Arrays

Abhiram Ranade

Computers must deal with large
amounts of data

* Simulate what happens when many balls are
moving in a box. (Gas molecules?)

* Given altitudes of various points in a lake,

find how much water is there given water
level.

* Given the road map of India, find the shortest
route from Kirloskarwadi to Tatanagar.

How to handle lot of data?

* Fundamental problem: Writing out variable
names to store information would be tiring

double pressurel, pressure2, ..., pressurel000;

 This is the problem solved using Arrays.

Arrays

double pressure[1000];

* Essentially defines 1000 variables (“array
elements”). Variables are named pressure[0],
pressure[1], pressure[2], ..., pressure[999]

* General form:

data-type array-name|size];
array-name[index] gives indext" variable.
0 <= index < size.

Array element operations

double pressure[1000];

cin >> pressure[0];

for(int i=0; i<1000; i++) cin >> pressure[il;

// index can be an expression, which will be
// evaluated during execution.

pressure[34] = (pressure[33]+pressure[35])/2;
cout << pressure[439]*3.33 << end|;

Index out of range

double pressure[1000];
pressure[1000] = 1.2;

double d = pressure[-5];

In all the assignments above, the array index is outside
the allowed range: 0 through size-1. In such cases the
program may run and produce wrong results, may halt
with a message. Nothing is guaranteed.

The programmer must ensure index stays in range.

Initialization while defining

int squares[5] =10, 1, 4, 9, 16};
int cubes[] ={0, 1, 8, 27}; // size = 4 inferred.

int x, pqr[200], y[]={1,2,3,4,7,8,9};

size also called length.

Marks display problem

First read in marks of the 100 students in a class,
given in roll number order, 1 to 100. After that,
students may arrive in any order, and give their
roll number. The program must respond by
printing out their marks. If any illegal number is

given as roll number, the program must
terminate.

Program

double marks[100]
for(int i=0; i<100; i++) cin >> marksli];

while(true){
int rollno; cout << “Roll no:”; cin >> rollno;
if(rollno< 1 || rollno > 100) break;
cout << marks[rollno—-1]; // why -1?

}

Display who got highest

Read marks as before. Display all roll numbers
who got highest marks.

// array marks defined and read in as before.
double maxsofar = marks[0];
for(inti=1;i< 100; i++)

maxsofar = max(maxsofar, marksl[i]);
for(int i=0; i < 100; i++)

if(marks[i] == maxsofar) cout << i+1 << end|;

Histogram

Read in marks as before, print how many scored
between 1-10, 11-20, ..., 91-100.

int hist[10]; //hist[i] stores number of students
// getting marks between 10*i+1 to 10*(i+1)

On reading a value v, add 1 to suitable element of hist.

Which element? (v-1)/10, assuming v is integer, and
truncation in division.

Histogram

Read in marks as before, print how many scored
between 1-10, 11-20, ..., 91-100.

int hist[10]; //hist[i] stores number of students
// getting marks between 10*i+1 to 10*(i+1)
for(int i=0; i<10; i++) hist[i]=0;
for(int i=0; i<100; i++){
double marks; cin >> marks;
hist[int(marks-1)/10]++; // int(..) converts to int.

}

Mark display variation

 Teacher enters 100 pairs: rollno, marks.
int rollno[100]; // assume rollno is 8 digit int.
int marks[100];

e Student types in roll number r. Program must
print out marks if r is valid roll number.

* Program idea: search rollno array to seeif ris
present. If so print corresponding marks.

Linear Search of an array

int rollno[100]; double marks[100];
for(int i=0; i<100; i++) cin << rollno[i]l<x<marksli];
while(true){
intr; cin>>r; if(r ==-1) break;
for(int i=0; i<100; i++) // look at each element
if(rollno[i] == r) cout << marks|[i] << endl;
t // Can you make a small change to improve?

Polynomial Multiplication

A(x) =a,+a,x+a,x*+...+ax"
B(x) =b,+ b, x+b,x?+ ...+ b_xm
C(x) = A(x) B(x) =cy+ cx + C,x2 + ...+ C

m+n
m+nX

Given a,, ...,a,and b, ..., b_findc,, ..., C

m+n°*

* Strategy 1: Multiply A(x) by b for all j.
Accumulate products into result.

* Strategy 2: Find formula for c,.

Strategy 2: Multiply A(x) by b;x

A(x) =a, +ax+a,x*>+ ...+ ax"
B(x) =b, + b, x+b,x>+ ...+ b_xm
C(x) = A(X) B(x) = ¢y + C;X + C, X2 + ...+ C,_, X"

Given a,, ..., a,and b, ..., b_ find c,,

.l.’ Cm+n.

A(x) * bxl = aghx) + a;bx*! + ... +a bx"
Add a,b; to c;,..

Program to multiply degree 10
polynomials
double a[11], b[11], c[21]; // c has degree 20.

for(int i=0; i<=10; i++) cin >> a[i];
for(int j=0; j<=10; j++) cin >> b|[j];
for(int k=0; k<=20; k++) c[k] =
for(int j=0; j<=10; j++) //for each b _jx?]
for(int 1=0; i<=10; i++) // multiply A(x)
cli+j] +=ali]*bl[jl; // calculate product term
// and add immediately

Strategy 2: Formula for c,

— 2 n
A(x) =ay +ax +a,x* + ...+ a X

— 2 m
B(x) = b, + b, x+b,x*+ ...+ b_x

C(x) = A(x) B(x) =cy+ cx + C,x2 + ...+ C

m+n
m+nX

Given a,, ...,a,and b, ..., b_findc,, ..., C

m+n*
¢, = coefficient of x¥, contributions from products ab,
where i+j = k.

C, = ayb, +a,b,, +...+a,b, provided k<= m, n.

for larger k: sum only over valid coefficients.

Program to multiply degree 10
polynomials

double a[11], b[11], c[21]; // c has degree 20.
for(int i=0; i<=10; i++) cin >> ali];
for(int j=0; j<=10; j++) cin >> bl[j];
for(int k=0; k<=20; k++){

c[k] =

for(inti=0; i<=k; i++)

if(i < 11 && k-i <11) c[k] += a[i] * b[k —i];

+ // compute term only if coefficients are valid

Dispatching Taxis

Taxi drivers report: driverID put into
“Queue”.

driverID : integer

Customer arrives. If taxiis waiting, first in

Queue is assigned. If no taxi waiting,
customer asked to call again later.

Key requirements

Remember driverlDs of drivers who are
waiting to pick up customers.

Remember the order of arrival.

When customer arrives: assign the earliest
driver. Remove driverlD of assigned driver

from memory.

When driver arrives: Add driver’s driverID to
memory.

How to remember driverlDs

Use an array.

long long int driverID[500];

* Length: largest number of drivers you expect will be
waiting.

* |n what order to store the ids in the array?

* What other information do we need to remember?

e What do we do when customer arrives?

e What do we do when driver arrives?

ldea 1

* Store earliest driver in driverlD[0]. Next
earliest in driver|D[1]. ...

* Remember number of drivers waiting.

iInt nWaiting;

Outline

long long int driverID[500]; int nWaiting = 0;

while(true){

char command; cin >> command;

if(command == ‘d"){ // process driver arrival.}

e

e
e

se if(command == ‘c’){ // process customer...}
se if(command == x’) break;
se cout << “lllegal command.\n";

Invariants

 nWaiting = number of waiting drivers.

* 0<=nWaiting <=500

e Earliest waiting driver is at driverID[0]. Next
at driverID[1], ...

Driver arrival

if(nWaiting == 500) cout << “Queue full.\n”;
else{

long long d; cin >>d;

driverID[nWaiting] = d;

nWaiting ++;
}

When customer arrives:

Provide nWaiting > 0O:

* Assign the earliest unassigned driver to
customer. Earliest unassigned: stored in
driverID][0].

e Second earliest should become new earliest...
 Third earliest should become ...
* nWaiting should decrease.

Customer Arrival

if(nWaiting == 0) cout << “Try again later.\n";
else{
cout << “Assigning “<< driverID[0] << end|;
for(int i=1; i <= nWaiting — 1, i++)
driver|D[i-1] = driver|D[il; // Queue shifts up
nWaiting -- ;
}

|dea 2

Emulate what might happen without computers.

* Names written on blackboard. Arriving driver
Ds written top to bottom. When board
oottom reached, begin from top if drivers
nave left.

 Think of as a circular array. “Next”
position after (bottom of board)
is (top of board).

Invariants

nWaiting = number of waiting drivers.
0 <= nWaiting <= 500
New variable front = position of earliest

arriving driver who has not yet been
assigned. front initialized to 0.

e (O<=front<500

Valid driver IDs are at driver|D[front] ...
driverID[(front + nWaiting — 1) % 500]

Processing driver arrival

if(hWaiting == 500) cout << “Queue full.\n";
else{
long long d; cin >>d;
driverID[(front + nWaiting) % 500] = d;
nWaiting ++;
}

Processing Customer Arrival

if(hnWaiting == 0) cout << “Try later.\n"”;

else{
cout << “Assigning “ << driverID[front] << end];
front = (front + 1) % 500;
nWaiting --;

}

A geometric Problem

Given centers and radii of n circles, determine if
any circles intersect.

Read in center coordinates and radius of
each.

Consider each circle and check if it intersects
with others.

C1, C2 intersect if distance between centers
<= sum of radii.

Program

double x[10], y[10], r[10]; bool intersect = false;
for(int i=0; i<10; i++) cin >> x[i] >> y[i] >> r][i];
for(int i=0; i<10; i++)
for(int j=0; j<10; j++)
if(pow(x[i]-x[j],2)+pow(yl[i]-y[j],2)
<= pow(r[i]+r[j], 2)) intersect = true;

