
When to Trigger Active Rules?

Raman Adaikkalavan Sharma Chakravarthy

CIS Department CSE Department
Indiana University South Bend University of Texas at Arlington

raman@cs.iusb.edu sharma@cse.uta.edu

Abstract

Active rules model and enforce enterprise requirements
such as situation monitoring using events, conditions and
actions. These rules are termed active rules as they make
the underlying application or system such as database man-
agement system active capable (i.e., react to changes ac-
tively using the push paradigm). Events play a critical role
in active rules as they define and detect an occurrence of
interest in the real world and trigger the associated rules.
Currently active rules are triggered only when events occur
completely. Though this allows active rules to model enter-
prise policies they are not sufficient in modeling situations
warranted by applications such as information security. In
this paper, we motivate the need for extending events and
active rules. We introduce and discuss event extensions and
rule generalization and show how these extensions allow
the modeling of situations warranted by emerging applica-
tions. Finally, we discuss algorithms and implementation
of the extensions using the Sentinel Local Event Detector
system.

1 Introduction
A number of event processing systems using Active or
Event-Condition-Action rules have been proposed and im-
plemented [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Tradition-
ally, active rules have been used for various applications
in diverse domains such as situation monitoring, workflow
modeling, and relational and object oriented database man-
agement systems. Lately, there have been a lot of work in
Complex Event Processing [12] and event-based systems
for solving various other problems [13, 14] such as change
detection in Web, information security, Peer-to-Peer com-
puting, information filtering, sensor databases, RFID event
processing, multimedia events, etc. There have also been
some work on semantic events [15], events over uncertain
data [16], and probabilistic events [17].

An active rule is composed of an event and a set of con-
ditions and actions. Large body of work [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11] have been carried out on defining simple events

15th International Conference on Management of Data
COMAD 2009, Mysore, India, December 9–12, 2009
c©Computer Society of India, 2009

and on the language for complex event specification and
detection, as event was the least understood component.
Simple (or primitive) events are domain based. Complex
(or composite) events are constructed from one or more
simple or complex events using event operators. Existing
event specification languages and detection mechanisms
are based on the well-defined point-based [5, 9, 10, 11] and
interval-based [1, 2, 3, 4, 7] temporal semantics. Although
both event semantics are extensively used in event process-
ing, they were shown to be inadequate for supporting many
newer application domains [18].

The main shortcoming of the complex event specifica-
tion and detection using point-based, interval-based or gen-
eralized semantics is that an event is detected only when all
the required constituent events of that event occur. In all
other cases, occurrences of constituent events are ignored
(i.e., deleted). This is a critical issue since active rules as-
sociated with an event is triggered iff that event is detected.
In other words, an event decides when to trigger the associ-
ated active rules. Due to the critical role played by events in
active rules, this method of event detection does not allow
active rules to model the policies required by applications
such as access control in the information security domain.

Let us take a policy and model it using existing com-
plex event specification and detection. “Take actions when
the first occurrence of interest precedes the second occur-
rence of interest.” For example, in an university campus,
between 00:00 hrs and 06:00 hrs the building door must be
opened before any office room door is opened. This pol-
icy can be modeled using active rules and the SEQUENCE
complex event operator [1]. SEQUENCE operator is de-
tected whenever the first event precedes the second event.
After event detection, rules associated with the event are
triggered, conditions are checked and actions are taken. On
the other hand when the second event occurs without the
occurrence of the first event, that occurrence is ignored.
In our example, what happens if the office door is opened
without opening the building door?. Current event speci-
fication and detection just ignores the occurrence. In real
life situations this cannot be ignored as it might indicate a
break-in or a security violation, and a set of actions must be
taken such as notifying the campus security office. We dis-
cuss other scenarios in the paper where current event spec-
ification and detection falls short.

In this paper, we propose extensions to the existing com-
plex event and active rule processing. A brief discussion of
our previous work was discussed in the extended abstract
[19]. Existing complex event and rule specification and de-
tection is discussed in Section 2. The need for extensions
using real world policies is discussed in Section 3. Event
extensions are discussed in Section 4 and rule extensions
are discussed in Section 5. Event detection graphs are dis-
cussed in Section 6 and event detection algorithms are dis-
cussed in Section 7. Section 8 has conclusions and future
work.

2 Background
In this section we discuss events and rules.

2.1 Events
Snoop [1, 9, 18, 20, 21] event specification language which
is a part of the Sentinel [22] Local Event Detector (LED)
system is used in this paper. Main motivation to use
Snoop is that it supports expressive event specification us-
ing point-based [9, 20], interval-based [1, 21] and gener-
alized semantics [18] in various event consumption modes
or contexts [1, 20, 21]. LED uses event detection graphs to
detect events using point-, interval-based and generalized
semantics in various event consumption modes.

An event is “an occurrence of interest” in the real world
that can be either simple (e.g., depositing cash) or complex
(e.g., depositing cash, followed by withdrawal of cash).
Simple events occur at a point in time (i.e., time of de-
positing), and complex events occur over an interval (i.e.,
starts at the time cash is deposited and ends when cash is
withdrawn). Simple events are detected at a point in time,
whereas the complex events can be detected either at the
end of the interval (i.e., detection- or point-based seman-
tics) [5, 9, 10, 11] or can be detected over the interval (i.e.,
occurrence- or interval-based semantics) [1, 2, 3, 4, 7].

Each event has a well-defined set of attributes based on
the implicit and explicit parameters [18]. These attributes
provide all the information about that event. Implicit pa-
rameters contain system and user defined attributes such
as event name and time of occurrence. Explicit parameters
are collected from the event itself e.g., stock price and stock
value.

Below we discuss simple and complex event specifica-
tion 1 from [1, 9, 18, 20].

2.1.1 Simple Events
Simple events are the basic building blocks in an event pro-
cessing system and are derived from various application
domains. For example: data manipulation language and
data definition language statements in a DBMS, function
call invocation in an Object Oriented systems, alarm clock,
increase in stock price, change in a web page, pattern match
over a text stream, and sensor readings.

Definition 1 (Point-based) A simple event E occurs atom-
ically at a point [t] on the time line. It is detected at [t] and

1In this paper, we use P to represent point-based and I to represent
interval-based semantics.

is defined as
P(E, [t]) , ∃t (E, [t]);

Definition 2 (Interval-based) A simple event E occurs
atomically at a point [t] on the time line. It is detected over
an interval [t, t′], where [t] is the start time, [t′] is the end
time and (t = t′). It is defined as
I(E, [t, t′]) , ∃t = t′ (E, [t, t′]);

Definition 3 (Generalized) A generalized simple event
G(E) can be a point- (GP) or interval-based (GI) sim-
ple event with conditional expressions based on Iexpr and
Eexpr. They are formally defined as
GP (E, [t]) , ∃t (P(E, [t]) ∧ (Iexpr ∧ Eexpr));
GI(E, [t, t′]) , ∃t = t′ (I(E, [t, t′]) ∧ (Iexpr ∧ Eexpr));

Below we show an event from an Object Oriented sys-
tem where all function invocations are treated as events.
E1 is the event name and F is function name. Function
attributes are the explicit parameters. Time of the function
call and the object that invoked the function are the implicit
parameters. Implicit and explicit parameter expressions are
represented as Iexpr and Eexpr, respectively. They are dis-
cussed in Definition 6.

E1 = (F(), (Iexpr ∧ Eexpr));

2.1.2 Complex Events
Simple events are often not adequate for modeling real-
world scenarios. Complex events are defined by composing
more than one simple or complex event using event oper-
ators. A number of event operators have been proposed
in the literature based on several application domains. Us-
ing composition conditions, an event operator defines how
a complex event needs to be composed and detected.

Definition 4 (Point-based) A complex event P(E) occurs
over an interval [ts, te] and is detected at a time point [te],
where ts is the start time of initiating event, and te is the
end time of detecting event. Eop is the event operator.
P(Eop (E1, . . . En), [te]);

Definition 5 (Interval-based) A complex event I(E) oc-
curs and is detected over an interval [ts, te]. It is defined as
I(Eop (E1, . . . En), [ts, te]);

Definition 6 (Generalized) A generalized complex event
G(E) can be a point- (GP) or interval-based (GI) com-
plex event with conditional expressions based on Iexpr and
Eexpr. They are formally defined as

GP (Eop (E1, . . . En), (Iexpr ∧ Eexpr), [te]);

GI(Eop (E1, . . . En), (Iexpr ∧ Eexpr), [ts, te]);

• Eop represents a n-ary event operator (And, Or, SE-
QUENCE, NOT, Plus, Periodic, Aperiodic, Periodic*,
and Aperiodic*).

• (E1, . . . En) are the constituent events. For example,
E1 can be simple or complex.

• A complex event occurrence is based on the initia-
tor, detector and terminator events. Initiator is the
constituent event whose occurrence starts the complex
event. Detector is the constituent event whose occur-
rence detects and raises the complex event. Termina-
tor is the constituent event that is responsible for ter-
minating the complex event i.e., no more occurrence
of a complex event with the same initiator event is pos-
sible. All operators have initiator and detector but not
terminator. In addition, detector and terminator can be
the same constituent event.

• Implicit parameter expression Iexpr subsumes exist-
ing point- and interval-based semantics. For instance,
a binary event operator with events E1 and E2 can
have Iexpr = t occ(E1) θ t occ(E2), where t occ
represents the timestamp of event occurrence, and θ
can be any operator <,>,≤,≥, =, 6=,∈, . . .

• Eexpr has conditions based on the explicit parameters.
For instance, a binary event operator with the events
E1 and E2 can have Eexpr = E1(Axi) θ E2(Axj),
where attributes E1(Axi) and E2(Axj) have values
from the same domain.

• Complex event is detected iff the required constituent
events occur, and both Iexpr and Eexpr return TRUE.
We assume that both expressions are not empty at the
same time, otherwise it will detect the complex event
always.

Event Consumption Modes: In order to avoid the unneces-
sary event detection, event consumption modes [1, 20, 21]
or contexts such as Recent, Continuous, Chronicle, and Cu-
mulative were defined based on the application domains.

Below, SEQUENCE operator is formally defined in the
unrestricted mode (i.e., none of events occurrences are re-
moved from the system), and the NOT operator is defined
intuitively.

SEQUENCE EVENT (E1 À E2):

This event is raised when event E1 occurs before event E2.
It is detected when E2 occurs. E1 is the initiator event and
E2 is the detector event. It is formally defined in point and
interval semantics as:

P(E1 À E2, [t2]) , ∃t1, t2(P(E1, [t1]) ∧ P(E2, [t2])
∧(t1 < t2));

I(E1 À E2, [ts, te]) , ∃ts, te, t, t′(I(E1, [ts, t])

∧I(E2, [t′, te]) ∧ (ts ≤ t < t′ ≤ te));

With point-based semantics, E1 is detected at [t1] and E2

is detected at [t2]. Sequence event is detected if (t1 < t2).
With interval-based, sequence is detected if (te(E1) <
ts(E2)). Below is the generalized Sequence operator in-
corporating point-based semantics via Iexpr.

GP (E1 À E2, [t2]) ,∃t1, t2(GP (E1, [t1])
∧GP (E2, [t2]) ∧ (Iexpr ∧ Eexpr));

Iexpr =(t1 < t2);

NOT EVENT I(¬(E2)(E1 À E3), [t1, t2]):
NOT event operator detects the non-occurrence of event E2

between events E1 and E3. Event E1 is the initiator event,
and E3 is both the detector and terminator. E3’s occur-
rence detects the NOT event when there is an occurrence
of E1 and no occurrence of E2.

2.2 Active Rules
An event can be associated with multiple rules, but a rule
can be associated with only one event. Condition and ac-
tion procedures can be associated/shared between different
rules. Rules are executed on an event occurrence and their
management involves event detection and rule execution.
Rule scheduling involves ordering of rules for execution
when several rules are triggered at the same time. Cou-
pling modes define when the rules have to be executed i.e.,
immediate, deferred, or detached. Rules can also be nested
i.e., occurrence of an event triggers a rule which in turn de-
tects/raises another event. If an event is not part of a com-
plex event or does not have any rule associated, then that
event need not be detected for efficiency. This is possible
as rules can be in active or deactive states.

Major components of active rules are discussed below.

Ri = (Ej , (C1 . . . Ck), (A1 . . . An));

• Rule Ri – denotes the name of the rule. No two rules
can have the same name.

• Event Ej – associates event Ej with this rule. This
can be a simple or complex event. The occurrence of
this event triggers the rule.

• Condition C1 . . . Ck – defines the set of conditions to
be evaluated. The set of conditions are checked once
the rule is triggered by the event Ej . Unless the rule
is triggered, conditions cannot be evaluated.

• Action A1 . . . An – defines the set of actions to be trig-
gered when conditions evaluate to TRUE.

RULE [R1

EVENT E1

CONDITION /* Conditions */
ACTION /* Actions */]

Rule R1 shown above is triggered when event E1 is de-
tected. Extended ECA rules [23] rules shown below have
an additional component for triggering alternative actions
when conditions evaluate to FALSE.

Ri = (Ej , (C1 . . . Ck), (A1 . . . An), (AA1 . . . AAp));

RULE [R1

EVENT E1

CONDITION /* Conditions */
ACTION /* Actions */
ALT ACTION /* Alternative Actions */]

3 Need for Extending Events and Rules
Events are raised when the occurrence of interest happens
and are detected only when all the constraints associated
with the event are satisfied. For example, when a simple
event is defined along with an Eexpr constraint, it is de-
tected when the event occurs and the Eexpr returns TRUE.
Similarly, complex events that combine events are detected
only when all the required constituent events occur and all
the constraints are satisfied. Rules associated to an event
can only be triggered iff that event is detected completely.
Though occurrence of all required constituents events is
necessary in many situations it is not required in others for
event detection.

Protecting information against unauthorized access is a
key issue in information system security. Access control
evaluates all access requests to resources by authenticated
users, and determines whether the requests must be granted
or denied, ensuring confidentiality and integrity. There are
several access control models [24]: discretionary, manda-
tory, and role-based.

Below we discuss two policies from access control do-
main and RFID-based retail stores, respectively. We model
these policies using active rules, and discuss the limitations
of active rules.

Policy 1 Between 00:00 hrs and 06:00 hrs, only those who
have entered through the building’s external doors can en-
ter an office room in that building.

The above policy can be made more complex by includ-
ing situations wherein two or more persons enter the build-
ing together without using their cards individually. Without
the loss of generality, we just discuss the basic policy de-
fined above and assume that each person registers his/her
entry individually.

Event EExtReq (external door request) is detected when
there is a request to open any external door between 00:00
hrs and 06:00 hrs. This triggers rule RExtReq . The condi-
tion part authenticates the user, and the action part allows
the door to be opened. Access is denied, otherwise.

EExtReq = (doorOpen(bldgId, doorId, doorType, userId),
(((tocc > 00 : 00hrs) ∧ (tocc < 06 : 00hrs))

∧(doorType = “external”)));

RULE [RExtReq

EVENT EExtReq

CONDITION /* Authenticate User */
ACTION /* Open door */
ALT ACTION /* Deny Access */]

The external door open request is handled by event
EExtReq but the actual opening of the door is handled in
the action part. Thus, another event EExtOpen needs to be
raised by rule RExtReq in the action part to indicate that the
door was opened. The parameters of the event EExtOpen is
same as EExtReq . The modified rule is shown below.

RULE [RExtReq

EVENT EExtReq

CONDITION /* Authenticate User */
ACTION /* Open door, Raise EExtOpen */
ALT ACTION /* Deny Access */]

Event EOffReq is raised when someone tries to open an
office door.

EOffReq = (doorOpen(bldgId, doorId, doorType, userId),
(((tocc > 00 : 00hrs) ∧ (tocc < 06 : 00hrs))

∧(doorType = “office”)));

Similar to rule RExtReq another rule can be created to al-
low someone to open an office door. But the policy re-
quirement will not be met i.e., user should have opened
the building door first. Thus, a complex event is required
to model this requirement i.e., if EOffReq happens after
EExtOpen, trigger the rule to check for access. A gener-
alized SEQUENCE event EOffReq2 and rule ROffReq2

are created as shown below. Iexpr can be used to detect
the event in either point-based or interval-based semantics.
Eexpr tracks each user separately.

EOffReq2 =(À (EExtOpen, EOffReq))
∧ (Iexpr ∧ Eexpr));

Iexpr =(Point/Interval Semantics);
Eexpr =((EExtOpen.userId = EOffReq.userId

∧ EExtOpen.bldgId = EOffReq.bldgId));

RULE [ROffReq2

EVENT EOffReq2

CONDITION /* Authenticate User */
ACTION /* Open door */
ALT ACTION /* Deny Access */]

Existing systems detect events and triggers rules when
event EExtOpen happens before EOffReq . Possible con-
stituent event occurrences (cases) of event EOffReq2 are
as follows:

1. EExtOpen and EOffReq occur: EExtOpen event is
raised when the external door is opened. When the
same person requests for opening an office door, event
EOffReq is detected. Since this is the detector event
for the complex event EOffReq2, the complex event
occurrence is completed and the rule ROffReq2 is
triggered. If the person has proper authentication of-
fice door is opened.

2. EExtOpen occurs alone: This event is raised when the
external door is opened. This event is the initiator
and starts the complex event EOffReq2. The detector
event is raised only when the same person tries to open
an office door. In case the detector does not happen, a
timeout event can be triggered based on the enterprise
policy.

3. EOffReq occurs alone: Event EOffReq is detected
without EExtOpen i.e., complex event EOffReq2 had
not been initiated. What will happen if the detec-
tor event happens without any initiator? With exist-
ing systems, the detector event is just ignored as it
does not capture the occurrence of interest. With ac-
cess control application this should trigger a violation,
which is not possible with current systems.

Binary Operator Summary: Occurrence of the initia-
tor starts the complex event. A detector/terminator should
occur or a timeout event has to be raised in order to com-
plete the event. Detector/terminator event plays an impor-
tant role in enforcing the policy. Problem araises when the
detector occurs without the initiator, as it is ignored. Other
operators, additional rules or complex conditions/actions
will still not be able to model the policy and trigger a vio-
lation. This warrants the extension of binary operators.

Policy 2 Alert security personnel when a shoplifting activ-
ity occurs in a RFID-based retail store [25] i.e., items that
were picked at a shelf and then taken out of the shop with-
out an entry in the point of sale system.

This policy requires to alert on a non-occurrence event and
can be modeled with the NOT operator as shown below:

EChk = (NOT (EPick, EPOS , EGate)
∧ (Iexpr ∧ Eexpr));

Iexpr =(Point/Interval Semantics);
Eexpr =(EPick.itemId = EPOS .itemId

= EGate.itemId);

We do not show all the constituent event definitions and
corresponding rules. Event EPick represents picking the
item from the shelf. Event EPOS represents checking out
at the point of sale system. Event EGate represents item
leaving the gate. Iexpr allows event detection in either
point-based or interval-based semantics. Eexpr relates all
event occurrences with the same item for controlling each
item simultaneously. EPick is the initiator, EGate is the de-
tector, and middle event EPOS is the non-occurrence event
(i.e., event that should not occur). Possible constituent
event occurrences (cases) of event EChk are discussed be-
low.

1. EPick and EGate occur: This detects the NOT event
and an alert regarding shop lifting can be sent via the
actions part. Current systems handle this correctly.

2. EPick occurs alone: Item was picked but nothing hap-
pened after that. Current systems just wait for a detec-
tor to occur. One possible solution would be to raise
a timeout event (e.g., shop closing) and take further
actions (e.g., re-shelf the item).

3. EPOS occurs alone: Someone has checked out an
item without picking it from the shelf. This indicates

that something is malfunctioning. Since this event is
just a constituent event it is ignored (i.e., deleted) in
the current event systems. But this cannot be ignored
since a EGATE event might occur in the future. One
possible solution would be store this event, and wait
for the EGATE event or raise a timeout event (e.g.,
shop closing) and take further actions.

4. EPick and EPOS occur: Item has been picked up and
checked out. Current systems just wait for the detec-
tor/terminator event EGate to occur. One possible so-
lution would be to raise a timeout event (e.g., shop
closing) and take further actions (e.g., check gate sen-
sors).

5. EPOS and EGate occur: Item was not picked out, but
it was checked out and taken to the gate. Current sys-
tems just ignore all these occurrences. This cannot be
the case as it might indicate that there is some mal-
functioning and it has to be reported.

6. EGate occurs alone: Item was not picked up or
checked out, but has reached the gate. Current sys-
tems ignore this detector/terminator event and purge
it from the system. This is an incorrect action as it
might be a shop lifting activity.

7. EPick, EPOS and EGate occur: All the occurrences
are just ignored as the event that should not occur
has happened. This case indicates that the items were
checked out properly. This event occurrence can be
used to create a log for inventory maintenance.

Ternary Operator Summary: When the initiator hap-
pens alone or when initiator and constituent events occur,
but not the detector/terminator event, then raising timeout
event is the only solution. When detector/terminator hap-
pens without the initiator and constituent events it is a prob-
lem that needs immediate attention. Currently, events are
simply dropped in all the cases except the first case, which
is insufficient. Modeling of the above discussed policy us-
ing existing event operators or active rules with complex
conditions/actions is not possible.

4 Event Extensions
Utilizing event processing in diverse application domains
require an additional capability of current event detection
semantics to infer that a constituent event of a complex
event has been detected, but not other events to complete
the detection of that complex event. To identify such oc-
currences we propose event detection modes for
complex events. The outcome of simple event detection is
the same in all modes. These modes allow for additional
actions and alternative actions to be taken when the event
is not completed because of the occurrence/non-occurrence
of constituent events.

The following are the steps involved in event processing:

1. Define simple and complex events using an event
specification language.

2. Define rules.

3. Detect events based on event semantics using an event
detection mechanism such as an event graph.

4. Trigger rules when events are detected.

Introducing event detection modes requires changes to
all the steps shown above. Modifications to Step 1 are not
discussed in this paper, leaving the definition and specifi-
cation of events discussed in Section 2.1 unchanged. More
details about the impact of modes on specification is dis-
cussed in Section 6. Modification to other steps are dis-
cussed in the following sections. Extensions to part of Step
3 is discussed in this section. Step 2 is discussed in Section
5 and Steps 3 and 4 are discussed in Sections 6 and 7.

Simple events are detected whenever they occur in the
system and these extensions do not apply to them. Exten-
sions to both binary and ternary Snoop operators are dis-
cussed below.

4.1 Binary Event Operator Semantics

With binary operators, two constituent events are involved
and they act as initiator and detector/terminator. When the
detector event occurs, operator semantics is applied and
both Iexpr and Eexpr are checked. If any of the conditions
fail then that event is not raised and other constituent events
are dropped. Whether an event is complete is checked only
when the detector is raised. Current systems deal only with
complete events. Below we define a complete event:

Definition 7 (Complete Event) “A complete complex
event E occurs when, i) initiator occurs, and ii) detector
occurs and completes that event.”

When the detector event occurs without the initiator, ex-
isting event detection semantics has to be modified to trig-
ger active rules. Extending current event detection seman-
tics to handle situations where the detector has occurred
without the required events to complete the detection will
allow the system to take additional actions. We term these
events as partial events and define them below.

Definition 8 (Partial Event) “A partial complex event E
occurs when i) event E is not initiated, and ii) detector oc-
curs.”

Three cases that were analyzed in Section 3 under Policy
1 can be handled using these extensions. Specifically, Case
1 is handled by complete events and Case 3 is handled by
partial events. Case 2 can be handled by a timeout event
which completes the event.

4.2 Ternary Event Operator Semantics

Similar to binary operators ternary events have initiator and
detector/terminator. In addition there is another event that
is just a constituent event. Binary complete event definition
is further refined as shown below.

Definition 9 (Complete Event) “A complete complex
event E occurs when, i) initiator occurs, ii) all the required
constituent events occur, and iii) detector occurs and
completes that event.”

Partial binary event definition is further refined as shown
below.

Definition 10 (Partial Event) “A partial complex event E
occurs when i) event E is not initiated, ii) other constituent
events can occur, and iii) detector occurs.”

In addition to the above events, we define failed events as
shown below. For example, this event is detected when the
non-occurrence has failed for a NOT operator.

Definition 11 (Failed Event) “A failed complex event E
occurs when i) initiator occurs, ii) other constituent events
occur, and iii) detector occurs and completes the event, but
the event fails because some constituent event that should
not have occurred has occurred.”

Seven cases that were analyzed in Section 3 under Pol-
icy 2 are handled as shown below. Current systems handle
only Case 1. All seven cases can be handled using the pro-
posed extensions. Specifically, Case 1 is handled by com-
plete events, Cases 5 & 6 are handled by partial events, and
Case 7 is handled by failed events. Case 3 & 4 are han-
dled by partial events using timeout events. Case 2 can be
handled by a timeout event which completes the event.

4.3 Summary
Events can be detected as complete, partial or failed. These
three types are termed as event detection modes. In Step
4 shown above active rules are triggered when events are
triggered. With the extension proposed, active rules can be
triggered in all the three event detection modes. Though
the specification has not been changed, detection has to be
changed to trigger appropriate rules. In Sections 6 and 7
we discuss event detection in detail.

5 Active Rules Generalization
As explained in Section 2 active rules consist of four com-
ponents and various other attributes. Active rules are trig-
gered when complete events are detected. With new event
detection modes, when should active rules be triggered?
Partial and failed events should also trigger associated ac-
tive rules. In this section we discuss the extensions needed
to support complete, partial, failed and other future detec-
tion modes in a seamless way.

Active rules specification discussed in Section 2 is
shown below:
RULE [R1

EVENT E1

CONDITION /* Conditions */
ACTION /* Actions */
ALT ACTION /* Alternative Actions */]

Event detection modes are handled by adding an op-
tional DMODE attribute to the existing rule specification.

Currently, the values of the DMODE attribute are: com-
plete, partial, or failed. If a value is not specified, the rule
will be triggered when a complete event is detected, by de-
fault. This extension allows the Local Event Detector to
trigger rules accordingly. Using the DMODE attribute dif-
ferent sets of condition-action-alternative actions are asso-
ciated to the rules. This is similar to the select-case condi-
tional structure used in programming languages.

RULE [Ri

EVENT Ej

DMODE:[COMPLETE | PARTIAL | FAILED] {
CONDITION /* Conditions */
ACTION /* Actions */
ALT ACTION /* Alternative Actions */ }

]

This generalization allows the specification of the
proposed and future event modes and their associated
condition-action-alternative actions. Below we show the
specification for the proposed event detection modes.

RULE [R1

EVENT E1

DMODE:COMPLETE {
CONDITION /* Conditions */
ACTION /* Actions */
ALT ACTION /* Alternative Actions */ }

DMODE:PARTIAL {
CONDITION /* Conditions */
ACTION /* Actions */
ALT ACTION /* Alternative Actions */ }

DMODE:FAILED {
CONDITION /* Conditions */
ACTION /* Actions */
ALT ACTION /* Alternative Actions */ }

]

With complete, partial and failed events and rules we
can model and capture policies that cannot be captured us-
ing existing systems. Below we show the extended rules
corresponding to policies discussed in Section 3.

5.1 Rules for Policy 1

Rule RExtReq need not be changed as it is associated with
a simple event. By default the event is triggered as a com-
plete event. Rule ROffReq2 that is associated with the SE-
QUENCE complex event EOffReq2 has been modified us-
ing the generalized rule specification.

RULE [ROffReq2

EVENT EOffReq2

DMODE:COMPLETE {
CONDITION /* Authenticate User */
ACTION /* Open door */
ALT ACTION /* Deny Access */ }

DMODE:PARTIAL {
CONDITION /* TRUE */
ACTION /* Notify Security */
ALT ACTION /* No Alternative Actions */ }

]

In rule ROffReq2, DMODE:COMPLETE handles au-
thentication when the external door is opened and the of-
fice door is opened after that. Specifically, it handles Case
1 in Section 3 under Policy 1. DMODE:PARTIAL handles
Case 3 (i.e., when the office door is opened without the ex-
ternal door opening). When triggered it notifies security
personnel of a possible break-in.

5.2 Rules for Policy 2

Below we create a rule and associate it with the NOT
complex event EChk. When events EPick and EGate

occur (Case 1), it detects the non-occurrence of the
checkout (EPOS) event. This detects the NOT event and
triggers the DMODE:COMPLETE part of rule shown below.
RULE [RChk

EVENT EChk

DMODE:COMPLETE {
CONDITION /* TRUE */
ACTION /* Notify Security */
ALT ACTION /* No Alternative Actions */ }

DMODE:PARTIAL {
CONDITION /* TRUE */
ACTION /* Notify Security */
ALT ACTION /* No Alternative Actions */ }

DMODE:FAILED {
CONDITION /* TRUE */
ACTION /* Update Log */
ALT ACTION /* No Alternative Actions */ }

]

When the detector/terminator event occur with other
constituent events and no initiator, partial event is detected
and the partial rule is triggered. In our example when
EGate occurs alone (Case 6), or when EPOS and EGate

occur (Case 5), it indicates some problem and should be
notified. In either case the security is notified via the
DMODE:PARTIAL part of rule. In addition, Cases 3 & 4 are
also handled using timeout events and DMODE:PARTIAL
part of the rule.

When all the events EPick, EPOS and EGate occur
(Case 7), failed event is detected. This is because event
EChk is modeling the non-occurrence of EPOS , but it has
occurred. This triggers the DMODE:FAILED part of the

rule.
All other cases where there is no occurrence of a detec-

tor/terminator can be handled using a timeout event.

6 Event Detection
Events specified using Snoop are detected using event de-
tection graphs in the Local Event Detector [22]. In this sec-
tion we will briefly explain event detection graphs that keep
track or record of event occurrences for detecting complete,
partial and failed events, and triggering appropriate rules.

Figure 1: Event Detection Graph

Event Detection Graph:

Event graphs record event occurrences as and when they
occur and keep track of the constituent event occurrences
over the time interval they occur. They are acyclic graphs,
where each complex event is a connected tree. In addi-
tion, events that appear in more than one complex event are
shared.

Event graph shown in Figure 1 has three leaf nodes rep-
resenting simple events E1, E2, and E3. Internal node
E4 represents the complex event operator. The graph as
a whole models a policy. In Figure 1, the complex event
is a ternary event operator e.g., NOT. Although the child
events are simple events in the Figure 1 it can be complex
events. Each simple and complex event node check im-
plicit and explicit condition expressions. In order to facili-
tate the propagation of events as and when they occur, each
node in the graph has two lists; event subscriber list shown
as connected ovals and rule subscriber list shown as con-
nected rectangles. Colored shapes represent the presence
of events and rules whereas empty shapes are just holders.
Event subscriber list contains all the events that require this
event (node) to propagate once this event is detected. Rule
subscriber list contains all the rules that need to be triggered
when the event represented by the node (leaf or internal) is
detected.

Event Graph Construction:

Leaf nodes for simple events (E1, E2, and E3) are con-
structed. Internal node (E4) corresponding to the event
operator is constructed. Parent (internal) node places its
pointer in the event subscriber lists of all the child (leaf)
nodes. Child nodes are linked with the parent nodes. Rules
are created and linked with the appropriate nodes using the
rule subscriber lists. The graph represents a policy modeled

using a ternary operator e.g., Policy 2 from Section 3.

Event Propagation and Detection:
Event E1 occurrence signals the left node. Using the event
subscriber list the occurrence is propagated to the internal
node E4. Rules associated with the event are also triggered.
Similarly events E2 and E3 are handled. Occurrence of
the detector event E3 invokes the event detection proce-
dure in an event consumption mode (e.g., seq recent() for
SEQUENCE operator in recent consumption mode). The
procedure evaluates both the implicit and explicit expres-
sions. Once evaluated to TRUE, rule lists associated with
the internal node are probed and rules are triggered. If there
are any parent nodes that subscribed to E4, then the occur-
rence is propagated. In Figure 1 there are no parent nodes
for event E4. Event detection algorithms are discussed in
the next Section.

6.1 Extended Event Detection Graphs
Figure 2 represents Policy 2 discussed in Sections 3, 4 and
5. Event detection graph discussed above has been ex-
tended to handle event detection modes by creating and as-
sociating additional rule subscriber lists. Extended event
detection graphs have four lists; event, complete rule, par-
tial rule and failed rule subscriber lists. Complete rule sub-
scriber list (shown as slanting line rectangles) contain all
the complete rules that need to be triggered when the event
represented by the node is detected. Partial rule subscriber
list (horizontal line rectangles) and failed rule subscriber
lists (vertical line rectangles) contain all partial and failed
rules, respectively. Another approach would be to keep all
rules in one list. But this would increase the computation
needed to traverse and trigger appropriate rules.

Figure 2: Event Detection Graph with Extensions

Event EChk defined in Section 3 is represented in Fig-
ure 2 as the internal node Chk. Events EPick, EPOS and
EGate are represented as leaf nodes. As shown in the fig-
ure all the events in the leaf node are constituent events of
the NOT event node. Events EPick and EChk have rules
associated with them. In the figure, rule subscriber lists
attached to event EChk have complete, partial and failed
rules.

Event Propagation and Detection:
When event EPick occurs, left node is signaled and is prop-
agated to the internal node. Rules associated with the event

are triggered. When event EPOS occurs middle node is sig-
naled and is propagated to the internal node. When event
EGate occurs, right node is signaled and is propagated
to the internal node. Occurrence of detector event EGate

starts the event detection procedure. These procedures are
discussed in the next section and they detect events, trigger
rules and propagate events.

Impact of Event Detection Modes:
As mentioned earlier complex events can act as constituent
events in other complex events. New event detection modes
proposed in this paper affects how events are propagated
after detection and how rules are triggered. We discussed
in detail the impact of modes on rules and generalized the
rule specification. On the other hand, we did not discuss
impact of modes on the propagation of events to parents.

For example, consider the event NOT(A, B, SE-
QUENCE(C, D)), where sequence event acts as the de-
tector/terminator event. Currently, the SEQUENCE(C,D)
event is propagated to the NOT event when it is complete.
Though event A can start the NOT event, only a complete
sequence event can detect it. With the introduction of par-
tial and failed events propagation of events to parent events
have to be studied and is outside the scope of this paper.
In addition to propagation, specification of complex events
using modes needs to be studied as well. For example, can
modes be included in the sequence event specification (e.g.,
SEQUENCE(C, D [Complete, Failed])) and be used to de-
tect and propagate event occurrences.

In summary, with the current extensions: i) events are
defined using existing specification, ii) rules are triggered
using all three event detection modes, and iii) only events
detected in complete event detection mode are propagated
to parent nodes.

7 Event Detection Algorithms
Current event operator algorithms are based on point-based
or interval-based semantics, and implementing event de-
tection modes does not change the complexity of the algo-
rithms. In other words, the asymptotic upper bound (i.e.,
O) on the running time of the event operator algorithms
does not change due to these extensions.

In the manner in which active rules are used for moni-
toring situations, events occur over a time line and are sent
to the event detector (or propagated in the event graph). All
events in the form of an event history are not submitted to
the event detector. In fact, as part of event detection, the
event detector at any point sees only a partial history in
time.

In this section, we will provide algorithms and the ex-
tensions that are required for SEQUENCE and NOT event
detection in the recent event consumption mode [1, 20].
This mode is used by applications where recent event oc-
currences are of interest. In this mode whenever a new ini-
tiator occurs, it replaces the old occurrence of the initiator.
Based on the discussion from Section 2, algorithms dis-
cussed below use interval-based semantics [1] for IExpr

and EExpr is empty. Notations used in the algorithms are

Table 1: Notations used in Algorithms

ei (e.g., e1, e2) Simple or complex event instance
or occurrence

Ei (e.g., E1, E2) An event list that maintains the par-
tial history of the occurrences of
event ei

ts Start time of the event occurrence
te End time of the event occurrence

shown in Table 1.

7.1 SEQUENCE Event Operator
Procedure seq recent() shown in Algorithm 1 detects a
SEQUENCE event in recent consumption mode using
interval-based semantics. Each consumption mode has a
corresponding procedure for event detection.

Algorithm 1: SEQUENCE Event Detection
/* ei can be recognized as coming

from the left or right branch of
the operator tree */

PROCEDURE seq recent (ei, parameter list)
if ei is the left event then

Replace e1 in E1

end
if ei is the right event then

if E1 is not empty and (te(e1) < ts(e2)) then
Pass < (e1, e2), [ts(e1), te(e2)] > to parent
// Trigger Rules from the list

end
end

Since SEQUENCE is a binary event operator there are
two child nodes that can propagate. The left child node is
the initiator and the right child is the detector/terminator.
As shown in the algorithm whenever the left child node
propagates an event, the first if statement is executed. This
replaces the current initiator occurrence with the new one.
Since the algorithm is for the recent mode, the initiator is
not removed unless a new initiator occurs.

When the right or detector event occurs the time stamp
of the occurrence is compared with the initiator’s times-
tamp. If the detector follows the initiator, a new SE-
QUENCE event is constructed with the new combined
timestamp and propagated. Rules from the rule subscriber
list are also triggered.

Based on the proposed extensions, Algorithm 1 has to be
modified to detect complete and partial events. Algorithm 2
is the extended version of Algorithm 1. As shown the han-
dling of left child in not modified. Proposed extension have
to be handled when the right child propagates the event oc-
currence. When a detector occurs, the list E1 is checked.
If there is an initiator that has occurred before this e2, then
a complete event is created and propagated and complete

Algorithm 2: SEQUENCE Event Detection Extension
PROCEDURE seq recent (ei, parameter list)
if ei is the left event then

Replace e1 in E1

end
if ei is the right event then

if E1 is not empty and (te(e1) < ts(e2)) then
Pass < (e1, e2), [ts(e1), te(e2)] > to parent
// Trigger Complete Rules

else
// Trigger Partial Rules

end
end

rules are triggered. If there is no matching initiator, then
partial rule list is probed and rules are triggered in the else
part. Instead of an else statement, an elseif can also be used
which checks whether the initiator list is empty and then
trigger partial rules. But that will not handle events that en-
ter the system out of sequence. Also, partial events are not
created and are not propagated to parent nodes currently, as
discussed in Section 6.

Algorithm 3: NOT Event Detection
PROCEDURE not recent (ei, parameter list)1

if ei is the left event then2

Replace e1 in E13

Flush E24

end5

if ei is the middle event then6

if E1 is not empty and (te(e1) < ts(e2)) then7

Append e2 to E28

end9

end10

if ei is the right event then11

if E1 is not empty and (te(e1) < ts(e3)) then12

if E2 is empty then13

Pass < (e1, e3), [ts(e1), te(e3)] > to the14

parent
// Trigger Rules

else15

if For all e2 in E2 and (te(e2) > ts(e3) or16

ts(e2) < ts(e1)) then
Pass < (e1, e3), [ts(e1), te(e3)] > to17

parent
Flush E218

// Trigger Rules
end19

end20

Flush E121

end22

end23

7.2 NOT Event Operator

Procedure not recent() shown in Algorithm 3 detects a
NOT event in recent consumption mode using interval-

based semantics. Similar to SEQUENCE operator discus-
sion we assume EExpr to be empty.

When the left child event node propagates an occur-
rence, current initiator is replaced by the new occurrence.
Since this initiates a new NOT event, all occurrences of
constituent event E2 is removed. When the middle child
event node propagates an occurrence, it is just appended to
the list E2 if it happens after the initiator. It is appended
since the NOT event is detected when the detector event e3

occurs.
When the detector/terminator event is propagated from

the right child multiple conditions are checked. Lines 12
to 22 are executed if E1 list in not empty and e3 is a se-
quence of e1. If E2 is empty, then the NOT event is de-
tected and propagated in line 14, and rules are triggered.
If it is not empty, check for non occurrence of e2 in the
interval formed by e1 and e3 is carried out according to
interval-based semantics. If there are no occurrences then a
NOT event is detected and propagated in line 17, and rules
are triggered. Event list E1 is flushed (line 21) since e3 acts
as the terminator event.

Algorithm 4: NOT Event Detection Extension
PROCEDURE not recent (ei, parameter list)1

if ei is the left event then2

Replace e1 in E13

end4

if ei is the middle event then5

Append e2 to E26

end7

if ei is the right event then8

if E1 is not empty and (te(e1) < ts(e3)) then9

if E2 is empty then10

Pass < (e1, e3), [ts(e1), te(e3)] > to the11

parent
// Trigger Complete Rules
Flush E112

else13

if For all e2 in E2 and (te(e2) > ts(e3)14

or ts(e2) < ts(e1)) then
Pass < (e1, e3), [ts(e1), te(e3)] > to15

parent
Flush E116

// Trigger Complete Rules
else17

// Trigger Failed Rules
Flush E218

Flush E119

end20

end21

else22

// Trigger Partial Rules
Flush E223

end24

end25

In order to handle the proposed extensions the proce-

dure not recent() shown in Algorithm 3 is extended in Al-
gorithm 4. When the left event is propagated it replaces
the existing initiator (lines 2 to 4). When the middle event
occurs it is just appended to the list (lines 5 to 7). NOT
event is detected in lines 10 to 12 if middle event E2 list
is empty, and complete rules are triggered. Since the NOT
event is detected E1 list is flushed. If E2 is not empty then
all occurrences in the list are checked to see if they do not
occur after e1 and before e3. If none of the events e2 in
E2 satisfy this condition, then a NOT event is detected and
complete rules are triggered (lines 14 to 16). If event e2

has occurred, then the non-occurrence has failed and failed
rules are triggered (lines 17 to 19). If the initiator is empty,
then partial rules are triggered (lines 22 to 24). Also, partial
and failed events are not created and are not propagated to
parent nodes currently, as discussed in Section 6.

8 Conclusions and Future Work
Active rules have been used for various applications in di-
verse domains. Though active rules are powerful in mod-
eling enterprise policies they still lack some capabilities.
Need for extending active rules were discussed using ex-
amples that are critical to the information security domain
and RFID-based retail stores. Detailed analysis was per-
formed on extending active rules along with event process-
ing without modifying the event specification. New event
detection modes such as complete, partial and failed were
introduced. Though event specification has not been modi-
fied, rule specification has been generalized to handle these
three new modes and future modes. Event detection graphs
were extended and detection algorithms were modified to
detect new event modes. Though these new modes seem
to be simple on the face of it, they are powerful and in-
evitable as they extend the situations that can be monitored
and policies that can be modeled by active rules.

In this paper, we discussed the new event detection
modes and their impact on rules. On the other hand, the
impact of event detection modes on nested complex event
specification as well as propagation of events to parent
events have to be explored. In other words, though events
are detected in all modes only complete events are propa-
gated to parent event nodes and the impact of propagating
partial and failed events need to be analyzed. This would be
critical to domains such as information security. In addition
the impact of event detection modes on event consumption
modes or contexts have to be explored in detail.

References
[1] R. Adaikkalavan and S. Chakravarthy, “SnoopIB:

Interval-Based Event Specification and Detection for
Active Databases,” DKE, vol. 59, no. 1, pp. 139–165,
Oct. 2006.

[2] J. Carlson and B. Lisper, “An Interval-based Alge-
bra for Restricted Event Detection,” in International
Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS), ser. Lecture Notes in Computer

Science, K. G. Larsen and P. Niebert, Eds., vol. 2791.
Springer-Verlag, Sep. 2003, pp. 121 – 133.

[3] J. Mellin and S. F. Adler, “A formalized schema
for event composition,” in Proc. of Conf on Real-
Time Computing Systems and Applications (RTCSA).
Tokyo, Japan: IEEE Computer Society, Mar. 2002,
pp. 201–210.

[4] A. Galton and J. Augusto, “Two Approaches to Event
Definition,” in Proc. of the DEXA. Springer-Verlag,
2002, pp. 547–556.

[5] D. Zimmer, “On the semantics of complex events in
active database management systems,” in Proc. of the
ICDE. Washington, DC, USA: IEEE Computer So-
ciety, 1999, p. 392.

[6] N. W. Paton, Active Rules in Database Systems. New
York: Springer, 1999.

[7] C. Roncancio, “Toward Duration-Based, Constrained
and Dynamic Event Types,” in Second Interna-
tional Workshop on Active, Real-Time, and Temporal
Database Systems. LNCS 1553, 1997, pp. 176–193.

[8] J. Widom and S. Ceri, Active Database Systems: Trig-
gers and Rules. Morgan Kaufmann Publishers, Inc.,
1996.

[9] S. Chakravarthy and D. Mishra, “Snoop: An Ex-
pressive Event Specification Language for Active
Databases,” DKE, vol. 14, no. 10, pp. 1–26, 1994.

[10] S. Gatziu and K. R. Dittrich, “Events in an Object-
Oriented Database System,” in Proceedings of Rules
in Database Systems, Sep. 1993.

[11] N. H. Gehani, H. V. Jagadish, and O. Shmueli,
“Composite Event Specification in Active Databases:
Model & Implementation,” in Proc. of VLDB, 1992,
pp. 327 – 338.

[12] “Complex Event Processing.” [Online]. Available:
http://www.complexevents.com/

[13] S. Chakravarthy and R. Adaikkalavan, “Provenance
and Impact of Complex Event Processing (CEP): A
Retrospective View,” Special Issue of Information
Technology - Complex Event Processing, vol. 51,
no. 5, pp. 243–249, Sep. 2009.

[14] A. Hinze, K. Sachs, and A. Buchmann, “Keynote ad-
dress: Event-based applications and enabling tech-
nologies,” in Proc. of the DEBS, July 6–9 2009.

[15] A. Nagargadde, S. Varadarajan, and K. Ramam-
ritham, “Semantic Characterization of Real World
Events,” in DASFAA, 2005, pp. 675–687.

[16] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin,
“Complex event processing over uncertain data,” in
Proc. of the DEBS. New York, NY, USA: ACM,
2008, pp. 253–264.

[17] Z. Shen, H. Kawashima, and H. Kitagawa, “Efficient
probabilistic event stream processing with lineage and
kleene-plus,” International Journal of Communica-
tion Networks and Distributed Systems, vol. 2, no. 4,
pp. 355–374, 2009.

[18] R. Adaikkalavan and S. Chakravarthy, “Event Spec-
ification and Processing For Advanced Applications:
Generalization and Formalization.” in DEXA. LNCS
4653, Sep. 2007, pp. 369–379.

[19] R. Adaikkalavan and S. Chakravarthy, “Events must
be complete in event processing!” in Proceedings of
the ACM symposium on Applied computing. New
York, NY, USA: ACM, 2008, pp. 1038–1039.

[20] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-
K. Kim, “Composite Events for Active Databases:
Semantics, Contexts, and Detection,” in Proc. of the
VLDB. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994, pp. 606–617.

[21] R. Adaikkalavan and S. Chakravarthy, “Formalization
and Detection of Events Using Interval-Based Seman-
tics,” in Proc. of the COMAD, Goa, India, Jan. 2005,
pp. 58–69.

[22] S. Chakravarthy, E. Anwar, L. Maugis, and
D. Mishra, “Design of Sentinel: An Object-Oriented
DBMS with Event-Based Rules,” IST, vol. 36, no. 9,
pp. 559–568, 1994.

[23] R. Adaikkalavan and S. Chakravarthy, “Active Au-
thorization Rules for Enforcing Role-Based Access
Control and its Extensions,” in Proceedings, IEEE
International Conference on Data Engineering (In-
ternational Workshop on Privacy Data Management),
Tokyo, Japan, Apr. 2005, p. 1197.

[24] M. Bishop, Computer Security: Art and Science.
Addison-Wesley Professional, Dec. 2002.

[25] D. Gyllstrom et al., “SASE: Complex Event Process-
ing Over Streams,” in Proc. of the CIDR, 2007.

