
Chapter 1

ConStore User Interface

The ConStore system has two separate interfaces for specifying metamodels and models.

The lifecycle of a typical system modeled under a ConStore system is captured in Fig-

ure 1.1. Initially, an empty concept network is created. In an empty network, during

the metamodeling phase, entity types and relation types over existing entity types are

inducted. Once a metamodel is created, the concept network instance can be built. The

inducted types become available after the metamodel is committed.

The ConStore lifecycle supports metamodel evolution. A new entity type or a new

relation type can be inducted anytime during model construction. Only when the changes

are committed, the newly inducted types become available for the model. Changes to a

model similarly require a commit operation. Thus, as depicted in Figure 1.1, the lifecycle

supports batch commit operations, wherein a sequence of changes to model or a metamodel

are committed in batches. When a batch of operations is committed, the changes become

available for subsequent operations.

1.1 The ConStore Programming Interface

The ConStore Programming Interface is a Java-based object oriented interface containing

operations for metamodels and models. The class diagram (Figure ??) shows the classes

involved to provide the user interface for concept-net modeling.

The programming interface is further decomposed into formation and navigation in-

terfaces. The formation interface provides operations for construction and manipulation

of models and metamodels, whereas, the navigation interface supports various kinds of

navigational operations for navigating through models and metamodels.

1



Figure 1.1: Lifecycle of a concept network

1.1.1 Formation Interface

Table 1.1 lists the operations for concept net formation under the categories of system

level, metamodel level and model level operations. Some operations are provided as static

class methods and some are instance methods. Creation, deletion and sessions on nets

are performed via system level operations. Metamodel level operations involve creation

of new entity and relation types. Model level operations include creation of entity and

relation instances.

During entity and relation type construction, attribute specifications can be added to

type specifications. Similarly, entity and relation instances can be constructed. The Con-

Store user interface facilitates data modeling in two phases of Modeling and Instantiation.

At metamodel level, once a type is created, it becomes immutable. Evolution is

possible at metamodel level through creation of new entity and relation types. During

metamodeling, when a new type is inducted, a corresponding class is generated for instance

creation in model level programs. Modifiable attributes are members of these classes.

Updates at instance level correspond to updates to their internal attributes. At in-

stance level, updates are possible for existing relation and entity instances. Update at

instance level also includes changing relations among entity instances. A relation can

be changed by updating its left and right entity instances. Existing entity and relation

instances can be removed.

2



Operations Interfaces

System Level Operations

Create new concept-net ConStore::create

Open existing net ConStore::open

Delete existing net ConStore::delete

Close existing net ConceptNet.close

Metamodel Level Operations

Entity type creation new Entity

Relation type creation new Relation

Adding attributes Entity.addAttribute

Relation.addAttribute

Associating Entities Relation.setLeft

Relaton.setRight

Direction of navigation Relation.setDirection

Inducting metamodel ConceptNet.induct

Committing metamodel ConceptNet.commit

Model Level Operations

Entity instance creation new <EntityClass>

Relation Instance creation new <RelationClass>

Access attributes <EntityClass>.<Attrib>

<RelationClass>.<Attrib>

Insert entity/relation ConceptNet.add

Retrieve entity/relation instance ConceptNet.getInstance

Update retrieved instance ConceptNet.update

Remove retrieved instance ConceptNet.remove

Commit model ConceptNet.commit

Table 1.1: ConStore formation interface

1.1.2 Navigation Interface

Table 1.2 lists some of the operations provided under the ConStore navigation interface

Query. The operations allow retrieval of relations and entities based on type’s names, in-

stance properties and type or instance ids. The navigation interface also provides support

for retrieving ids of instances. Through the id-based (Integer type used as id) navigational

operations, it is possible to navigate through a network to reach an object without having

to retrieve the intermediate objects. For example, the getinstanceIds() method has two

overloadings for type name based and property based retrievals. Navigation may begin

with an instance property and then continue with a cycle of (entity) id-based relation

retrieval and (relation) id-based entity retrieval. Navigation direction set for a relation

in metamodel formation can constrain certain navigation operations. For example, if a

3



left-to-right relation will be ignored by method getRelationIds() when it is invoked w.r.t.

an entity that plays the right role.

A handle to interface Query is obtained from a class ConceptNet. This process is

similar to that of the iterator pattern, in which, a traverser (iterator) is obtained from the

collection. Each query instance may maintain its local state such as local caches. This

design makes it possible to obtain more than one query interfaces on a concept net and

use it over multiple threads. Besides the generic navigational operations supported by

interface Query, instance-based navigational operations for navigating through relation

instances are also supported. Examples of such operations are Relation.getLeftId() and

Relation.getRightId(). The Query interface also supports bulk or anonymous operations

through which in-memory lists of all types, instances, or their ids can be constructed.

4



Operations on Interface

Query obtainable from a

concept net

Type Name

or Instance

Property

based

Id based Anonymous

Type Retrieval

getType
√ √

getAllTypes
√

getAllEntities
√

getAllRelations
√

Instance Retrieval

getEntityInstances
√ √

getRelationInstances
√ √

getRelatedInstances
√ √

getRelations
√ √

getAllEntityInstances
√

getAllRelationInstances
√

getInstance
√

getInstances
√ √

getAllInstances
√

Type/Instance Id Retrieval

getRelatedInstanceIds
√ √

getRelationIds
√ √

getTypeId
√

getInstanceIds
√ √

getAllInstanceIds
√

getAllEntityInstanceIds
√

getAllRelationInstanceIds
√

getLeftEntityId
√

getRightEntityId
√

Table 1.2: ConStore navigation interface

5



1.2 Examples

This section captures the typical lifecycle of a concept network through an example.

Consider the word network shown in Figure 1.2. Code snippets in the following subsections

describe the steps involved in constructing word network as concept-net.

Figure 1.2: Word-Net

Figure 1.3: Meta model of Word-Net Fig. 1.2

1.2.1 Meta-Model Construction

Initially, user needs to construct the meta-model for the desired graphical structure

(concept-net). A meta-model abstracts the graphical structure with minimal entity and

relation types such that the entire graphical structure can be constructed using the meta-

model. So for word network example, Figure 1.3 represents the meta-model. In meta-

model, each concept is modeled as Entity associated with relevant attributes and the

Relations among the entities are established with appropriate roles. The entity and rela-

tion are abstracted as Type class at the programming level.

6



Figure 1.4: Inducting Entity and Relation Type into concept-net during modeling phase

1.2.2 Creating the Concept-Net

At storage level concept-net is set of files. The concept-net creation and management is

similar to system file handling. The hierarchical structure of the storage and its elements

leads to a naming convention similar to the standard file systems.

The class ConceptNet is responsible for the concept-net management. ConceptNet

class abstracts and manages the Type and Instance in the concept-nets. It allows adding,

updating, and removing the types and instances in the concept-nets. It also provides a

high level retrieval support. Class ConStore provides create and open methods to get the

ConceptNet handle.

The following method call creates the concept-net in the specified path-name.

ConceptNet wordNet = ConStore.create("/usr/test/wordnet");

The static method create is called directly on the class ConStore. The return value of

this call is the ConceptNet reference, named wordNet in this example, which is the handle

to the concept-net. The concept-net is created under a folder with name of concept-net

specified by the user (here it is wordnet). This folder will hold the associated entities

and relations of the concept-net. After that, the concept-net is opened in user specified

7



mode. The modes can be Read or Write similar to file handling modes. If the specified

concept-net already exits then it throws appropriate exception.

1.2.3 Creating Entities

The meta-model reveals the entity types that need to be created. After creating the

concept-net, the entities are created and inducted into concept-net. The ConceptNet

class handles the concept-net modeling through the abstraction of Type. The Entity class

extends the Type class as a specialization to model the concept nodes in the concept-net

graph. An entity can be created directly using the Entity class and the below code shows

the creation of Noun entity.

Entity noun = new Entity("Noun");

The Entity class constructs the entity through the constructor which takes entity name

as the parameter.

1.2.4 Associating Attributes

An entity can have attributes (properties) and user might want to add attributes to the

entity. The Attribute class holds the information about an attribute that need to be

associated with the entity. The following code snippet shows the attribute creation:

Attribute word = new Attribute();

word.name = "word";

word.dataType = DataType.STRING;

word.repeating = false;

User can specify the attribute as single-valued or multi-valued (repeating) by setting

the repeating attribute as true or false, by default it is false. User can specify the data

types of String, Integer, Float, Double, Boolean, and Time to an attribute. The DataType

class has the data types name as static constants. The constructors of Attribute class

allow the user to construct attribute easily with the following methods.

Attribute(String name, int dataType);

Attribute(String name, int dataType, boolean repeating);

The Type class provides the interfaces for the attributes association. User can associate

the attribute to the Entity using addAttribute method as shown.

Entity noun = new Entity("Noun");

Attribute word = new Attribute();

word.name = "word";

8



word.dataType = DataType.STRING;

word.repeating = false;

Result result = noun.addAttribute(word);

or simply user can add the attribute directly as shown.

Entity noun = new Entity("Noun");

Result result = noun.addAttribute("word", DataType.STRING);

The Result class is modeled to determine the status of an operation. It can also hold

the information about the reason for failure of the operation along with the Exception

information.

1.2.5 Creating Relations

Similar to entity, the Relation class extends the Type class, to support the relation mod-

eling. A relation associates two entities with the specified roles. A Relation can be created

directly using the Relation class using the following constructor.

Relation(String name, String leftRole, String rightRole);

The above method takes the parameters as relation name and respective role labels.

The notion of left and right is meant for the user convenience to view the relation as the

connection of two entities, one on left-side and other on right-side. Below code shows the

creation of the Hypernymy relation which establishes the relation among Noun types.

Relation hypernymy = new Relation("Hypernymy","sub","super");

hypernymy.setLeft(noun);

hypernymy.setRight(noun);

hypernymy.setDirectionKind(Relation.LEFT_TO_RIGHT);

The Relation class constructs the relation through the constructor which takes the pa-

rameters, relation name (Hypernymy) with left-role name (sub) and right-role name (su-

per). The methods setLeft and setRight sets the left and right entities of the relation.

The direction of the relation can be specified using two values: 0 – left-to-right, and 1 –

bi-directional. These values are the static constants in the Relation class.

1.2.6 Inducting Entities and Relations

Once the entities and relations are created as per the meta-model, they need to be in-

ducted into concept-net. The induct method of the ConceptNet class lets the user to

induct entities and relations. But at storage level, the concept-net is a network of Types

and Instances and managed by the ConceptNet class.

9



Result induct(Type type);

Thus induct method takes the parameter of Type class. Since Entity and Relation

classes inherit the Type class, the same method is used for inducting entities and relations

as shown below:

//inducting entity

Result result = wordNet.induct(noun);

if(!result.Success)

System.out.println(result.ErrMessage);

//inducting relation

wordNet.induct(hypernymy);

//commiting the changes

wordNet.commit();

The entity or relation name must be unique in the concept-net and inducting a type with

same name will be unsuccessful. For the sake of the example (Figure 1.3), assume the

entities – Noun and Verb, and the relations – Hypernymy, Meronymy, and Use are created

and inducted into the concept-net. User need to invoke the commit method to persist the

types to the secondary storage.

Once the entities and relations are inducted into concept-nets, a type-safe develop-

ment is provided by generating the classes (.java files) for each entity and relation types

under the concept-net folder structure as shown in Figure 1.5. The classes for entities

and relations can be located under the folders ‘{concept-net name}/types/entities/ ’ and

‘{concept-net name}/types/relations/ ’. User can import these classes into their develop-

ment environment and use it seamlessly.

10



Figure 1.5: concept-net folder structure of word network example

1.2.7 Closing the concept-net

Since concept-net is handled similar to file, it is safe to close it. The concept-net can be

closed using the close method of the concept-net handle, as shown below:

wordNet.close();

1.2.8 Instantiation

As shown in the lifecycle (Figure 1.1), the model may be created once the metamodel is

in place. To construct the word network as shown in the example (Figure 1.2), user can

instantiate the appropriate entities and relations of the meta-model. Figure 1.6 shows

the activity of adding the Instance (entity and relation instance) during the instantiation

phase.

1.2.9 Opening the Concept-Net

The concept-net need to be created only once and then the subsequent interactions hap-

pen by opening and closing the concept-net. The following method call opens an existing

11



Figure 1.6: Adding Entity and Relation Instance into concept-net during instantiation phase

concept-net by taking the path-name and mode either read-only(r) or read-write(rw) as

the parameter. The permissions are applied till the concept-net is closed for operations.

ConceptNet wordNet = null;

try {

wordNet = ConStore.open("wordnet","rw");

}catch (FileNotFoundException fe) {

fe.printStackTrace();

}

The static method open is invoked directly on the class ConStore, which returns the

ConceptNet reference, named wordNet in this example. If the specified concept-net does

not exists, then appropriate exception is thrown.

1.2.10 Instantiating Entities

To construct the word network as shown in the example (Figure 1.2), user can instantiate

the appropriate entities and relations of the meta-model. For example, to model the

Animal node in the word network example, user needs to create the instance of Noun

entity and set its attributes. As mentioned in subsection 1.2.6, user can import entity

12



and relation types as Java classes into their development environment with the following

import statements.

import types.entities.*;

import types.relations.*;

To expedite this, the following inheritance structure is used.

Figure 1.7: Class Diagram of showing the inheritance relation after the Entity and Relation
types for word network are inducted into concept-net

In Figure 1.7, for the word network example, the Noun and Verb are entity types

which inherit the EntityInstance class. Similarly, Meronymy and Use are relation types

inherits the RelationInstance class. The respective .java files for the Type classes like

Noun, Meronymy, are created while inducting the types into the concept-net. The entity’s

attributes are declared as public attributes in the respective Java class. This empowers

the user to use these types directly into their development enabling type-safety. User can

instantiate respective entity and set its attributes directly as shown below:

Noun animal = new Noun();

animal.word = "Animal";

animal.desc = "A Living Being";

13



1.2.11 Instantiating Relations

Similar to entity, relations can be instantiated directly from Relation class and set its

attributes as shown below:

Noun human = new Noun();

Noun hand = new Noun();

Meronymy meronymy = new Meronymy(human, hand);

1.2.12 Adding Instances

The instantiated entities and relations are treated as Instances in the concept-net. The

add method of the ConceptNet class enables to add the entity and relation instances to

the concept-net, as shown below:

Result result = wordNet.add(animal);

if(!result.Success)

System.out.println(result.ErrMessage);

To add the relation instance to the concept-net, the entities that associated with the

relation need to be added first in the concept-net before adding the Relation, otherwise

the operation will be unsuccessful.

wordNet.add(human);

wordNet.add(hand);

Result result = wordNet.add(meronymy);

if(!result.Success)

System.out.println(result.ErrMessage);

1.2.13 Updating Instances

User can update the attribute values on entity and relation instances and update back to

concept-net using the update method of ConceptNet class as shown below:

animal.desc = "A major group of multicellular, eukaryotic organisms";

Result result = wordNet.update(animal);

if(!result.Success)

System.out.println(result.ErrMessage);

1.2.14 Removing Instances

Instances can be removed using the remove method of ConceptNet class as shown below:

wordNet.remove(animal);

wordNet.remove(meronymy);

14



1.2.15 Deleting the concept-net

The concept-net can be deleted by invoking the static method delete of ConStore class.

The user has to pass the concept-net path name as the parameter.

ConStore.delete("/usr/test/wordnet");

Deleting a concept-net implies deleting the concept-net directory including its contents.

1.2.16 Type and Instance Retrieval

Type and instance retrieval using navigation interface (Section 1.1.2) is presented with

code snippets in following subsections. The interface Query supports property or id-based

retrieval of types and instances. Student concept network as shown in the Figure 1.8 is

used for explanation.

Figure 1.8: Student-Net

Type Retrieval

The type retrieval signifies the data retrieval from the metamodel. The below code snippet

shows the type retrieval based on the type name.

Query query = studentNet.query();

Type type = query.getType("Student");

//returns the ‘Student’ type

The getType method is overloaded with type-id, where user can retrieve type based on

type-id.

Instance Retrieval

Instances can be retrieved based on their property or id. The below code shows the

property-based instance retrieval where a student is retrieved based on the name.

15



List<Instance> instances = query.getInstance("Student", "name", "Sanjay");

//returns the ‘Sanjay’ student instance

The getInstance method is overloaded with instance-id, where user can retrieve an in-

stance based on instance-id. The getEntityInstances and getRelationInstances methods

allow retrieving the entity and relation instance specifically based on their property or id.

The relation instances associated with an instance can be retrieved using the getRelations

method. For example, the below code demonstrates the retrieval of all the relations

associated with the student Vipul.

List<RelationInstance> relInstances

= query.getRelations(<instance-id of Vipual instance>);

//returns the g1, c2, and c3 relation instances

The above retrieval can be filtered by relation type name as shown below.

List<RelationInstance> relInstances

= query.getRelations(<instance-id of Vipual instance>, "register");

//returns the c2, and c3 relation instances

The getRelatedInstances retireves the instances which are associated through the rela-

tions for the given instance-id or its property For example, the following code shows the

retrieval of related instances student Neha.

List<EntityInstance> eInstances

= query.getRelatedInstances(<instance-id of Neha instance>);

//returns the Network and Benjamin entity instances

The above retrieval can be filtered by relation type name as shown below.

List<EntityInstance> eInstances

= query.getRelatedInstances(<instance-id of Neha instance>, "guide");

//returns the Benjamin entity instance

Bulk Retrieval

The bulk retrieval methods facilitates in the retrieving all the types and instances in the

concept network in bulk or retrieving the instances in group based on their type. The

methods getAllEntites and getAllRelations provide the retrieval of all entity and relation

types in the metamodel of the concept network. Similarly, the methods getInstances,

getAllEntityInstances, and getAllRelationInstances provide bulk retrieval of entity and

relation instances of concept network. For example, the following code retrieves all the

entity instances of the student-net.

16



List<Instances> allInstances

= query.getAllEntityInstances();

//returns all the entities instances (Vipul, Neha, Snajay,

//Benjamin, Nachiket, Networks, Data Mining)

Entity and relation instances can be retrieved based on their type using the overloaded

methods getEntityInstances and getRelationInstances. The following example shows

retrieval of relation instances of type guide.

List<RelationInstance> relInstances

= query.getRelationInstancs("guide");

//returns the g1, g2, and g3 relation instances

Id Retrieval

The id-based retrieval allows retrieving instance-ids based on their property which is help-

ful if user wants to navigate the concept network without retrieving the full instance. The

selectivedeserialization technique explained in Section ?? is used to retrieve individual

attribute’s value without needing full instance deserialization. Table 1.2 listed the id-

based retrieval methods. The following example demonstrates property-based instance

id retrieval and further using getInstance method the actual instance can be retrieved if

required.

List<Integer> instanceIds = query.getInstanceIds("Course", "name", "Networks");

//returns the ‘Networks’ course instance id as list

List<Instance> instances = query.getInstances(instanceIds);

//returns the ‘Networks’ course instance

Navigation through a concept-net

Using the id retrieval, user can navigate the concept-net. The following code retrieves

and prints the value of property name of the instances of all entities related to the guides

of a student with the value of property name as vipul.

List<Integer> instanceIds =

query.getInstanceIds("student", "name", "vipul");

for(Integer sid : instanceIds) {

List<Integer> guideIds =

query.getRelatedInstanceIds(sid, "guide");

for(Integer gid: guideIds) {

List<Instance> relInstances =

17



query.getRelatedInstances(gid);

for(Instance sinst: relInstances)

System.out.print(sinst.getAttributeValue("name"));

}

}

//outputs ‘Neha, Networks’

18


