Arrays and Functions

Abhiram Ranade

Arrays and Functions

Array elements can be passed to functions
int z[200]; cin >> z[0] >> z[1];
z[2] = ged(z[0], z[1]);

Entire arrays can also be passed to functions

* Need some new ideas. Next.

Functions that operate on arrays:
what we might want

Function to find the average of the numbers in
an array?

double marks[100]; ... read in marks ...

double averageMarks = average(marks);

// or something like this.

Presumably averaging is a common operation,
we should write an averaging function once for

all.

Other desirable functions

maximum(arrayName) : returns maximum?

* occurs(arrayName, value) : returns true if

value occurs in array arrayName

All this is possible.

Actual call is slightly different: length of array
will also need to be an argument.

More preparation is heeded to understand
how to write such functions.

Outline

Memory and Addresses: Review
Pointers

Pointers and Functions

An alternate, official view of arrays

How to define functions that operate on
arrays.

Memory and Addresses: Review

Memory of a computer is made up of
capacitors (typically)

8 bits make a byte.
Each byte has an address.

Addresses start at 0 and go up to memory
size in bytes — 1.

Memory Allocation

When variables are defined, memory is allocated for
them.

Amount of allocated memory = what is required for
variables of that type.

int requires 4 bytes. double requires 8 bytes. ...
Elements of an array allocated consecutively.

Address of a variable: address of first byte allocated
for it.

Example

intp =3, q[]={11,12,13,14}, r=9;

This may cause:

Addresses Allocated for Content
1000-03 P 3
1004-07 q[O] 11
1008-11 q[1] 12
1012-15 q[2] 13
1016-19 q[3] 14

“Address of” operator: &

 Operator & applied to a variable gives its address

* prints the starting addresses of p and resp 1000
and 1012. Convention: in Hexadecimal (radix 16)

1000 = 3x16% + 14x16 + 8 = 3e8
* Digits: 10,11, 12,13, 14,15=4a,b,c,d, e, f
will be printed

e Often value printed will be prefixed by Ox to indicate
that what follows is a hexadecimal number.

Properties of addresses

Addresses are numerical, but C++ treats them as
a different type.

It is an error to add one address to another
(what could it possibly mean?)

Addresses of int variables are of a type
different from addresses of float variables.

Addresses can be stored in variables.

Pointers: Variables for storing
addresses

* Variables meant for storing addresses of
variables of type T themselves have type “T*"

int™ iptr;

e Memory allocated to create a variable iptr.
iptr can hold address of int variables

int x; iptr = &x;
cout << iptr <<’ ‘<< &x; // prints same value
 Pointer names: identifiers, usual rules.

“content of” operator: *
(also “dereferencing” operator)

 *a:the variable whose address is a
* *jsinverse of &

intx,y; int*iptr;

iptr = &x;

*iptr =4; // 4 stored in x.

iptr = &y;

*iptr =6; // 6 storediny.

Actual interpretation of definition
int™ ptr;
 Spaces don’t matter with operators, and unary *
associates to right. Hence should be read as
int (*iptr);

e Says *iptris of type int. Thus iptr is of type address
of int, orint*. indirect definition.

int* iptr, jptr;
* declaresiptrto be int*, but jptris int.
 What is expected in this blank?

int* iptr = ... //integer or address?

A rule regarding pointers

 Addresses of variables of type T can only be
stored in variables of type T*.

Int X;

double y;

int*p;

p = &y; //not allowed, will not compile.

Addresses as function arguments

void add10(int* p){
*p = *p + 10;
]

int main(){
Int x = 3;
add10(&x); // &x has type int*

cout << x << endl;

} // add10(x) would be an error. Why?

Remarks

When we apply * to a pointer p, we get the
variable stored at address

This happens even if the variable is defined in
the some other activation frame.

1

The type of *pis T if p is “pointer to

Contract metaphor: tailor is not given cloth,
but address of place from where to collect it.

Remarks

 We said earlier “function operates only on
variables defined in its activation frame”. Not
correct with pointer variables.

 We should have said: “function can refer only
to variable names defined in its own
activation frame.”

* Variables in other frames can be accessed
indirectly, by dereferencing pointers, without
knowing their name.

Exercise 1: What does this do?

void g(double *x, double *y){
If(*x > *y)}{

double z = *x;

x="y;
Yy =2z
}
int main(){

double x,y; cin>>x>>y; g(&x, &y);

cout << x <<‘ ‘ck<y << endl;

}

Exercise 2: What will this do?

int main(){
double x, vy, z;
Cin >>X>>y >>z;
g(&x, &y);
g(&y, &z);
g(&x, &y);
cout << x <<‘ kg y <<’ ‘<z << endl;

Arrays: Our view so far

* Defining an array:
elemtype anamelasize];

Variables aname|0], ... , aname|asize — 1] are
created, each of type elemtype.

e aname : name of array created, name of the
entire collection of variables.

e anameli] : element with index i from aname.

Arrays: The official view

. Officially, this is just the address of
the zeroth created variable, i.e.

address of zeroth element = address of first

byte of memory allocated for the entire
array.

. An expression with [| being the
operator, and the operands.

It will turn out to mean the right thing: NEXT

Official interpretation of a|b]

 a|b]:well defined only if a is of type T* for
some type T, and b is of type int.

* Interpretation of a[b]: “The variable of type T
stored at address a + S*b where S = size of
one element of type T in bytes.”

int q[] = {11, 12, 13, 14}; // g has type int*

q/3] : The variable of type int stored in memory
at address g + 4% 3.

Example

int q[]={11,12,13,14};

Addresses Allocated for Content
1004-07 q[O] 11
1008-11 q[1] 12
1012-15 q[2] 13
1016-19 q[3] 14

g = 1004

g+ 12=1016:indeed where q|3] is stored.

Why bother if the official view
gives the same result as our view?

The computer uses the official view to
determine where IS in memory.

Every time you write , @ multiplication
and addition needs to be performed.

Help you understand what happens if array
index is out of range. NEXT

Useful for writing functions on arrays. NEXT

What if index is out of range?

: Variable of type int stored in memory
at address i.e. at the position
in memory where would have been if

had length at least 11.

Although address was not allocated for
array ¢, the computer will assume there is a
variable there of the required type.

(contd.)

 [10] =100;

100 will be written into some other variable!
* x=q[10];

will cause junk data to be stored into x.

e 2+S*Db ingeneral may correspond to non-
existent address, or forbidden address. In
such cases, program may halt.

* Summary: ensure index is in range!

What do you think this does?

int main(){
int q[]={11,12,13,14};
int *iptr = q;
cout << iptr[0];
iptr[1] = q[2];
cout << q[1];

Value of iptr|[O]

Well defined? Yes. iptris pointer to int, and
O is int.

What it means: Element of type int stored at
iptr + 4%0, i.e. at iptr.

But iptr = g. Hence iptr[0] means element of
type int stored at q, i.e. q[0].

Alternatively: iptr[0] must be same as q[0]
since iptr is same as Q.

Function calls on arrays

A design question

 Arguments to a function call are copied from
the activation frame of calling function to

corresponding parameters in activation frame
of called function.

* Should arrays be copied? Arrays can be very
long, and this may take too much time.

Key idea

» Make the starting address of the array be the
argument, so only that will be copied.
* How to supply the starting address?
Array name = starting address as per official view!
 Knowing the starting address and the index of

the element we can calculate which location
in memory is to be accessed.

Function to find average of
elements

double average(int *A, int n){
double sum =0;
for(int i=0; i<n; i++) sum = sum + A[i];
return sum/n;
}
int main(){
int q[] =1{11, 12, 13, 14}; cout << average(q,4);

J

Will this compile correctly?

Types of arguments and corresponding
parameter should match.

g: int*. A:int*

4:1nt. n:int.

will compile.

How this executes

main executes. call average encountered.
Activation frame created for average.
value of q copied to A. value 4 copied to n.

In execution: A has same value as g. So Ali] will
mean the same thing as qli].

So sum will get the sum of elements of q.
So correct average will be returned.

Function to read into an array

void readarray(double *m, int n){
for(int i=0; i<n; i++) cin >> mli];
}

int main(){

double marks[100]; readarray(marks,100);
}

Points to note

If an ordinary variable is an argument, its
value is copied. If the corresponding
parameter changes, it does not affect the
copied variable.

If an array name is an argument, array hame
is copied. When corresponding parameter is
used to access elements, elements of original
array get accessed, and they can get
modified.

Lookup function

int occurs(int k, int *key, int n){
int res=-1; //impossible index value;
for(int i=0; i<n && res ==-1; i++)
if(key[i] == k) res = i;
return res;

J

Use in marks program

int main(){
double marks[100]; int rollno[100];
for(int i=0; i<100; i++) cin >> rollno[i] >> marks]i];
while(true){
Int r; cin >>r;
int index = occurs(r, rollno,n);

if(index !=-1) cout << marks[index] << end|I;

J
}

