Functions 2

Abhiram Ranade



Functions: Summary from last time

 Executes on demand, like an independent program

e Calling program sends arguments and suspends.

ith argument placed in ith parameter

called function executes independently, in its own
Activation frame.

General resources, such as cin, cout, available to function.
Canvas is also available, if it was created.

value returned, if any, = value of call.

* When function finishes, calling program resumes.



Summary (contd.)

Function must be declared/defined above its use in
the file.

Functions can be placed in a file different from the
file in which they are used.

If a function in file F.cpp is needed by main
programs in files mainl.cpp and also main2.cpp,
use:

to compile first program

to compile second program



Summary (contd.)

main_program is a simplecpp abbreviation
for int main()

C++ requires the main program to be written
as a function called main

main cannot be called.

main may return an int, but it is a special
function and so need not.



Outline for Today

e More examples
e Recursive Functions



Function to draw a polygon

void polygon(int sides, double length){
repeat(sides){
forward(length); left(360.0/sides);
}

return;

}

int main(){

turtleSim();

for(int i=3, i<10; i++) polygon(i, 100);
}



Specification of polygon

Input:
sides: number of sides
length: of side
Output:
None. (Output: value returned)
Side-effect: Polygon is drawn on the screen.
At position, orientation...

Final position of pen, final orientation



Function with output value and
side-effect

int printlcm(int m, int n){
int res =lcm(m, n);
cout << res << endl;
return res;

J

Nothing new being said. Function-body can
contain “statements”, including cout << ...



Aside:

Creating shapes inside functions

void drawTriangle (double x1, double y1,
double x2, double y2, double x3, double y3){
Line L1(x1, y1, x2, y2); Ll.imprint();
Line L2(x2, y2, x3, y3); L2.imprint();
Line L3(x3, y3, x1, y1); L3.imprint();

return;

L1, L2, L3 : variables, and also lines.
* Variables and lines both destroyed on return.

* Imprinting stays on canvas: side effect.



Shape arguments to functions

Not for now. But soon.



Button based turtle control

main_program{
initCanvas(); Turtlet; constfloat bFx=150,bFy=100, ...
Rectangle buttonF(...), buttonL(...); Text tF(...,"Forward"), tL(...,"Left Turn");
repeat(100){
int clickPos = getClick(); int cx = clickPos/65536; int cy = clickPos % 65536;
if(bFx-bWidth/2<= cx && cx<= bFx+bWidth/2 &&
bFy-bHeight/2 <= cy && cy <= bFy+bHeight/2) t.forward(100);
if(bLx-bWidth/2<= cx && cx<= bLx+bWidth/2 &&
bLy-bHeight/2 <= cy && cy <= bLy+bHeight/2) t.left(10);
}
} // will functions help in this?



Function to determine if click is
inside

bool inside(int cx, int cy, int bx, int by,
int w, int h){
if(bx - w/2 <= cx && cx <=bx + w/2 &&
by —h/2 <=cy && cy <= by + h/2)
return true;

else return false;

J



Function to determine if click is
inside

bool inside(int cx, int cy, int bx, int by,
int w, int h){
return (bx - w/2 <= cx && cx <= bx + w/2 &&
by — h/2 <=cy && cy <= by + h/2);

// will improve this further later.



Practice problems

Write functions to

 Decide if a given number is perfect, i.e. equal to
the sum of its divisors.

 Find the GCD of 3 numbers. LCM of 3 numbers.
* Draw a house. Use it to draw a colony of houses.
* Find cube roots. Use Newton’s method.

Everything we have done can be packaged as a
function.



Can a function call itself?

int f(int n){
. intz="f(n-1) ...
}

int main(){
int z = f(15);
}



Consistent with execution
mechanism

Activation
frame of ...

Activation Activation Activation
frame of frame of f(15) M frame of f(14)

main




Can a function call itself?

int f(int n){
. if(n>13)intz=1(n-1) ...
}

int main(){
int z =f(15);
}



Recursion

* Function called from its own body

 OK if we eventually get to a call which does
not call itself.

e Then that call will return.

e Previous call will return...

e But could it be useful?



Euclid’s Observation

if m % n==0, then GCD(m, n) =n,
else GCD(m,n) = GCD(n, m % n)

int gcd(int m, int n){
if (m % n==0) return n;
else return gcd(n, m % n);

J



Example

int main(){ cout << gcd(943,205)<<endl; }
AF of main
suspend on: cout << gcd(943,205)<<endl;
AF of gcd(943,205):
suspend on: return gcd(205,123);
AF of gcd(205,123):
suspend on: return gcd(123,82);
AF of gcd(123,82):
suspend on: return gcd(82,41);
AF of gcd(82,41):

return 41



Correctness of Recursive Euclid

Very similar to iterative Euclid
 Second argument always decreases,
 But cannot decrease below. Hence recursion is
finite.
By Euclid’s theorem, GCD of values in new call is
same as those in original call.

Recursive algorithms are often short and easier
to prove.



Trees 1




Trees 2

President

Director Director Director Director

Manager Manager



Trees 3




Trees 4

AR




Trees are everywhere!

Organization Tree
Expression Tree
Search Tree: later

Botanical trees...

Understand the structure of trees to design
algorithms.



Trees = 2 small trees + V




Parts of a tree

Root
eft branch, Left subtree
Right branch, Right subtree

Subtrees have fewer levels, smaller width,
smaller height

Levels = =0? Then tree = only root.



void tree(int levels, double rx, double ry,
double height, double width){
if(levels>0){

Line left(rx, ry, rx-width/4, ry-height/levels);

Line right(rx, ry, rx+width/4, ry-height/levels);

right.imprint();

left.imprint();

tree(levels-1, rx-width/4, ry-height/levels,
height-height/levels, width/2);

tree(levels-1, rx+width/4, ry-height/levels,
height-height/levels, width/2);



