Searching and Sorting

Abhiram Ranade

The search problem

Input: an array x (say int x[100]; Jand a value y
Search problem: Is x[i] ==y for some i?

* Obvious algorithm idea: Compare every
element x|i] with v and report if found.

 Question for today: Can we get by with fewer
comparisons if x is sorted in non-decreasing
order, i.e. values are such that

x[0] <= x[1] <= x[2] <= ...

Key idea

First compare v with x[n/2], where n = length of x.

If x[n/2] <y then we know y cannot be in the
subarray x[0..n/2]. Suffices to search x[n/2 +1...n-1].

if x[n/2] >= v then we know that it suffices to search
the subarray x[0..n/2]

In both cases, by doing a single comparison, we
have halved the number of elements we need to

search next.
x[i...]] : short for x[i] x[i+1],..x[j-1],x[]]

Examples

X.
value 34

Example 1: vy =77. Compare y with x[4]. Outcome: x[4] <vy. So
we only need to search elements x[5]...x[8] next.

Example 2: vy = 37. Compare y with x[4]. Outcome: x[4] >=v.
So we only need to search elements x[0]...x[4] next.

Binary search of an array

Invariant: in each iteration a portion of the
array x|start..end] can possibly contain v.
“feasible portion”

In each iteration, we compare y with the
“middle” element x[(start+end)/2].

Based on the comparison result we adjust
start and end. Feasible portion shrinks.

When start == end, feasible portion has
length 1. So we check if x[start] ==y

Binary Search

int binSearch(int *x, int n, int y){
int start =0, end = n-1;
while(start < end){

int mid = (start+end)/2;
if(x[mid] <y) start = mid + 1;
else end = mid;

}

if(x[start] ==y) return start; else return -1;

}

Correctness

Loop invariant: start, end are valid indices
throughout execution. If yisin x, then it
must be in subarray x|start..end].

Base case: true at the beginning.

mid = (start+end)/2. So start <= mid < end.
So mid and mid+1 are both valid indices.
Hence start, end valid after iteration.

end — start always decreases, approximately
halving. So log, n iterations needed.

Example

X has length 1024.

Length of feasible portion = 1024.

First probe: mid = (0+1023)/2 =511

Next feasible portion: x[0..511] or x[512..1023]
Length of new feasible portion = 512.

Remarks

Function can be written using recursion.
Exercise.

”

Similar to “20 questions”, “Bisection
method”.

Could have been used in marks display, if
rollno array was stored in sorted order.

It is useful to store sequences in sorted order
if we are going to search them.

Sorting

Input: array x, in which values are stored in any
order.

Output: rearrange values in x so that they appear in
non-decreasing order.

Extremely important operation. Useful in many,
many algorithms.

Many, many, pretty algorithms.

Non-increasing order might also be demanded.

Example

before
value 75

after
value 34

Selection sort

Find the largest element.

Move it to the last position.

Find the second largest element.
Move it to the second last position.
Find the third largest element.

The index of the largest element

int maxIindex(int *x, int n){
int result = 0;
for(inti=1; i<n; i++)
if(x[i] > x[result]) result = i;
return result;
}
// int x[]={10,29,37,55,43,55}
// maxIndex(x,6) evaluates to 3.

Selection Sort Algorithm

void ssort(int *x, int n){
for(int L=n; L>1; L--){
int Ml = maxIndex(x,L);
int maxvalue = x[Ml]; //exchange x[MI],x[L-1]
x[MI] = x[L-1];
X[L-1] = maxvalue;

How good is selection sort?

* We will count the number of comparisons.
This is indicative of total time taken.

* Number of comparisons:
To find largest : n-1. (n =length of array)
To find second largest: n-2

To find third largest: n-3 ...
 Total:n-1+n-2+...+1=(n-1)(n-2)/2
* Approximately proportional to n?.

A faster algorithm: Merge sort

* Time to sort: proportionalto nlog, n, i.e.
much better than selection sort.

e Basicidea:

 Suppose you have sorted arrays p, q of length m,
n respectively.

 Putthe elements of p, g into an array r of length
m+n such that r is sorted.

 (Can be done fast by exploiting the fact that p, g
were originally sorted. “Merge”

How to merge

p: students standing in a queue in increasing
order of height. g: Another such queue.

How can they get into a single queue r and
still remain in increasing order of height?

Shorter of the students at the head of queue
p and queue g should enter queuerr.

Queues p, g move up as needed.
Repeat process to move next shortest...

Example

p:{10, 13, 14,17} q:{9, 16, 20, 25} r:{}
p: {10, 13, 14,17} q:{16, 20, 25} r:{9}
p:{13, 14,17} q:{16, 20, 25} r:{9, 10}
p: {14, 17} q: {16, 20, 25} r:{9, 10, 13}
p:{17} q:{16, 20, 25} r:{9, 10, 13, 14}
p:{17} q:{20, 25} r:{9, 10, 13, 14, 16}
p:{} q:{20, 25} r:{9, 10, 13, 14, 16, 17}
p:{} q:{25} r:{9, 10, 13, 14, 16, 17, 20}
p:{} aq:{} r:A9, 10,13, 14,16, 17, 20, 25}

Summary

If both queues have an element, smaller of
the two moves tor.

If only one queue has an element, then the
element at its front moves tor.

How to represent the queues: do not insist
that the smallest element is at index O,
instead keep track of the index at which the
front of the queue is. Similar to taxi dispatch.

: index of front of . rb: back of r.

How to merge

void merge(int p[], int m, int q[], int n, int r[]){
for(int rb=0, pf=0, qf=0; rb<m+n; rb++){
if(pf < m && qgf < n){ // both queues non-empty
if (p[pf] <= qlaf]) { rlrb] = p[pf]; pf++; }
else{ r[rb] = q[qgf]; qf++; }
}
else if (pf < m){ r[rb] = p[pf]; pf++; } // only p is non-empty
else{ r[rb] = q[qgf]; qf++; } // only g is non-empty
}
}

Mergesort idea (informal)

r = sequence to be sorted. Length =n.
o = first n/2 elements of r
g = remaining elements of r

sort(p). sort(q).
Merge p, g to produce r.

void mergesort(int* r, int n){
if(n>1){
int p[n/2], q[n-n/2];
for(int i=0; i<n/2; i++) pli] = r[i];
for(int i=n/2; i<n; i++) q[i-n/2] = r[i];

mergesort(p, n/2);
mergesort(q, n - n/2);
merge(p,n/2, q,n-n/2,r);
}
}

Why is mergesort fast?

* Analysis given in book.
* Analysis is outside the scope of the course.
Intuition:

* Selection sort performs comparisons to find
smallest — the results are not used to help
find second smallest faster.

* |n mergesort, we remember.

