A model driven approach to enterprise data integration
Enterprise data management challenge

• A large enterprise has 1000’s of databases
 – Not sure what kind of data exists where, and what kind of dependencies exist between them

• Different data stores are produced in different process contexts
 – Not sure what their semantics are
 – Not sure what their quality attributes are

• Lack of a unified view and poor quality severely dent confidence in data assets
 – Affecting operational efficiency
 – Affecting quality of decision making

• Ad hoc, point solutions only exacerbate the problem further
 – They add more pieces to the puzzle

Need a more systematic approach
Model driven approach
A model driven approach to enterprise data integration

• How do we model enterprise data so that we can achieve a unified view of data at the enterprise level?

• Different data sources are produced in different semantic contexts
 – Process, geographical, temporal,…
 – E.g.
 • Customer – current, past, potential?
 • Profit – before tax or after?
 • C1: Employees can work only on projects of their own department
 • C2: Employees can be deputed to work on projects of other departments

• It is critical to model these contexts
 – to interpret and integrate the data correctly
 – to assess its quality
A model driven approach to enterprise data integration

Unified Conceptual Model + Rules

Conceptual Model + Rules

Source 1

……..

Conceptual Model + Rules

Source N

Global knowledge

Mapping

Context specific knowledge

Raw data (Objects, properties, events,..)
Core infrastructure

• Models
 – Conceptual models
 • EER or a restricted version of OWL
 • Rule language
 – Similar to SWRL, but extended with aggregation operators
 – Physical models
 • Relational

• Mappings
 – Simple attribute-to-attribute mappings
 – Views – GAV, LAV, GLAV
 – User-defined functions
 – Informal correspondences (with textual description of mappings)
...Core infrastructure

• Core reasoning tools
 – Query translation
 • Given a query on one model translate it into a semantically equivalent one on another mapped model
 – Mapping composition
 • Given Model1<-m1->Model2, Model2<-m2->Model3, compose m1, m2 to produce a mapping between Model1 and Model3.

• Component architecture
 – Modeling, mapping, query translation, query-to-DFG, DFG-to-query, etc
 – Purpose specific data management tools are composed from these components
 • E.g. integration tool, data migration tool, impact analysis tool, etc
Some tools built using modeling approach
Data integration – a unified view of data

- Provide query interface in terms of enterprise conceptual model
- Generate platform specific implementations
 - DB specific queries
 - ETL specifications
 - Own engine
 - Informatica ETL bridge, ..

Components: modeling, mapping, query translation, query-to-DFG
Data integration – hybrid architecture

- Specify warehouse schema as a view over the unified enterprise conceptual model
- Generate ETL to populate warehouse from sources
- Provide a unified query interface in terms of the enterprise conceptual model
 - Go to warehouse for data that exists there and to sources for other data
 - Pick optimal set of aggregate views
 - As requirements change, this mix can change transparently

Components: modeling, mapping, mapping composition, query translation, query-to-DFG
Data migration

- Map source data model to target data model
- Generate ETL to migrate data from source to target
- Generate migration programs for data access code migration
 - Query migration

Components: modeling, mapping, query translation, query-to-DFG
Open Issues
Complexity vs. expressive power

- Query complexity vs. data complexity
 - We wanted to keep data complexity polynomial
 - SQL reducibility is a goal
- But SQL reducible subsets are not expressive enough
 - E.g. OWL Lite
- Partial solutions vs. complete solutions
 - Completeness sacrificed in favor of expressiveness
 - But safety guaranteed
 - E.g. comparison predicates, aggregation, functional dependencies
 - Data complexity is known to be NP
 - We use SQL reduction, so obviously there is no completeness guarantee

Can we state conditions on the query and models that tell us when a given rewriting is guaranteed to be complete?
Static vs. dynamic context

- We have just one fixed context model per data source
 - But context can vary from instance to instance even within the same entity
 - E.g. model: Company, Department, Employee, Project
 - Company X: Employees can work only on projects of their own department
 - Company Y: Employees can be deputed to work on projects of other departments

- To implement this, we need two levels of rules
 - Rules to select applicable context for a given instance
 - Application of context specific rules

How do we do this efficiently is an open issue.
Integrating quality attribute processing

• How do we deal with quality issues such as uncertainty, etc?
• Plenty of research on probabilistic databases and uncertainty management
 – E.g. Stanford TRIO - uncertainty and provenance management on top of relational model
 – They assume confidence values are already recorded in the database
 – But assessing uncertainty of ‘base facts’ itself is a complex reasoning task requiring context knowledge
 – Can this be integrated into the rest of the query processing framework?
• Can uncertainty management be used to resolve conflicts better?
 – In integration, quite often we end with conflicting values
 – Uncertain which value to choose, but forced to choose one
 – Can uncertainty management techniques provide a better solution?
Thank you!