Two great algorithms

Abhiram Ranade

Outline

- Newton-Raphson method for finding roots
- Euclid's algorithm for finding greatest commond divisor (GCD).

Newton Raphson method

Method to find the root of f(x), i.e. x s.t. f(x)=0.

Method works if:

f(x) and derivative f'(x) can be easily calculated.

A good initial guess x_0 for the root is available.

Example: To find square root of y.

use
$$f(x) = x^2 - y$$
. $f'(x) = 2x$.

f(x), f'(x) can be calculated easily. 2,3 arithmetic ops.

Initial guess $x_0 = 1$ is good enough!

How to get better x_{i+1} given x_i

Point A = $(x_i,0)$ known.

Calculate f(x;).

Point $B=(x_i,f(x_i))$

Approximate f by tangent C= intercept on x axis $C=(x_{i+1},0)$

$$x_{i+1} = x_i - AC = x_i - AB/(AB/AC) = x_i - f(x_i) / f'(x_i)$$

Square root of y

$$x_{i+1} = x_i - f(x_i) / f'(x_i)$$

 $f(x) = x^2 - y, f'(x) = 2x$
 $x_{i+1} = x_i - (x_i^2 - y)/(2x_i) = (x_i + y/x_i)/2$

Starting with $x_0=1$, we compute x_1 , then x_2 , ... We can get as close to sqrt(y) as required.

Proof not part of the course.

Code

```
float y; cin >> y;
float xi=1;  // Initial guess. Known to work.
repeat(10){
    xi = (xi + y/xi)/2;
}
cout << xi;</pre>
```

Run until error is small?

Make $|x_i^*x_i - y|$ small

```
float y; cin >> y;
float xi=1;
while(abs(xi*xi - y) > 0.001){
    xi = (xi + y/xi)/2;
}
cout << xi;</pre>
```

Error Analysis

- Number of correct bits double with each iteration!
- Proof not in course.

"Clever" code using for

```
float xi, y; cin >> y;
for(xi = 1;
   abs(xi*xi - y) > 0.001;
   xi = (xi + y/xi)/2
   ) {}
cout << xi;
// for has empty body!
```

Remarks

- Very commonly used.
- Also useful in multiple dimensions. Given functions f, g, h, ... Find x, y, z, w, ... such that
 - f(x, y, z, w, ...) = 0
 - g(x, y, z, w, ...) = 0
 - h(x, y, z, w, ...) = 0.
 - •

But it is trickier too.

Greatest Common Divisor

Input: positive integers m, n.

Output: Largest integer dividing both.

Algorithm from specification: ?

Primary school algorithm: factorise numbers, multiply common factors.

Euclid's observation

If d divides m,n then d divides m-kn,n for all integers k.

Converse implied.

Divisors of m,n = Divisors of m-kn, n GCD(m,n) = GCD(m-kn,n)

•

Basic algorithm design principle

 Smaller problems are easier to solve than larger problems.

• Well, usually.

 Euclid's observation can be repeatedly applied to reduce numbers whose GCD we want.

Does the observation help?

```
GCD(3977,943)
= GCD(3034,943)
= GCD(2091,943) Can we short circuit this process?
= GCD(205,943)
                 205 = 3977 % 943
= GCD(205, 123)
                 123 = 943 % 205
= GCD(82, 123) 82 = 205 \% 123
= GCD(82, 41)
              41 = 123 % 82
= 41
                 0 = 82 \% 41
```

Algorithm idea

- Divide larger number by smaller.
- If remainder == 0, then GCD = smaller.
- Else repeat with smaller, remainder. (Note that the number that was smaller earlier is now larger, and the remainder is smaller)

Program

```
main_program{
 int Large, Small, Remainder; cin >> Large >> Small;
 while(true){
  Remainder = Large % Small;
  if (Remainder == 0) break;
  Large = Small;
  Small = Remainder;
 cout << "The GCD is: " << Small << endl;</pre>
```

Invariant

- Let GCD of the numbers given by the user be
 G. Then on any entry to the while loop, GCD (Large, Small) = G.
- Does this prove that the algorithm terminates or produces the correct answer?
- Small decreases in each iteration.
- Hence termination.

How many iterations are needed?

- $L_i >= S_i + R_i >= L_{i+1} + S_{i+1} >= 2L_{i+2}$
- Hence Larger halves every 2 iterations, or becomes even smaller
- 2log₂Large iterations suffice.

Twist

 Program works even if user types in smaller number first and larger second.

- Invariants also are same.
- Number of iteration proof: applies nearly.

• Proof: Exercise.