Information Retrieval and Text Mining Opportunities in Bioinformatics

Dr. N. JEYAKUMAR, M.Sc., Ph.D.,
Dept. of Bioinformatics
Bharathiar University
Coimbatore - 641046
Purpose & Targeted Audience

Purpose: broad overview of information retrieval and text mining and its application to bioinformatics
- An attempt at a definition
- A brief history of use in Bioinformatics literature
- Outline of key applications, papers & emerging areas

Audience: people with good background
- Biology
- Computer science
- Neither of the two disciplines
Outline

- Introduction to IR and TM
- Biomedical Literature Resources
- Two basic tasks – Bio-Entity and Entity-Relation Identification
- Knowledge Discovery with text
- Text data integration
- Outlook
Information Retrieval and Text Mining:

Biology – why?

- Rich sources of text in the form of
 - Abstracts
 - Full text
 - Patients’ records
 - Annotations in data sources (sequence and structure databases)
- For example abstract database Medline contains
 - 18 million records (abstracts)
 - ~50,000 records are added every month
- Novel biomedical information are hidden across the text
 - such as protein interactions, protein localization, gene annotations, molecular pathways etc
TI - Two potentially oncogenic cyclins, cyclin A and cyclin D1, share common properties of subunit configuration, tyrosine phosphorylation and physical association with the Rb protein

AB - Originally identified as a ‘mitotic cyclin’, cyclin A exhibits properties of growth factor sensitivity, susceptibility to viral subversion and association with a tumor-suppressor protein, properties which are indicative of an S-phase-promoting factor (SPF) as well as a candidate proto-oncogene.

Other recent studies have identified human cyclin D1 (PRAD1) as a putative G1 cyclin and candidate proto-oncogene.

However, the specific enzymatic activities and, hence, the precise biochemical mechanisms through which cyclins function to govern cell cycle progression remain unresolved.

In the present study we have investigated the coordinate interactions between these two potentially oncogenic cyclins, cyclin-dependent protein kinase subunits (cdks) and the Rb tumor-suppressor protein.

The distribution of cyclin D isoforms was modulated by serum factors in primary fetal rat lung epithelial cells. Moreover, cyclin D1 was found to be phosphorylated on tyrosine residues in vivo and, like cyclin A, was readily phosphorylated by pp60c-src in vitro.

In synchronized human osteosarcoma cells, cyclin D1 is induced in early G1 and becomes associated with p9Ckshs1, a Cdk-binding subunit.

Immunoprecipitation experiments with human osteosarcoma cells and Ewing’s sarcoma cells demonstrated that cyclin D1 is associated with both p34cdc2 and p33cdk2, and that cyclin D1 immune complexes exhibit appreciable histone H1 kinase activity.

Immobilized, recombinant cyclins A and D1 were found to associate with cellular proteins in complexes that contain the p105Rb protein.
Two potentially oncogenic cyclins, cyclin A and cyclin D1, share common properties of subunit configuration, tyrosine phosphorylation and physical association with the Rb protein.

Originally identified as a ‘mitotic cyclin’, cyclin A exhibits properties of growth factor sensitivity, susceptibility to viral subversion and association with a tumor-suppressor protein, properties which are indicative of an S-phase-promoting factor (SPF) as well as a candidate proto-oncogene.

Other recent studies have identified human cyclin D1 (PRAD1) as a putative G1 cyclin and candidate proto-oncogene.

However, the specific enzymatic activities and, hence, the precise biochemical mechanisms through which cyclins function to govern cell cycle progression remain unresolved.

In the present study we have investigated the coordinate interactions between these two potentially oncogenic cyclins, cyclin-dependent protein kinase subunits (cdks) and the Rb tumor-suppressor protein.

The distribution of cyclin D isoforms was modulated by serum factors in primary fetal rat lung epithelial cells.

Moreover, cyclin D1 was found to be phosphorylated on tyrosine residues in vivo and, like cyclin A, was readily phosphorylated by pp60c-src in vitro.

In synchronized human osteosarcoma cells, cyclin D1 is induced in early G1 and becomes associated with p9Ckhs1, a Cdk-binding subunit.

Immunoprecipitation experiments with human osteosarcoma cells and Ewing’s sarcoma cells demonstrated that cyclin D1 is associated with both p34cdc2 and p33cdk2, and that cyclin D1 immune complexes exhibit appreciable histone H1 kinase activity.

Immobilized, recombinant cyclins A and D1 were found to associate with cellular proteins in complexes that contain the p105Rb protein.
Text Mining:

Genetic Basics

- Gene/Protein – Associate/interact – Gene/protein => pathway
 (concept) (conceptual relation) (concept) => (Biological process)
 (e.g.) STAT3 interact BCL-X => apoptosis (cell death)

- Gene/protein – symptom– disease
 (concept) (function) (concept)
 (e.g.) p53 tumor suppressor cancer
 TNFRSF1B Insulin resistance diabetes

So, the main goal of any text mining/information extraction system in biomedical domain is identify the bio-entitles and their relationship
Part I: Information Retrieval and Text Mining
Information Retrieval:
Introduction and overview

- Information retrieval (IR) is the science of searching for documents, for information within documents and for metadata about documents, as well as that of searching the World Wide Web.
- (e.g.) Google, Google Scholar, PUBMED, PUBMED CENTRAL
- Component Tasks
 - Document indexing
 - Sentence tokenization/word tokenization
 - Stemming
 - Stop word removal
 - Query Types:
 - Boolean queries
 - Bag of words/Vector space model
- Related Tasks
 - Text classification
 - Text Clustering
Information Retrieval: Information Retrieval - Example

Input Query → IR System → Related Documents
Information Retrieval:
IR Stages of processing – Lexical Analysis

- Sentence tokenization
 - separates text into individual sentences.

- Word tokenization
 - breaks pieces of text into word-sized chunks; in biology this is a difficult task as the definition of what a word is can be quite complex and it is further complicated by heavy use of punctuation (e.g., ERD-1/2, endothelin-1).

- Stemming
 - is a process that determines the stem of a word; a word stem is the main part and excludes elements that used to indicate plurality, tense, case, gender, person, etc.
 - (e.g.) activate is the stem of the words activation, activated, activates, and activating.
 - Porter stemmer – may implementations available in Net

- Stop word removal
 - The most common words that unlikely to help text mining such as prepositions, articles, and pro-nouns
 - (e.g.) “the”, “a”, “an”, with, “you” ...
 - many stop word list are available on net
Information Retrieval:
IR stages of processing – Query Types

- **Boolean Queries**
 - Based on combination of terms using Boolean operators
 - Basic Boolean operators: AND, OR, NOT
 - Queries matched against the terms in the inverted index file
 - Fast and easy to implement but retrieves many irreverent documents
Information Retrieval: Boolean Queries

DB: Database of documents.

Vocabulary: \(\{t_1, \ldots, t_M\} \)
(Terms in DB, produced by the tokenization stage)

Index Structure: A term \(\rightarrow \) all the documents containing it.

Diagram:
- Databases
- Index
 - acquired
 - immunodeficiency
 - asthma
 - blood
 - blood pressure
Information Retrieval:
IR stages of processing – Query Types

- **Bag of words/ Vector space model**
 - text document is represented by the words it contains (and their occurrences)
 - (e.g.) “Lord of the rings” {“the”, “Lord”, “rings”, “of”}
 - Highly efficient
 - Makes learning far simpler and easier
 - Order of words is not that important for certain applications
 - Each sentence is represented as vector of word frequencies
 - Relations between the sentences identified by cosine angles
Information Retrieval: Vector space model

(a)

Documents \(a\), \(b\), and \(x\)

<table>
<thead>
<tr>
<th></th>
<th>Gene (BRCA1) and (BRCA2) participate in repairing radiation-induced breaks in DNA ... and other genes.</th>
<th>Cancer genes (BRCA1) on chromosome 17 and (BRCA2) on chromosome 13 might disable mechanisms ... gene and drug. But (BRCA1) and (BRCA2) are also implicated ...</th>
<th>Gene therapy using novel drug to treat breast and ovarian cancer ... of (BRCA1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(V(a))</td>
<td>(V(b))</td>
<td>(V(x))</td>
</tr>
<tr>
<td></td>
<td>(2\ 1\ 1\ 0\ ...\ 0)</td>
<td>(2\ 2\ 2\ 1\ ...\ 1)</td>
<td>(1\ 1\ 0\ 1\ ...\ 1)</td>
</tr>
</tbody>
</table>

Vector space representation of \(a\), \(b\), and \(x\)

(b)

Figure 1: Vector space representation: (a) Coding of texts as weighted vectors—each entry represents the weight of the corresponding term in the vector representing a document, (b) Illustration of the cosine coefficient similarity \(q_1\) and \(q_2\) of query vector \(V(x)\) with the two vectors \(V(a)\) and \(V(b)\) in vector space. Notice that \(V(x)\) is closer to \(V(b)\) than to \(V(a)\).
Information Retrieval:
Vector space model

\textbf{DB:} Database of documents.

\textit{Vocabulary:} \{\textit{v}_1,\ldots,\textit{v}_M\} \quad \{\text{Terms in DB}\}

\textit{Document} \textit{d} \textit{\in DB:} Vector, \textit{\langle w}_1^d,\ldots,\textit{w}_M^d\rangle, \textit{of weights.}

\textbf{Weighting Principles}

- \textbf{Document frequency:} Terms occurring in a \textit{few} documents are \textit{more useful} than terms occurring in \textit{many}.

- \textbf{Local term frequency:} Terms occurring \textit{frequently} within a document are likely to be \textit{significant} for the document.

- \textbf{Document length:} A term occurring the same \# of times in a long document and in a short one has \textit{less significance} in the \textit{long} one.

- \textbf{Relevance:} Terms occurring in documents judged as \textit{relevant} to a query, are \textit{likely to be significant} (WRT the query).
Information Retrieval: Vector space model

Some Weighting Schemes:

Binary

\[W_i^d = \begin{cases} 1 & \text{if } t_i \in d \\ 0 & \text{otherwise} \end{cases} \]

TF

\[W_i^d = f_i^d = \# \text{ of times } t_i \text{ occurs in } d. \]

Consider Local term frequency

TF \times IDF (one version...)

\[W_i^d = \frac{f_i^d}{f_i} \quad (f_i = \# \text{ of docs containing } t_i) \]

Consider Local term frequency and Document frequency
Information Retrieval: Vector space model

Document \(d = < w_1^d, \ldots, w_M^d > \in DB \)

Query \(q = < w_1^q, \ldots, w_M^q > \) (q could itself be a document in DB...)

\[\text{Sim}(q, d) = \text{cosine}(q, d) = \frac{q \cdot d}{|q| \cdot |d|} \]
Information Retrieval: IR Evaluation

- **Precision**: fraction of relevant documents retrieved divided by the total returned documents
- **Recall**: proportion of relevant documents returned divided by the total number of relevant documents
- **F-score**: the harmonic mean of precision and recall
- Precision-recall curves
Information Retrieval: IR Evaluation

- precision = $\frac{TP}{(TP + FP)}$
- recall = $\frac{TP}{(TP + FN)}$
- F-measure = $2 \times \frac{\text{precision} \times \text{recall}}{(\text{precision} + \text{recall})}$
Text Clustering

- Find which documents have many words in common, and place the documents with the most words in common into the same groups.
- Similarity of documents instead of similarity of sequences, expression profiles or structures
- Cluster documents into topics, for instance: clinical, biochemical and microbiology articles
- A clustering program tries to find the groups in the data.
Text Clustering

- **Idea**
 - Frequent terms carry more information about the “cluster” they might belong to
 - Highly co-related frequent terms probably belong to the same cluster

- \(D = \{D_1, \ldots, D_n\} \) – the set of documents
 - \(D_j \ subsetOf T \), the set of all terms

- Then candidate clusters are generated from \(F = \{F_1, \ldots, F_k\} \), where each \(F_i \) is a set of all frequent terms *which occur together*.
Text Mining:
Text Clustering- Example
Text Clustering

- Techniques used
 - Partitioning
 - Hierarchical
 - Agglomerative
 - Divisive
 - Grid based
 - Model based
The problem statement

- Given a set of documents, each with a label called the class label for that document
- Given, a classifier which learns from the above data set
- For a new, unseen document, the classifier should be able to “predict” with a high degree of accuracy the correct class to which the new document belongs
Text Classification

- Common problem in information science.
- Assignment of an electronic document to one or more categories, based on its contents (words).
- Supervised document classification where training examples of document classification are provided and the correct classification model is learnt based on one of the following techniques:
 - naive Bayes classifier
 - tf-idf
 - latent semantic indexing
 - support vector machines
 - artificial neural network
 - kNN
 - decision trees, such as ID3
- Classification techniques have been applied to spam filtering
Text Classification - Example

(e.g.) Spam mail filtering
Text Mining: Introduction and overview

Text mining aims to identify non-trivial, implicit, previously unknown, and potentially useful patterns in text (e.g. classification system, summarization, association rules, hypothesis etc.)

Includes more established research areas such as
- Information Retrieval (IR),
- Natural Language Processing (NLP),
- Information Extraction (IE),
- and traditional Data Mining (DM)

Related Tasks
- Text Summarization
- Question and Answering
IR and Text Mining: The Big Picture

Unstructured Text
(implicit knowledge)

Structured content
(explicit knowledge)

Information Retrieval
Information extraction
Knowledge Discovery
Advanced Information Retrieval
Semantic metadata
Text Mining:
Text Mining – Simple Example

Automatically curating literature information
Hypothesis generation

(e.g.1) Ram and Ravi are friends
(e.g.2) Ram and Rajiv are friends
=> Ravi and Rajiv may be friend or known to each other

(e.g.1) gene A regulate gene B
(e.g.2) gene B induce gene C
=> gene A, B, C are in same pathway
Text Mining:
Related Fields

- **Information retrieval** aims to identify relevant documents in response to a query (e.g. Google search, PubMed search etc.)

- **Natural language processing**, also called computational linguistics attempts to use automated means to process text and deduce its syntactic and semantic structure

- **Information extraction** aims to identify automatically specific predefined classes of entities (e.g. protein and gene names), relations (e.g. protein interactions) or known facts (cell localization) in natural language text
Text Mining:
Natural Language processing and Component Tasks

- Syntactic and semantic relation of text
- Gives sentence structure and how words are formed in the sentence
- (e.g.) noun, verb, adverb, pro-noun, prepositions etc and complete sentence structure

Component Tasks
- Part of speech (pos) tagging
- Shallow parsing
- Full parsing
Text Mining:
NLP stages of processing

- Part-of-speech tagging
 - involves the assignment of part-of-speech information or labels such as word categories (e.g., adjective, article, noun, proper noun, preposition, verb) and other lexical class markers to individual tokens in a text corpus.
 - e.g., John (noun) gave (verb) the (det) ball (noun)

- Shallow parsing
 - refers to a class of techniques concerned with the identification of phrasal chunks (noun, noun phrase, verb, verb phrase) in each sentence of a corpus without assignment of ‘deep’ hierarchical structures (graph).

- Full parsing
 - is concerned with the construction of a complete parse tree (deep hierarchical structures) for a sentence in a corpus
Part of Speech (POS) tagging - involves the assignment of part-of-speech information or labels such as word categories (e.g., adjective, article, noun, proper noun, preposition, verb)

<sentence>
BRCA1 physically associates with p53 and stimulates its transcriptional activity.
</sentence>

<POS Sentence>
BRCA1/NNP physically/RB associates/VBZ with/IN p53/NN and/CC stimulates/VBZ its/PRP$ transcriptional/JJ activity/NN
</POS Sentence>
Text Mining:
NLP - Full Parser

- Full parsing - Complete understanding of sentence structure
Text Mining:
Information Extraction and Component Tasks

- Find concepts
- Pro-noun concepts
- Concept relations, scenario relations
 - (e.g.) genes, protein names, relations, cross relations

Component Tasks
- Named entity recognition (NER)
- Co-reference resolution
- Template element extraction
- Template relation extraction
- Scenario template extraction
Named entity tagging in Text. (identifying concepts such as protein/gene names etc.)

<quote>
It has been shown that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 13 in B cells.
</quote>

<quote>
It has been shown that <smallmol>genistein</smallmol> induces phosphorylation of <protein>ATM</protein> on <enzyme>serine 1981</enzyme> and phosphorylation of <protein>histone H2AX</protein> on <enzyme>serine 13</enzyme> in <celltype>B cells</celltype>.
</quote>
Text Mining:
IE – Template Relation Extraction

- Template relation extraction (identifying relation between the concepts such as protein-protein interactions etc.)

```
<sentence>
It has been shown that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 13 in B cells.
</sentence>

<protein id=p1>ATM</protein>
<protein id=p2>histone H2AX</protein>
<smallmol id=s1>genistein</smallmol>

<relation id=r1 type='induce' node1=s1 node2=p1>
<relation id=r2 type='induce' node1=s1 node2=p2>
```
Text Mining:
IE – Methodology

- Rule based approaches
- Context-free grammar approaches
- Full parsing approaches
- Sublanguage driven IE
- Ontology-driven IE
Text Mining:

Text Mining from Related Fields

- Data collection (gathering documents related to specific problem) (IR)
- Data pre-processing (tokenization, normalization, parsing, stemming, stop word removal etc.) (NLP/IR)
- Finding entities (named objects like proteins, genes etc.) (IE)
- Finding facts (relationships among entities) (IE)
- Mining (more complex relationship among entities and concept to concept relationships) (TM)
 - (e.g.1) gene A regulate gene B
 - (e.g.2) gene B induce gene C
 - => gene A, B, C are in same pathway
Text Mining:
Text mining stages of processing
Text Mining:
Text mining stages of processing

- Text preprocessing
 - Stemming, stop word removal
 - Syntactic/Semantic text analysis
- Features Generation
 - Bag of words
- Features Selection
 - Simple counting
 - Statistics
- Text/Data Mining
 - Classification - Supervised learning
 - Clustering - Unsupervised learning
- Post-processing
 - Analyzing results
 - Evaluation
Text Mining:
Resources Example

The Stanford NLP (Natural Language Processing) Group makes several pieces of NLP software available to the public. These are statistical NLP (Natural Language Processing) toolkits for various major computational linguistics problems.

All the software we distribute is written in Java. Recent distributions require Sun JDK 1.5+ (some of the older ones run on JDK 1.4). Distribution packages include components for command-line invocation, jar files, a java API, and source code.

Supported software distributions

This code is being developed, and we try to answer questions and fix bugs on a best-effort basis.

All these software distributions are licensed under the GNU Public License (currently v2). Note that this is the GPL, which allows its use for research purposes or other free software projects but does not allow its incorporation into any type of distributed proprietary software, even in part or in translation. Please contact us if you are interested in getting NLP software with a different commercial license.

The Stanford Parser
Text Mining: Resources Example

The Stanford NLP (Natural Language Processing) Group - Microsoft Internet Explorer

The Stanford Parser
Java implementations of probabilistic natural language parsers, both
highly optimized PCFG and dependency parsers, and a lexicalized PCFG
parser including Parser FAQ and online parser demo.

The Stanford POS Tagger
A Java implementation of a maximum-entropy (CMM) part-of-speech
(POS) tagger.

The Stanford Named Entity Recognizer
A Java implementation of a Conditional Random Field sequence model,
together with well-engineered features for Named Entity Recognition.

Stanford Chinese Word Segmenter
A Java implementation of a CRF-based Chinese Word Segmenter

The Stanford Classifier
A Java implementation of a conditional log-linear classifier (a.k.a. a
maximum entropy or multiclass logistic regression model)

Tregex and Tsugunon
A Java implementation of a Tregex-style utility for matching patterns in
trees, and a tree-transformation utility built on top of this matching
language.

Binary software distributions

These systems are not available as source code, but only as compiled Java byte-
code and libraries.

Enrollment-based MT evaluation software
Software to predict the adequacy of MT system output. The scoring is
Text Mining: Resources Example
Part II: **Text Mining and Biomedical Literature**
Text Mining:

Biology – why?

- Rich sources of text in the form of
 - Abstracts
 - Full text
 - Patients’ records
 - Annotations in data sources (sequence and structure databases)

- For example abstract database Medline contains
 - 18 million records (abstracts)
 - ~50,000 records are added every month

- Novel biomedical information are hidden across the text
 - such as protein interactions, protein localization, gene annotations, molecular pathways etc
Text Mining:
Why Text About Biology is Special

- Large number of Entities/concepts (gene, proteins etc)
- Evolving field, no wild followed standards for terminology -> Rapid change and inconsistency
- Ambiguity (many proteins and genes have same name)
- Synonymy (many proteins and genes have many names)
- Abbreviations (large use of abbreviations in text)
Text Mining:
What are concepts/relations of interest

- Genes (T-Gene)
- Proteins (P53)
- Compounds
- Biological Functions (lipid metabolism)
- Biological Process (cell death, apoptosis)
- Pathways (cell metabolism, Urea Cycle)
- Dieses (Cancer, Alzheimer's, etc.)
Text Mining:
Curation of Biological Literature

- **Classical Method: Manual Curation**
 - Trained human experts reads scientific literature and extracts information of interest
 - Manual time consuming and labor intensive process
 - Accurate through human inference and background knowledge
 - (E.g.) MeSH Uniprot, GOA, SGD, MGI etc.

- **Text Mining assisted Curation**
 - Retrieval of relevant literature from literature repositories
 - Textual evidence and entity detection
 - Revision and editing of manual records
Text Mining:
Curation of Literature in Biology – Pictorial summary

(Lycopersicon esculentum). Here, we demonstrate that two Arabidopsis thaliana RAF1 homologs, WPP1 and WPP2, are associated with the NE specifically in undifferentiated cells of the root tip. Reentry into cell cycle after

<table>
<thead>
<tr>
<th>Locus: AT5G43070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date last modified: 2003-05-02</td>
</tr>
<tr>
<td>TAIR Accession: Locus2167831</td>
</tr>
<tr>
<td>Representative Gene: AT5G43070.1</td>
</tr>
<tr>
<td>Other names: MMG4.9, MMG4_9, WPP DOMAIN PROTEIN 1, WPP</td>
</tr>
</tbody>
</table>

 scientific literature

database curator

bio-entities

controlled vocabularies

flybase

maizegdb

gdb

ecocyc

mint
Text Mining:
Current Literature Repositories

- e-Books: NCBI Bookshelf
- Citation of Biomedical Research Articles + Abstract: PubMed (http://www.ncbi.nlm.nih.gov/pubmed)
- Full text research articles:
 - PubMed Central (PMC)
 - Highwire Press
 - BioMed Central
- Google Scholar
Text Mining:

PUBMED

- **Overview**
 - Developed by NCBI
 - Citation entries of scientific articles of all biomedical sciences
 - Each entry is characterized by a unique identifier, the PubMed identifier: PMID
 - Often links to the full text articles are displayed

- **Statistics**
 - No. of Citations 16 million
 - No. of Indexed Journals approx. 5000
 - No. of English Articles 12 million
 - No. of Articles with Abstracts 7,000,000
Text Mining: PUBMED

- Approximately 1 million entries refer to gene descriptions
- Author, journal and title information of the publication
- Some records with gene symbols and molecular sequence databank numbers
- Indexed with Medical Subject Headings (MeSH)
- Accessed online through a text-based search query system called Entrez
- Offers additional programming utilities, the Entrez Programming Utilities (eUtils)
- Majority of (apprx 80%) current biomedical text mining is based on PubMed
Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and their putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers.

Kontorovich T, Cohen Y, Nir U, Friedman E.

The Suzanne Levy Gertner Oncogenetics Unit, The Bnai Zion Gertner Institute of Human Genetics, The Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.

BRCA1/BRCA2 germline mutations substantially increase breast and ovarian cancer risk, yet penetrance is incomplete. We hypothesized that germline epigenetic gene silencing may affect mutant BRCA1/2 penetrance. To test this notion, we determined the methylation status, using methylation-specific quantitative PCR of the promoter in putative modifier genes: BRCA1, BRCA2, ATM, ATR and TP53 in Jewish BRCA1/BRCA2 mutation carriers with \(n = 41 \) or without \(n = 48 \) breast cancer, in sporadic breast cancer \(n = 52 \), and healthy controls \(n = 89 \). Promoter hypermethylation was detected only in the BRCA1 promoter in 5.6 \(\pm \) 7.3% in each of the four subsets of participants, regardless of health and BRCA1/2 status. Germline promoter hypermethylation in the BRCA1 gene can be detected in about 5% of the female Israeli Jewish population, regardless of the BRCA1/2 status. The significance of this observation is yet to be determined.

PMID: 18642076 [PubMed - as supplied by publisher]
Text Mining: PUBMED Central

- Digital archive of full text life science journals
- Articles have a unique PMCID
- Allows Boolean query search
- Offers free full text articles
- Journal Publishing XML DTD, but also other widely used DTD in life science
Text Mining:

PUBMED Central – web page

<table>
<thead>
<tr>
<th>Search this Journal</th>
<th>Title</th>
<th>Volumes in PMC</th>
<th>Free Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>Acta Crystallographica Section K: Structural Biology and Crystallization Communications</td>
<td>v.61(6) Jan 1, 2010 - v.61(1) Dec 31, 2009</td>
<td>After 24 months</td>
</tr>
<tr>
<td>Search</td>
<td>Acta Histochemica et Cytochemica</td>
<td>v.48(6) Dec 21, 2007 - v.48(3) Apr 2006</td>
<td>Immediate</td>
</tr>
<tr>
<td>Search</td>
<td>Acta Veterinaria Scandinavica</td>
<td>v.49(1) 2007 - v.49(3) 2005</td>
<td>Immediate</td>
</tr>
<tr>
<td>Search</td>
<td>The Association Journal of the Medical Library Association: JMLA</td>
<td>v.1(3-4) Jun 1909 - v.2(1) Mar 1910</td>
<td>Immediate</td>
</tr>
<tr>
<td>Search</td>
<td>Algorithms for molecular biology : AMB</td>
<td>v.2(1) 2007 - v.2(3) 2007</td>
<td>Immediate</td>
</tr>
<tr>
<td>Search</td>
<td>American Journal of Human Genetics</td>
<td>v.81(1) Jul 2007 - v.81(1) Jul 2007</td>
<td>After 6 months</td>
</tr>
</tbody>
</table>
Text Mining:
NCBI Book self

- Collection of biomedical text books
- Allows boolean query searches
- Offers free full text articles
- Direct searching the books or from PubMed abstract
Text Mining:

Google Scholar

- Google Scholar is a freely accessible Web search engine that indexes the full text of scholarly literature across an array of publishing formats and disciplines. Released in beta in November 2004

- Serves as one full-text biomedical resource for text mining
Text Mining:
Other Biomedical Corpus

- BioCreative corpus
- GENIA corpus
- Yapex corpus
Text Mining:
GENIA Corpus

Corpus annotation is now a key topic for all areas of natural language processing (NLP) and information extraction (IE) which employ supervised learning. With the explosion of results in molecular-biology there is an increased need for IE to extract knowledge to support database building and to search intelligently for information in online journal collections. To support this we are building a corpus of annotated abstracts taken from National Library of Medicine's MEDLINE database. In GENIA Corpus we annotate a subset of the substances and the biological locations involved in reactions of proteins, based on a data model (GENIA ontology) of the biological domain, in XML format (GPML).

GENIA Corpus Version 3.0x consists of 2000 abstracts. The base abstracts are selected from the search results with keywords (MeSH terms) Human, Blood Cells, and Transcription Factors.

The corpus and the GPML DTD are available from our download page.

Older releases, Version 1.0 (470 abstracts) and Version 1.1 (670 abstracts which includes the 470 of Version 1.0) are also available.

http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/
Text Mining:
Applications Areas in Biology

- Help to address the following problems:
 - Finding biological named entities (e.g. protein, gene, chemical names etc.) in context to particular study
 - Finding molecule interactions (e.g. protein-protein interactions, protein-gene interactions etc.)
 - Finding relations between bio-concepts (e.g. relations between genes-disease, disease-drug)
 - Finding bio-chemical pathways
 - Finding sub-cellular localization information of proteins
 - Constructing biological vocabulary/ontology from text
 - Automatically Curating biological databases
 - Assisting gene expression data mining process
 - Knowledge-based information retrieval in context to biological repositories (e.g. MEDLINE etc.)
Text Mining
Sample Data Processing – Biomedical Text
Text Mining:
BioMedical Text Mining Systems - Examples

- iHOP
 - Gene centric search Engine

- EBIMed
 - http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp
 - Concept based search linked to Uniprot

- GoPubMed
 - http://www.gopubmed.org/
 - Clusters documents based on Gene/MesH Ontology

- BioMinT
 - http://biomint.pharmadm.com/
 - An easy to use information retrieval and extraction tool

- Textpresso
 - http://www.textpresso.org/
 - Text categorization genome search engine
Reference

Acknowledgement

- Prof. Werner Dubitzky – University of Ulster
- Dr. Daniel Berrar – University of Ulster
- Martin Krallinger and Ashish V Tendulkar – APBIO Text Mining Tools in Biology
- Dr. Hagit Shatkay http://www.shatkay.org/
Thank You

Contact:
N. JEYAKUMAR: n.jeyakumar@yahoo.co.in