Two great algorithms

Abhiram Ranade

Outline

* Newton-Raphson method for finding roots

* Euclid’s algorithm for finding greatest
commond divisor (GCD).

Newton Raphson method

Method to find the root of f(x), i.e. x s.t. f(x)=0.

Method works if:

f(x) and derivative f '(x) can be easily calculated.

A good initial guess x, for the root is available.
Example: To find square root of y.

use f(x) =x%2-y. f'(x)=2x.

f(x), f * (x) can be calculated easily. 2,3 arithmetic ops.

Initial guess x, = 1 is good enough!

How to get better x;,, given x.

Point A =(x,,0) known.

Calculate f(x.).
B Point B=(x, f(x))

Approximate f by tangent
C= intercept on x axis
C=(Xi+1'0)

L
o

X I

S
f

Square root of vy

X, = X-f(x;) / £(x;)
f(x)=x%-vy, f(x)=2x
Xip1 = X~ (Xiz - y)/(2xi) = (Xi + y/xi)/2

Starting with x,=1, we compute x,, then x,, ...
We can get as close to sqrt(y) as required.

Proof not part of the course.

Code

floaty; cin>>vy;
float xi=1; // Initial guess. Known to work.
repeat(10){
Xi = (xi +y/xi)/2;
}

cout << xi;

Run until error is small?

> < Error

|
T /root

Error Estimate = |[f(x))|= |x*x. —y]|

®

Make |x.*x.—y| small

floaty; cin >>v;

float xi=1;

while(abs(xi*xi —y) > 0.001){
Xi = (xi +y/xi)/2 ;

}

cout << xi;

Error Analysis

e Number of correct bits double with each
iteration!

* Proof notin course.

“Clever” code using for
float xi,y; cin>>vy;
for(xi=1;
abs(xi*xi —y) > 0.001;
Xi = (xi +y/xi)/2
) {}
cout << xi;

// for has empty body!

Remarks

 Very commonly used.

* Also useful in multiple dimensions. Given
functions f, g, h, ... Find x, y, z, w, ... such that

e f(x,y,z,w,..)=0
* glx,y,z,w,..)=0
)=0

But it is trickier too.

Greatest Common Divisor

Input: positive integers m, n.
Output: Largest integer dividing both.

Algorithm from specification: ?

Primary school algorithm: factorise numbers,
multiply common factors.

Euclid's observation

If d divides m,n then d divides m-kn,n
for all integers k.

Converse implied.

Divisors of m,n = Divisors of m-kn, n
GCD(m,n) = GCD(m-kn,n)

Basic algorithm design principle

Smaller problems are easier to solve than
larger problemes.

Well, usually.

Euclid’s observation can be repeatedly
applied to reduce numbers whose GCD we
want.

Does the observation help?

GCD(3977,943)

= GCD(3034,943)

= GCD(2091,943) Can we short circuit this process?
= GCD(205,943) 205=3977 %943

= GCD(205, 123) 123 =943 % 205

= GCD(82,123) 82 =205%123

= GCD(82, 41) 41 =123 %82

=41 0 =82%41

Algorithm idea

Divide larger number by smaller.
If remainder == 0, then GCD = smaller.

Else repeat with smaller, remainder. (Note
that the number that was smaller earlier is
now larger, and the remainder is smaller)

Program

main_program{
int Large, Small, Remainder; cin >> Large >> Small;
while(true){
Remainder = Large % Small;
if (Remainder == 0) break;
Large = Small;
Small = Remainder;

}

cout << "The GCD is: " << Small << end|;

}

Invariant

Let GCD of the numbers given by the user be
G. Then on any entry to the while loop, GCD
(Large, Small) = G.

Does this prove that the algorithm terminates
or produces the correct answer?

Small decreases in each iteration.
Hence termination.

How many iterations are needed?

* L >=S,+R>=L,,+S,,>=2L,,

* Hence Larger halves every 2 iterations, or
pecomes even smaller

* 2log,Large iterations suffice.

Twist

Program works even if user types in smaller
number first and larger second.

Invariants also are same.
Number of iteration proof: applies nearly.

Proof: Exercise.

