTs effectively with less number of speculative ex-
ecutions and process the UTs satisfying certain con-
ditions without blocking. The proposed protocol does
not have any correctness and data currency problems.
The simulation results show that the proposed proto-
col performs marginally better than SSLR and requires
less number of speculative executions as compared to
SSLR. Also, the UT throughput of the proposed proto-

col is better than 2PL, SI-based and SSLR protocols.

1.1 System Model and Notations

A database is a collection of data objects. Users inter-
act with the database by invoking transactions. Trans-
actions are represented with Ti, Tj ,... A transaction
is a sequence of read and write operations that are
executed atomically on the data objects. A transac-
tion can read a set of data objects from the database
which forms the read set (RS) of the transaction and
modify the values of another set of data objects which
forms the write set (WS) of the transaction. An ROT
contains only read operations. A UT consists of both
read and write operations. The transactions Ti and Tj

are said to have a conflict, if RS(Ti)∩WS(Tj)6= ∅, or
WS(Ti)∩ RS(Tj)6= ∅ or WS(Ti)∩WS(Tj)6= ∅. The ex-
ecution of a transaction must be atomic [30] [14]; i.e.,
a transaction either commits or aborts. The commit
of a transaction results in all of its changes being ap-
plied to the database, whereas the abort results in the
changes being discarded.

The database management system consists of mod-
ules like transaction manager and a data manager [12].
Processing of transactions is managed by the trans-
action manager component of database management
systems, while database is managed by the data man-
ager.

Data objects are denoted with ‘x’,‘y’,.. For the data
object ‘x’, ‘xi’ (i = 0 to n) represents ith version of ‘x’.
The notation ri[xj ] indicates that read operation is ex-
ecuted on ‘xj ’ by the transaction Ti and wi[xj ] denotes
that the transaction Ti performs a write operation on
a particular version of ‘x’ and produces ‘xj ’. The no-
tations ‘si’, ‘ci’, and ‘ai’ denote the start, commit and
abort of Ti respectively. Tij indicates jth speculative
execution of Ti.

1.2 Paper Organization

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss 2PL, SI-based, speculative locking
and SSLR protocols. In Section 3, we present the ba-
sic idea of the proposed protocol. Next, we present
the overview of the protocol. Subsequently, we discuss
the details of the protocol. In Section 4, we present
the simulation results. We discuss the implementation
and performance issues in Section 5. The last section
contains conclusions and future work.

2 Concurrency control protocols

In this section, we discuss two-phase locking, snapshot
isolation-based, basic speculative locking and SSLR
protocols.

2.1 Two-phase locking

Under 2PL [30], a transaction requests “read-lock” (R-
lock) to read an object and a “write-lock” (R-lock) to



Lock requested Lock held by Ti

by Tj R W
R yes no
W no no

Figure 1: Lock compatibility matrix for 2PL
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Figure 2: Depiction of transaction processing with 2PL

write/update the data object. In 2PL, a transaction
should obtain all the required locks before performing
any unlock operation. We have considered a variation
of 2PL called “strict two-phase locking protocol” [12].
The lock compatibility matrix for 2PL is shown in Fig-
ure 1. The terms “yes” and “no” in the matrix means
that the corresponding lock requests are compatible
and incompatible, respectively. On any data object,
the R-lock of the lock requesting transaction is com-
patible with the R-lock of the lock-holding transaction.
If one of them is W-lock, the locks are not compatible.

We explain the processing of ROTs under 2PL with
an example. Consider Figure 2. In this, both T1 and
T3 are UTs and T2 is an ROT. It can be observed
that T2 has to wait for a lock on the object ‘x’ until
T1 commits. Similarly, T3 has to wait for a lock on
‘y’. (The space between the last operation and ‘ci’
notation in the transaction diagram depicts the time
required to carry out logging and commit operations.
Let ‘t1’ and ‘t2’ are time instances. The arrow mark
between ‘t1’ and ‘t2’ indicates that the action at ‘t2’
starts only after the action at ‘t1’). Due to waiting the
performance of ROT suffers in 2PL as data contention
increases.

2.2 Snapshot isolation-based protocol

A new isolation level called snapshot isolation (SI) is
proposed in [3]. In SI-based techniques, an ROT (Ti)
reads data from the snapshot of the (committed) data
available when Ti has started or generated the first
read operation. The modifications performed by other
concurrent UTs, which have started their execution af-
ter Ti are unavailable to Ti. We consider one of the
SI-based protocol “first committer wins rule”(FCWR)
[3]. In FCWR, a transaction (Ti) commits if and only
if no concurrent transaction (Tj) has already commit-
ted writes of data objects that Ti intends to write.

It can be noted that, SI-based protocols are not
serializable [9] as an ROT ignores the updates of con-
current UTs which have committed after its start.

The processing of ROTs using FCWR is depicted in
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Figure 3: Depiction of transaction processing with
FCWR
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Figure 4: Serilizability violation under FCWR proto-
col

Figure 3. In this figure, both T1 and T3 are UTs, and
T2 is an ROT. It can be observed that T2 reads the
currently available values ‘y0’ and ‘z0’ and proceeds
with the execution. Simultaneously, T3 also reads ‘x0’
and produces ‘x2’. Note that, FCWR allows only one
of the conflicting UTs to commit. So, T3 has to be
aborted as T1 commits. However, as per FCWR, T2

commits with the old values and it has not accessed
the updates produced by T1 even though T1 commits
before its completion and therefore receives low data
currency.

Figure 4 shows an example for serializability viola-
tion under FCWR protocol. In this figure, both T1

and T2 are UTs, and T3 is an ROT. It can be ob-
served that T3 reads the currently available values ‘x0’
and ‘y1’ and proceeds with the execution. As T1 and
T2 are not in conflict, they proceed their executions
as per FCWR. We can observe that the execution of
the transactions T1, T2 and T3 is not equivalent to a
serial order of executions and hence violates the seri-
alizability criteria. Note that, the execution of UTs
T1 and T2 do not violate serializability criteria, But,
the introduction of the ROT T3, makes the execution
of transactions T1, T2 and T3 to violate serializability
criteria [9].

2.3 Speculative locking protocol

In the speculative locking (SL) protocol [21], it was as-
sumed that a transaction produces after-image when-
ever it completes the work with that object. By ac-
cessing before- and after-images of conflicting active
transactions, the waiting transaction carries out mul-
tiple speculative executions. In SL, a transaction com-
mits only after the termination of preceding transac-
tions with which it has formed commit dependencies.
The SL approach improves the transaction processing
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Figure 5: Depiction of transaction processing with SL

Lock requested Lock held by Ti

by Tj R EW SPW
R yes no sp yes
EW sp yes no sp yes

Figure 6: Lock compatibility matrix for SL

performance by increasing the parallelism and reduc-
ing waiting.

Figure 5 depicts the processing of transactions with
SL. Tij indicates jth (j > 0) speculative execution of
Ti. It can be observed that T2 starts speculative exe-
cutions T21 and T22, once T1 produces the after-image
‘x1’. T2 accesses both ‘x0’ and ‘x1’ and starts specula-
tive executions. Here T2 forms commit a dependency
with T1. If T1 commits, T2 commits by retaining the
execution T22. Otherwise, if T1 aborts, T2 commits
by retaining T21. If these transactions would have pro-
cessed under 2PL, T2 can obtain lock only after the
termination of T1. So, it can be observed that SL
improves parallelism by reducing lock waiting time.

Lock compatibility matrix of SL is shown in Fig-
ure 6. In SL, W-lock of 2PL is partitioned into two
locks: exclusive write (EW)-lock and speculative write
(SPW)-lock. Transactions request R-lock for read and
EW-lock for write. When a transaction produces after-
image for a data object, the EW-lock is converted into
SPW-lock. Under SL, only one transaction holds an
EW-lock on a data object at any time. However, note
that multiple transactions can hold the R- and SPW-
locks on a data object at the same time. The entry
“sp yes” indicates that the requesting transaction car-
ries out speculative executions and forms commit de-
pendency with the preceding transactions that hold
R/SPW-locks. Note that the requesting transaction

Lock requested Lock held by Ti

by Tj RR RU EW SPW
RR yes yes no ssp yes
RU yes yes no no
EW no no no no

Figure 7: Lock compatibility matrix for SSLR
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Figure 8: Depiction of transaction processing with
SSLR

commits only after the termination of preceding trans-
actions with which it has formed commit dependen-
cies. SL protocol produces serializable executions.

2.4 The SSLR protocol

The SL protocol was proposed by considering UTs;
i.e., the transactions that contain both read and write
operations. Two speculation-based protocols are pro-
posed in the literature for improving the performance
of ROTs [18] [19] [20] [17]. One is synchronous specula-
tive locking protocol (SSLR) and the other one is asyn-
chronous speculative locking protocol (ASLR). These
protocols process the ROTs using speculation and UTs
with 2PL. In this paper, we consider SSLR protocol for
performance comparison purpose.

The lock compatibility matrix of SSLR is shown
in Figure 7. The W-lock is divided into EW-lock and
SPW-lock. The EW-lock is requested by UTs for writ-
ing the data object. The RU-lock (Read lock for UT)
is requested by UTs for reading a data object. The
RR-lock (read lock for ROT) is requested by ROT
for reading a data object. The entry “ssp yes” (syn-
chronous speculation yes) indicates that the requesting
ROT carries out speculative executions and forms a
commit dependency. Note that, the notion of commit
dependency in SSLR is different as compared to the
notion of commit dependency in SL. In SSLR, if Ti

carries out speculative executions and forms a com-
mit dependency with Tj , Ti commits whenever it is
completed (say at time ‘t’) by retaining appropriate
speculative execution based on the termination status
of Tj at time ‘t’. That is, even though Tj is not com-
pleted, Ti can retain one of the speculative execution
and proceed to commit whenever Ti completes exe-
cution. This is possible, only if Tj is ROT. Whereas
in SL, Ti has to wait for Tj ’s termination as SL is
proposed for UTs.

The processing of ROTs under SSLR is illustrated
in Figure 8. Here, T1 and T3 are UTs which are pro-
cessed with 2PL and T2 is an ROT which is processed
with SSLR. T1 obtains EW-lock on data object ‘x’. It
reads ‘x0’ and produces ‘x1’ and converts the EW-lock
on ‘x’ to SPW-lock. T3, being a UT, waits till T1 re-
leases the lock on ‘x’. The ROT T2 is processed as
follows. Note that even though both T1 and T2 have
arrived at the same instant, T2 waits till T1 produces



after-image ‘x1’, T2 carries out two executions T21 and
T22 by accessing ‘x0’ and ‘x1’ respectively. Note that,
T21 and T22 are carried out synchronously. After T2’s
completion, T21 is retained even though T1 is not yet
committed. We can observe that, T2 is committed
without waiting for the termination of T1. Also, the
transactions are serialized as per the order T2 ≪ T1

≪ T3.

3 The proposed protocol for ROTs

In this section, first we discuss the basic idea of pro-
posed protocol for ROTs. Subsequently, we present
the overview of the protocol. Next, the protocol is
presented in detail.

3.1 Basic idea

It can be observed that the SSLR protocol improves
the performance of ROTs and blocks conflicting UTs.
Because, both ROT and UT are executed in parallel
and access the same data objects, the correctness may
be violated. However, in case of ROTs, there is an
opportunity to improve parallelism, if it is possible to
compensate the computation that is being missed by
the ROTs.

So, the basic idea of the proposed protocol is
as follows. The UTs are processed in parallel with
ROTs without any blocking. However, the ROTs
should compensate the computation. If we identify
the ROTs which are “compensatable”, by modifying
the transaction code, the parallelism can be improved
by allowing the execution of UTs in parallel with
conflicting ROTs. The property of ROTs which allow
compensation, is called “compensatability”, which is
defined as follows.

Definition: Compensatability: Let Ti be an
ROT and Tj be a UT. Consider that Ti accesses data
object ‘x’ at the time instant ‘ts’ and produces new
data object ‘y’ at the time instant te (te > ts). In par-
allel, Tj accesses ‘x’ and produces ‘x′’ at time instant
tu (ts < tu < te). Here ‘x′’ is the value of ‘x’ modified
by Tj . Consider that if Ti would have accessed ‘x′’, it
would have produced new data object ‘z’. We say, the
computation by Ti on ‘x’ is “compensatable”, if there
exists a function or computation ‘g’ such that z=g(x′).

Suppose, Ti accesses ‘n’ data objects. The com-
putation carried out by Ti is “compensatable”, if the
computation carried out by Ti is “compensatable” for
each conflicting data object. The problem is to find the
function ‘g’ for each data object accessed by ROT. It
may be difficult for UTs. However, it is not that diffi-
cult for ROTs as they do not modify any data objects.
In addition, for those ROTs which produce arithmetic
results such as SUM, AVERAGE, PERCENTAGE and
so on, we consider that it is easy to find the function
‘g’ and improve the parallelism.

We now explain the notion of “compensatability”
with an example.

Let T1 be an ROT and T2 be a UT. Let ‘x’, ‘y’
and ‘z’ be the integer data objects. T1 and T2 are
defined as given below.

T1: r[x], r[y], z = x + y, d[z], commit.
T2: r[y], y = y+10, w[y′], commit.

Here T1 is an ROT and T2 is a UT. Both T1

and T2 are concurrent transactions. We can assume
that, while T1 is performing computation (z = x
+ y), T2 modified the ‘y’ value to ‘y+10’ (y′). In
T1, d[z] refers to displaying the value of ‘z’ to the
terminal. Note that, the computation performed
by T1 (addition) satisfies the “compensatability”
property. Here the function ‘g’ can be expressed as
“z+ (y′-y)”. The transaction T1 has to perform the
compensating function ‘g’, after its completion, if T2

completes first. Otherwise, there is no need for the
compensating computations.

So, if the ROTs are performing computations of
“compensatable” type and if they conflict with UTs,
then the ROTs and UTs can be processed in parallel
without blocking, which results in increased perfor-
mance. However, before committing, the ROTs have
to perform compensating computations by reading the
updated data which are produced by the conflicting
committed UTs.

3.2 Overview of the proposed protocol

The proposed protocol exploits the “compensatabil-
ity” property of the operations used in the applica-
tions for improving the performance of ROTs. In this
approach, based on the “compensatability” property
of the operations performed, we classify the ROTs
into two types namely compensatable ROTs (CROTs)
and non-compensatable (NCROTs). If all computing
operations of an ROT satisfy the “compensatability”
property, we call that ROT as CROT. Otherwise, we
call the ROT as NCROT. We allow CROTs to ex-
ecute without blocking and NCROTs to follow syn-
chronous speculation as per SSLR. Note that, CROTs
do not perform speculative executions, but they have
to perform compensating computations during com-
mit time. 2PL is chosen to process the UTs. However,
the UTs conflicting with CROTs are processed with-
out blocking. We call the proposed protocol as SSLR-S
(synchronous speculative locking protocol for ROTs -
which exploits semantics).

Compensating operations:

In the proposed protocol, CROTs are processed with-
out blocking. However, when a UT conflicts with a
CROT or a CROT conflicts with a UT, the transac-
tion identification number of the UT and the identi-
fication number of the data object which is modified



Lock requested Lock held by Ti

by Tj CR NR RU EW SPW
CR yes yes yes sm yes sm yes
NR yes yes yes no sp yes
RU yes yes yes no no
EW yes no no no no

Figure 9: Lock compatibility matrix for SSLR-S

by that UT, are recorded in a list. During its commit
time, a CROT has to read the identification numbers
of the conflicting UTs and data objects from this list
and search for the same in the transaction log. The
transaction log is searched in the reverse order by the
CROTs. This is similar to the approach followed in
[11]. After reading the up-to-date values of the data
objects from the transaction log, the CROT can per-
form the compensating computations as per the pro-
cedure available in the transaction program of that
CROT. The procedure to perform compensating com-
putations has to be developed by the database pro-
grammers. We believe that only few lines of code have
to be added to the transaction program for performing
compensating computations. The software routine for
searching the transaction log has to be available in the
transaction manager for all CROTs.

Types of lock:

The CROTs request compensating read locks (CR-
locks) for reading. The NCROTs request non-
compensating read locks (NR-locks) for reading. The
UTs request read update locks (RU-locks) for reading
and exclusive write locks (EW-locks) for writing.
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Figure 10: Depiction of transaction processing with
SSLR-S

The lock compatibility matrix of SSLR-S is shown
in Figure 9. The entry “yes” indicates that the corre-
sponding locks are compatible and “no” indicates that
the corresponding locks are incompatible. The entry
“sm yes” (semantic yes) indicates that the requesting
CROT is allowed to continue the execution. Note that,
the UTs conflicting with CROTs are allowed to con-
tinue without blocking, which is different from the 2PL
procedure. The entry “sp yes” (speculation yes) indi-
cates that the requesting NCROT carries out specula-
tive executions with the after-image produced by the
preceding UT and forms a commit dependency with
that UT.

Transaction processing in SSLR-S:

Figure 10 depicts the processing under SSLR-S. Here
T1 is a CROT and T2 is a UT. Note that, here T2

accesses ‘x0’ on which T1 is already having CR-lock.
This creates read-write conflict and as per SSLR-S rule
T2 is allowed to acquire EW-lock and to continue its
execution. When T1 completes its execution, it reads
the modified data from the transaction log and per-
forms the compensating operations as per the proce-
dure given in its transaction program. Note that, this
type of processing does not violate the serializability
criteria.

3.3 SSLR-S protocol

For each data object, a lockqueue is maintained to
store the lock requests. The CROTs use the trans-
action log to read the updated values produced by the
conflicting UTs. The list dependset(Tij) stores the
commit dependency details of the jth speculative ex-
ecution of Ti. This list is maintained for each specu-
lative execution of NCROTs. The list dependset(Ti)
stores the details of the UTs with which the CROT
Ti had conflicts, during its execution. This list is used
by the CROTs for identifying conflicting UTs while
performing compensating computations.

Protocol for UTs.

1. Lock acquisition. Let Ti be a UT and requests for
RU-lock to read ‘x’ or EW-lock to write ‘x’. The
lock request is entered into the lockqueue.

1.1 Ti obtains RU-lock if no transaction holds
EW-lock or SPW-lock. Step (2) is followed.

1.2 Ti obtains EW-lock on ‘x’, if no transaction
holds RU-, NR-, EW-, and SPW-locks.

2. Execution. During execution, whenever Ti pro-
duces the after-image for a data object, EW-lock
on the data object is converted into SPW-lock.
If Ti obtains all the locks, step (3) is followed.
Otherwise step (1) is followed.

3. Commit/Abort Rule. Whenever Ti commits, the
speculative executions of NCROTs that have been
carried out with before-images of Ti are termi-
nated. Whenever Ti aborts, the speculative exe-
cutions of NCROTs which have been carried out



with after-images of Ti are terminated. Commit
status of Ti is added into the dependset of CROTs
which are having dependency with Ti. Whenever
Ti commits or aborts, the information regard-
ing Ti is deleted from the dependset maintained
for each of the speculative execution of NCROTs
which are dependent on Ti. Also, all the related
lock entries of Ti are deleted.

Protocol for CROTs:

4. Lock acquisition. Let Tj be CROT and requests
for CR-lock to read ‘x’. The lock request is allo-
cated to Tj . The details of the preceding conflict-
ing UTs are added to dependset(Tj).

5. Execution. Tj continues the execution by access-
ing ‘x’. If Tj obtains all the locks then step (6) is
followed. Otherwise, step (4) is followed.

6. Commit/Abort Rule. Whenever Tj commits, nec-
essary compensating computations specified in its
transaction program are performed using updated
values available in the transaction log, which have
already been produced by the conflicting commit-
ted UTs. The details of conflicting committed
UTs are available in dependset(Tj). All the re-
lated lock entries of Tj are deleted. If Tj aborts,
then also the lock entries of Tj are deleted.

Protocol for NCROTs:

7. Lock acquisition. Let Tk be a NCROT and re-
quests for NR-lock to read ’x’. The lock request
is entered into the lockqueue.

7.1 If no transaction holds EW- or SPW-locks,
the NR-lock is allocated to Tk. The step
(8.1) is followed.

7.2 If a preceding transaction holds SPW- lock,
the NR-lock is granted. The identifier of pre-
ceding transaction that holds SPW-lock on
‘x’ is included in the Tk’s dependset. The
step (8.2) is followed.

8. Execution.

8.1 Tk continues with the current executions by
accessing ‘x’. Step (8.3) is followed.

8.2 Each execution of Tk is split into two spec-
ulative executions: one is with the before-
image and the other one is with the after-
image.

8.3 If Tk obtains all the locks, step (9) is fol-
lowed. Otherwise, step (7) is followed.

9. Commit/Abort Rule. Suppose one of the specula-
tive executions Tkj of Tk has completed at time
‘t’. If the read set of Tkj contains the effect of all
the conflicting transactions that have committed
before ‘t’, Tkj is retained and Tk’s other specu-
lative executions are aborted. Otherwise, Tkj is
aborted. (Note that one of the speculative execu-
tion will be committed). If Tk is aborted, then
all of its speculative executions are also aborted.
Also the lock entries of Tk are deleted.

4 Simulation Results

In this section, we first explain the simulation model.
Next, we present simulation results.

4.1 Simulation model

We have developed a discrete event simulator based
on a closed-queuing model. We have a pool of CPU
servers, all having identical capabilities and are serving
one global queue of transactions. Each CPU manages
two I/O servers. A CPU server serves the requests
placed in the CPU queue in FCFS order. The I/O
model is a probabilistic model of a database that is
spread out across all the disks. A separate queue is
maintained for each I/O server. Whenever a trans-
action needs service, it randomly (uniform) chooses a
disk and waits in the I/O queue of the selected I/O
server [23].

The description of parameters with values is shown
in Table 1. The database size is assumed to be “db-
Size”. The parameters “cpuTime” and “ioTime” de-
note the I/O and CPU time associated with reading
and writing an object (equivalent to an operating sys-
tem page). The parameters “rotMaxTranSize” and
“rotMinTranSize” are the maximum and minimum
number of objects in ROT respectively. The maxi-
mum and minimum number of objects in UT is repre-
sented by the parameters “utMaxTranSize” and “ut-
MinTranSize” respectively. Each resource unit (RU)
constitutes 1 CPU and 2 I/O servers by considering
that one CPU can drive two I/O servers. The param-
eter “noResUnits” represents the number of resource
units. The parameter “MPL” denotes the number of
active transactions exist in the system. The parameter
“logOverhead” denotes the CPU time for reading the
log in the reverse chronological order.

The parameter “% of UTs” denotes the percentage
of UTs currently active in the system. The parameter
“% of CROTs” means the percentage of CROTs ac-
tive in the system. Let ‘u’ indicates the “% of UTs”,
which means that at any point of time, there are ‘u’
percent UTs active in the system. Let ’c’ indicates “%
of CROTs”, which indicates that at any point of time,
there are ‘c’ percent CROTs are active in the system.
Note that, there are (100-u-c) percent NCROTs active
in the system.



Table 1: Simulation Parameters, Meaning and Values
Parameter Meaning Value
dbSize Number of objects in the database 1000
cpuTime Time to carry out CPU request 5ms
ioTime Time to carry out I/O request 10ms
rotMaxTranSize Size of largest ROT transaction 20 objects
rotMinTranSize Size of smallest ROT transaction 15 objects
utMaxTranSize Size of largest UT transaction 15 objects
utMinTranSize Size of smallest UT transaction 5 objects
noResUnits Number of RUs ( 1 CPU, 2 I/O) 8
MPL Multiprogramming Level 20
% of UTs Percentage of UTs currently active 30% and 50%
% of CROTs Percentage of CROTs currently active Simulation variable

(10 to 50)
logOverhead Time to search transaction log 5ms

The value for “dbSize” is chosen as 1000 data ob-
jects [23]. This value is chosen to create a situation
in which conflicts are more frequent. The value for
“cpuTime” is chosen as 5 ms by considering the speed
of modern processors [7]. The value for “logOverhead”
is chosen as 5 ms by considering recent developments in
log maintenance [8]. The value for “ioTime” is fixed
as 10 ms by considering the speed range of current
hard disk drives [1]. Regarding transaction size, we
have chosen different parameter values for ROTs and
UTs by considering the load character in modern infor-
mation systems.The values for “rotMaxTranSize” and
“rotMinTranSize” are fixed at 20 and 15 respectively
and the values for “utMaxTranSize” and “utMinTran-
Size” are 15 and 5 objects, respectively [29]. The size
of a ROT is a random number between 15 and 20 (both
inclusive) and UT is a random number between 5 and
15 (both inclusive). We conducted the experiments by
varying “% of CROTs” from 10 to 50.

Performance Metrics. We have employed the fol-
lowing performance metrics: throughput, UT through-
put, ROT throughput and average number of specula-
tive executions per transaction. Throughput is the
number of transactions completed per second. UT
throughput is the number of UTs completed per sec-
ond. ROT throughput is the number of ROTs com-
pleted per second. Let ‘e’ denotes total number of
speculative executions and ‘n’ denotes total number of
transactions, then average number of speculative exe-
cutions per transaction is equal to e/n.

Protocols. We have compared SSLR-S, with 2PL,
FCWR and SSLR protocols. In all these protocols,
we have assumed that aborted transactions are resub-
mitted again after the time duration equals to aver-
age response time in order to reduce repeated aborts.
For SSLR and SSLR-S, we have assumed that all the
speculative executions are carried out in parallel. We
believe that with the availability of multi-core CPUs,
parallel processing of speculative threads is feasible.
Also, we have not taken into account the cost of dead-
lock detection as it is same for all locking-based pro-

tocols.
In the experiments, the graphs show the mean re-

sults of 20 experiments; each experiment was carried
out for 10,000 transactions. The results are plotted
with a mean of 95 percent confidence intervals. These
confidence intervals are omitted from the graphs.

4.2 Experiments under 30% and 50% UTs

In the following experiments, we have reported the re-
sults by simulating environments in which 30% and
50% UTs are kept. Note that, the performance of 2PL,
FCWR and SSLR protocols is not affected because of
change in the “% of CROTs”. This is because, these
protocols consider both the CROTs and NCROTs as
simple ROTs.
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Figure 11: % of CROTs vs Throughput (30% UTs)

Figure 11 shows how throughput performance for
2PL, FCWR, SSLR and SSLR-S vary with “% of
CROTs”. We can observe that, SSLR-S protocol per-
forms marginally better than SSLR in 30% UTs en-
vironment. In SSLR-S, UTs conflicting with CROTs
are not blocked. However, UTs conflicting with UTs
are blocked. So, the performance of SSLR-S is only
marginally better than SSLR. In Figure 12, we can
observe that difference in performance between SSLR
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Figure 12: % of CROTs vs Throughput (50% UTs)

and SSLR-S is more than that of 30% UTs environ-
ment. As more CROTs are added in to the system,
more UTs will complete their executions. So, the
throughput performance has been improved in 50%
UTs environment.
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Figure 13: % of CROTs vs UT throughput (30% UTs)

Figure 13, shows how UT throughput performance
of 2PL, FCWR, SSLR and SSLR-S vary with “% of
CROTs”. It can be observed that, SSLR-S protocol
performs better than the remaining protocols in 30%
UTs environment. SSLR-S protocol allows the UTs
conflicting with CROTs to continue their executions
without blocking. So, the UT throughput of SSLR-S is
higher than the remaining protocols. From the Figure
14, we can observe that UT throughput performance
of SSLR-S is better that of 30% UTs environment. As
more CROTs are added in to the system, more UTs
complete their executions. So, the UT throughput per-
formance has been improved in 50% UTs environment.

Figure 15, shows how ROT throughput perfor-
mance of 2PL, FCWR, SSLR and SSLR-S vary with
“% of CROTs”. We can observe that, the perfor-
mance of SSLR-S decreases slightly as we increase “%
of CROTs” under 30% UTs environment. The policy
of allowing UTs conflicting with CROTs to continue
their executions make more UTs to actively compete
for resources than the situation of SSLR. In SSLR-S,
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NCROTs have to wait in the queue for the generation
of after-images by preceding UTs. So, the ROT per-
formance of SSLR-S is slightly less than SSLR. Similar
trend is observed in Figure 16 for 50% UTs environ-
ment.

Figure 17, shows average number of speculative exe-
cutions per transaction required for SSLR and SSLR-S
by varying “% of CROTs” under 30% UTs environ-
ment. We can observe that for SSLR-S, the average
number of speculative executions per transactions has
been less. This is because, CROTs are processed with-
out speculation in SSLR-S. SSLR-S performs less num-
ber of speculative executions in 50% UTs environment
than in 30% UTs environment, which can be observed
in Figure 18. In 50% UTs environment, more UTs are
allowed to enter into the system. Note that, UTs are
processed without speculation. So, the average num-
ber of speculative executions per transaction decreases
as “% of CROTs” increases.

5 Discussion and Implementation is-
sues

Classification of ROTs: It is possible to classify the
ROT as a compensatable-ROT if the computations
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performed by that ROT are compensatable. This clas-
sification information can be recorded in the transac-
tion program itself. The problem is to identify the
“compensatability” property of the operations. If the
ROTs perform computations of arithmetic type, it is
easy to identify the “compensatability” property of the
computations. But for other computations, checking
for “compensatability” property is difficult. We have
to investigate this issue further.

Data currency issues: The data currency provided
to the ROTs are very important for some web-based
information systems. For example, let us consider the
on-line stock exchange system, which provides the fa-
cilities like purchase and sale of company shares for
its registered users. In this system, for the read only
queries issued by the users, the SI-based protocols pro-
vide the data which is available in the database before
the start of execution of current query, to the users
and the decision taken based on this data may affect
the financial benefits of the users. 2PL protocol pro-
vides recent data by including the effects of concurrent
updates, but response time of 2PL is more. Whereas,
the proposed approach would provide recent data by
including the effects of concurrent updates. Moreover,
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the response time of proposed approach would be less
than that of 2PL. So, the users would get recent data
in a quick time and can take a better decision.

Performance enhancement of transactions specified
in TPC-C benchmark: The TPC-C [2] is an online
transaction processing workload. It is a mixture of
read-only and update intensive transactions that simu-
late the activities found in complex OLTP application
environments. TPC-C uses many tables and trans-
actions. We consider only the STOCK-LEVEL ta-
ble and NEW-ORDER and STOCK-LEVEL transac-
tions for our discussion. The NEW-ORDER transac-
tion updates S QUANTITY column of STOCK table,
for each item specified in the order. The STOCK-
LEVEL transaction determines the number of recently
sold items that have a stock level below a specified
threshold. It reads the S QUANTITY column of the
STOCK table for each comparison. So from the above
discussion, we can classify that STOCK-LEVEL as
a compensatable-ROT and NEW-ORDER as a short
UT. The proposed approach, can execute the trans-
actions NEW-ORDER and STOCK-LEVEL without
blocking. At the commit time, STOCK-LEVEL has
to perform some compensating operations to include
the updates of NEW-ORDER transaction. Thus the
proposed approach improves the performance. Also, it
provides high data currency to ROTs.

Performance comparison of 2PL, SSLR, SSLR-S
and SI-based protocols: The performance comparison
of 2PL, snapshot isolation-based, SSLR and proposed
approaches are listed in the table 2. The proposed
protocol provides a better performance than 2PL, SI-
based and SSLR protocols. Note that, SI-based ap-
proaches provide less data currency to ROTs, whereas
the proposed approach provides high data currency to
ROTs. We can observe that, speculation-based pro-
tocols performs better than 2PL and SI-based proto-
cols at the cost of extra processing resources. The
throughput performance of the proposed approach is
marginally better than SSLR. The UT throughput per-
formance of the proposed SSLR-S protocol is better



than the remaining protocols. We can observe that,
SSLR-S protocol requires less average number of spec-
ulative executions per transaction than SSLR proto-
col. The proposed SSLR-S protocol and SSLR proto-
cols require extra processing resources. Whereas 2PL
and FCWR do not require extra processing resources.
Note that, 2PL, SSLR and the proposed protocols sat-
isfy serializability criteria, whereas SI-based protocols
are not serializable.

6 Conclusions and future work

In this paper we have proposed an improved con-
currency control protocol for ROTs by exploiting
the notion called “compensatability”. In this pro-
tocol, a UT need not block, if it conflicts with
compensatable-ROTs. After completing its execution,
the compensatable-ROT is able to compensate for the
updates made by concurrent UTs. In this paper, we
have defined the notion of “compensatability” and pro-
posed an integrated protocol to improve the perfor-
mance of ROTs by exploiting the notion of “compen-
satability” of ROTs and speculation. The simulation
results show that the proposed protocol improves the
performance over existing protocols. The results also
show that the proposed protocol requires less number
of speculative executions as compared to speculative
protocol for ROTs which has been proposed in the lit-
erature.

As a part of future work, we are planning to investi-
gate more about how an ROT can be made compens-
able by analyzing transactions specified in the bench-
marks. We are also planning to investigate the perfor-
mance by applying proposed protocol in a data ware-
housing environments.

Many web-based information systems often have to
display information to the client requests by reading
the data from the database and by performing some
simple computations of “compensatable” type. In data
warehousing applications, long running ROTs may
perform some statistical computations of “compensat-
able” type. We have proposed our protocol by consid-
ering such applications. In the emerging e-commerce
scenario, the proposed SSLR-S protocol provides the
scope for improving the performance of ROTs without
compromising data currency and correctness.
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