Functions

Abhiram Ranade

Announcements about the quiz

Aug 31, 8:25-9:25. Please arrive at 8:20.

Closed book, only bring pens.

Do not bring cell phones. If detected, you may get O on quiz.
You may bring a bottle of water, but no sharing.

No water/bathroom breaks. If you have a medical condition,
please bring a certificate.

Please write your lab timings on top right hand corner of
page 1 of answer book, e.g. “Tuesday 9am-11am”.

Read announcements on moodle newsgroup.

Portion for the quiz

Everything covered before today. Chapters 1-7 of the book.

Basic data types, repeat, if, while, for. Basic operators and
assignment statement.

Basic elements of graphics. But you don’t need to remember
commands exactly.

Algorithmic techniques learnt:
 Generating sequences, accumulation

* Fitting curves to plotted points

* Newton-Raphson method.

Writing, invariants, comments.

Functions

Official name for what we have been calling
“command”.

Examples: sqrt, sin, tan, asin, abs : already defined in
C++.

Function = a separate, nearly independent program
that runs “on demand” to do some specific work.

Function = contractor who swings into action when a
job is to be done. Must be given details of the job
(arguments), returns the result when finished.

Topics for today

e How to define new functions.
e How defined functions execute.

* Examples.

If we had a function gcd

* We would be able to write:

main_program{
cout << gcd(36,24) << endl; // should print 12
cout << gcd(99,47) << endl; // should print 1

J

e gcd(36,24) : function call or function invocation.

36, 24 : arguments to the invocation.

To define gcd, write the following
before main_program

int gcd(int Large, int Small){
int Remainder;
while(true){
Remainder = Large % Small;
if(Remainder == 0) break;
Large = Small; Small = Remainder;

}

return small;

}

Defining functions in general

return-type name-of-function(
parameterl-type parameterl-name,
parameter2-type parameter2-name,

N
function-body

J

Definition must appear before use.

Parts of a function definition

return-type : The type of the value that will be
returned by the function.

gcd: int

parameters: variables for holding values of
arguments. gcd: Large, Small.

parameter-type: Designer of the function gets to
say what type the corresponding argument
must have. gcd: both arguments must be int.

How a function executes

main_program executes and reaches gcd(36,24)

main_program suspends.
Preparations made to run “program” gcd:

 Area allocated in memory where gcd will have its
variables. “activation frame”

* Variables corresponding to parameters are created in
activation frame.

* Values of arguments are copied from activation frame of
main program to that of gcd.

Execution of function-body starts.

(contd.)

Execution ends when “return” statement is
encountered.

Value after return is copied back to the calling program,
to be used in place of the expression gcd(...,...)

Activation frame of function is destroyed, i.e. memory
reserved for it is taken back.

main_program resumes execution.

More complex mechanisms possible, study later.

Remarks

Set of variables in main_program is completely disjoint from the
set in called function, gcd.

Both may contain same name, e.g. Large. main_program will
reference the variables in its activation frame, and gcd in its
activation frame. Change in Large in gcd will not affect Large
In main_program.

New variables can be created in called function.

Arguments to calls/invocations can be expressions, which are
first evaluated before called function executes.

Functions can be called while executing functions.

Example 2

We will write a function prime which will return
true iff argument is a prime.

main_program{
Int X; cin >> X;
if(prime(x) && prime(x+2))

cout << “First of prime pair.\n”;

Function prime

bool prime(int x){
bool found = false;
for(inti=2; i < x && !found; i++)
found =found || (x % i) == 0;
return !found; // found true if factor found

J

// write before main_program

Example 3: Least common multiple

int lcm(int m, int n){
return m*n/gcd(m,n);
}
// must come after gcd definition
// but before main_program, or wherever it

// used.

Example 4

void printlcm(int m, int n){
cout << lcm(m,n);

return;

J

void : does not return anything. Hence nothing
follows return.

must follow Icm definition in our file, but come
before main_program.

Example 4 (contd.)

#include <simplecpp>
int gcd(int Large, int Small){....}
int lcm(int m, int n){...}
void printlcm(int m, int n){...}
main_program{
int m, n; cin >>m >>n;
printlcm(m,n);

}

Example 4 (execution)

* main program executes. Suspends when
printlcm encountered.

* printlem executes. Suspends when Icm
encountered.

* |cm executes. Suspends when gcd
encountered.

* gcd executes.
At this point memory holds 4 activation frames.

(contd.)

observation: 3 variables named m,n in memory.

e gcd finishes. result copied

cm finishes. result copiec

yrintlem finishes. No resu

. Frame destroyed.
. Frame destroyed.
t to copy, however

calling program told to resume, and frame of

printlcm is destroyed.

Contract View of Functions

* Contractors in everyday life: tailor, lawyer,
doctor, ...

* We give them work: we don’t worry how they
do it. They explicitly or implicitly make a
promise to us, and we trust that promise.

 We like it that we don’t need to know how a
tailor stitches, or a doctor diaghoses.

Something similar for functions.

Contract view (contd.)

The user of a function needs to know:
* return-type

* type of each parameter

* Possible additional constraints on what kinds of

arguments are allowed, e.g. arguments to gcd
and lcm must be > 0. PRE-CONDITION

e The promise made by the function developer
about what will happen. POST-CONDITION

* Does not need to know function-body

Typical coding style

return-type function-name (parameter-type
parameter-name ...)

// specification: what the function does. pre/post
// conditions.
{

... function body “implementation” ...

// comments explaining “how”

}

Uses of functions

* |f same operation is to be performed several
times, put it in a function and call it several

times.

* Break up large program into small pieces.
Just as you break up a book into chapters.

* Different functions can go into different files.
Different programmers can work on different
functions.

Breaking code into many files

main.cpp
int gcd(int m, int n); // declaration

main_program{ ... gcd(24,36) ...}

gcd.cpp
int gcd(int Large, int small){ //definition

e]

Function declaration

return-type name(paramltype, param2type, ..)

 Declaration says:

 whatis the type of gcd: it is a function returning int and
taking two ints as arguments.

 The full definition will come later, possibly in another file.

* Declaration needed to compile file containing invocation/
call, e.g. main.cpp.

// also allowed. “definition without body”

in above only for readability. only being declared.

Compiling the two files

s++ main.cpp gcd.cpp

will produce a.out

s++ -c gcd.cpp

will produce “object file” gcd.o

object file: machine language but cannot be
executed, because usually it is incomplete in
some way e.g. because there is no
main_program

(contd.)

will generate executable if both files are
available.

also allowed.

* Object files (.0) can be distributed without
source files (.cpp). Receiver can execute but
not read program.

Another use of declarations

* |f you declare first, then definitions can come
later in any order. Useful if you like the main
program to come first in the file.

int gcd(int m, int n);

int lcm(int m, int n);

main_program{ cout << Ilcm(24,36);}
int lcm(int m, int n){ ... }

int gcd(int m, int n){ ... }

main_program

abbreviation created in simplecpp for:

Your main program is also a function!

When a.out is executed, the Operating system
asks that the function main be executed.

int type: historical significance.

return int?: C++ compiler treats main specially.

