Introduction to
Cloud Computing and Virtualization

By

Mayank Mishra
Sujesha Sudevalayam
PhD Students
CSE, IIT Bombay
Talk Layout

- Cloud Computing
 - Need
 - Features
 - Feasibility
- Virtualization of Machines
 - What is it
 - Implementation techniques
 - Benefits
- XEN's internals
 - Domains
 - CPU Sharing
 - HyperCall
 - Memory Sharing
 - IO Sharing
- Conclusion
Resource Provisioning – Company's/Customer's View

(a) Provisioning for peak load

(b) Underprovisioning 1

(c) Underprovisioning 2

Image source [1]
Resource Provisioning – DataCenter/Cloud Provider's View

Charge for 4050 machines, Work with 3000
Good Business
Computing as a service or utility.
scale your infrastructure **on demand** within minutes or even seconds, instead of days or weeks, thereby **avoiding under-utilization (idle servers) and over-utilization**

a broad array of web-based services aimed at allowing users to obtain a wide range of functional capabilities on a 'pay-as-you-go' basis

Cloud computing really is accessing resources and services needed to perform functions with **dynamically changing needs**. ... The cloud is a **virtualization of resources that maintains and manages itself**.

- On-demand service: User not worried about maintenance and setup issues etc.
- Networked Shared Resources: Large capacity distributed/multiplexed over several users
- Flexible Provisioning: Dynamically scale resources
- Fine-grained metering: pay-as-you-use model

Source: Internet
What is required

By Cloud Provider

- Fast scalability – Quick addition and removal of servers
- Service to customers should not be denied.
- SLA should not be Violated
- Efficient Resource Utilization

Constraints with physical machines

- High Provisioning time.
- Lower Resource Utilization.
- Space, Power, Cooling.
- Low fault tolerance
- Less Isolation - misbehaving application can affect all others.
- High downtime.
What is Virtualization

Wikipedia says “Virtualization, in computing, is the creation of a virtual (rather than actual) version of something, such as a hardware platform, operating system, a storage device or network resources”

- Concept is not new.

 Multi Programming – Each Process thinks it has complete control on all of the resources.

 - Virtual Memory
 - CPU Sharing
Similarities and Differences with Multiprogramming

Multi Programming
- CPU is shared among processes
- Memory is shared using Page Tables.
- Process knows it is being managed - uses system calls.

Virtualization
- CPU is shared among OSs.
- Memory is shared using more level of indirections. Multiple Page tables.
- OS may or may not know that it is being managed.
Virtualization Architecture

- OS assumes complete control of the underlying hardware.
- Virtualization architecture provides this illusion through a hypervisor/VMM.
- Hypervisor/VMM is a software layer which:
 - Allows multiple Guest OS (Virtual Machines) to run simultaneously on a single physical host
 - Provides hardware abstraction to the running Guest OSs and efficiently multiplexes underlying hardware resources.
Physical vs. Virtual Machine

- Single OS
 - h/w + s/w tightly coupled
 - Application crashes affect all
 - Resource under-utilization

- Machine view to OS is independent of hardware
- Multiple OS (isolated apps)
- Safely multiplex resources across VMs

image source: vmware.com
Types of Virtual Machines

- **Process view of machine**
 - memory, user-level instr., system calls for OS functions
 - OS interface to hardware defines view of process
 - **Process VM**
 - e.g. Java, .Net, Emulators

- **System view of machine**
 - environment to support multiple processes
 - sharing resources
 - hardware characteristics defines system view
 - **System VM**
 - e.g., Xen, kvm, VMware, VirtualBox, UMLinux

Source [3]
Benefits of using Virtual Machines

- Instant provisioning - fast scalability
- Live Migration is possible
- Load balancing and consolidation in a Data Center is possible.
- Low downtime for maintenance
- Virtual hardware supports legacy operating systems efficiently
- Security and fault isolation
VM Migration
Load Balancing
- Better Response time

Consolidation
- Reduces number of Physical Machine requirement
Importance of Virtualization in Cloud Computing

- Cloud can exist without Virtualization, although it will be difficult and inefficient.
- Cloud makes notion of “Pay for what you use”, “infinite availability- use as much you want”.
- These notions are practical only if we have
 - lot of flexibility
 - efficiency in the back-end.
- This efficiency is readily available in Virtualized Environments and Machines.
Popek and Goldberg mentioned a set of requirements that must be met in their 1974 paper.

- They divided instructions into three categories:
 - Privileged instructions: execute in a privileged mode, but will trap otherwise.
 - Control sensitive instructions: attempt to change the config of resources
 - Behavior sensitive instructions: are those that behave in a different way depending on the config of resources

- They said that all sensitive instructions must also be privileged instructions.
- Hypervisor must be able to intercept any instructions that changes the state of the machine in a way that impacts other processes.
Privilege Rings

- Memory page has a 2 bit code which is checked by CPU before executing the instruction.
- If privilege level is insufficient the CPU does not execute the instruction.
1. Binary Translation
2. Paravirtualization
3. Hardware Supported Virtualization
1. Binary Translation

Used in VMWare

- Binary image of OS is manipulated at the runtime.
- Privileged instructions are rewritten to point to their emulated versions.
- Performance from this approach is not ideal, particularly when doing anything I/O intensive.
- Caching of the locations of unsafe instructions can speed up
2. Paravirtualization

- Used in XEN
- Make OS aware of underlying Virtualization env.
- OS's code is manipulated.
- Important system calls are changed to point to the implementation provided by the VMM.
3. HW Supported Virtualization

- Added new instructions which makes Virtualization considerably easier for x86.
 - Intel – IVT (Intel Virtualization Technology)
 - AMD – introduced AMD-V
- OS stays in its original privilege level 0.
- Attempts to access the hardware directly are caught and passed to VMM.
- In other words a new privilege ring is setup for the VMM.

![Diagram of privilege levels](image)
XEN Domains
CPU Sharing
Hyper Calls
Memory Sharing
IO Sharing
XEN Split Driver Technique
IO Ring
XEN Domains

- Xen runs guests in environments known as domains which encapsulate a complete running virtual environment.

- There are two types of Domains:
 - DomU -
 - the “U” stands for unprivileged.
 - Guest OSs run in this domain.
 - Dom0
 - has elevated privileges
 - Provides device drivers
 - Provides tools/mechanisms to configure Virtualization environment
VMM or Hypervisor provides a virtual view of CPU to VMs.

In multi processing, CPU is allotted to the different processes in form of time slices by the OS.

Similarly VMM or Hypervisor allots CPU to different VMs.
XEN Hypercall

Diagram showing the differences between Native and Paravirtualized systems.

- **Native**
 - Ring 0: Kernel
 - Ring 1: Application

- **Paravirtualized**
 - Ring 0: Hypervisor
 - Ring 1: Kernel
 - Ring 2: Application

Arrows indicating Hypercall and System Call.
Memory Sharing

- In Multiprogramming there is a single level of indirection maintained by Kernel.
- In case of Virtual Machines there is one more level of indirection maintained by VMM.

Applications use Virtual Addresses

Kernel translates Virtual Addresses to Pseudo-Physical Addresses

Hypervisor translates Pseudo-Physical Addresses to Machine addresses
DMA Problem

- Device needs to use Physical Memory location.
- In a virtualized environment, the kernel is running in a hypervisor-provided virtual address space.
- Allowing the guest kernel to convey an arbitrary location to device for writing is a serious security hole.
- Detecting a DMA instruction is nontrivial. Each device defines its own protocol for talking to drivers.

XEN Follows Split Driver Model: Dom 0 does the IO on behalf of all the other guests.

- As DOM0 is privileged the IO has no problem.
XEN IO Split Device Driver

Diagram showing the flow of data and components:
- Application
- Split Device Driver
- Shared Memory Segment
- Real Device Driver
- Physical Device

The diagram illustrates the interaction between Domain U Guest and Domain 0 Guest, with Xen and hardware components.
IO Ring

Shared memory is used with event based synchronization
Conclusions

- Notion of Cloud is possible without Virtualization, but it will be inefficient and inflexible.
- Virtualization is an attempt to manage OS.
- There are many levels and many ways to implement Virtualization.

