Loops

Abhiram Ranade

Outline

while statement
Examples

— number of digits in a number

— mark averaging
do while
for statement

Examples
— primality testing
— natural log

while

while (condition) body

condition : boolean expression

body : statement

1.Evaluate condition.

2.If false, execution of statement ends.

3.1f true, execute body. Then go back and
execute from step 1.

Arguing correctness

* In general, a programming containing while
may not terminate.
e condition in while may never become false.
i= 0; while(i >=0){i++;}
* Programs with repeat always terminate

* Must argue termination and correctness.

Example: Number of digits in a
number n

“Number of digits” : can we write this more
formally? i.e. find x such that ...

Input: non-negative integer n.
Output: Smallest d>0s.t. 10° > n

This description of input+output is called a
Specification

Algorithm from specification

Start with smallest possible d. d = 1.
Check if 109 > n. If so, done.
If not, try next value of d.

When we finish, will we get 109 > n?
Will d be smallest such value?
How do we generate 1097

Program

main_program{

}

Int n; cin >> n;

int d=1, ten_power_d = 10;

while(ten_power_d <= n){
d++; ten _power d *=10;

}

cout << d << endl;

Could you have written this using
repeat?

Guess largest number of digits possible.
Repeat only that many times.

Details left for you to think about.

while is more powerful than repeat

while(true) body not possible using repeat.
repeat(n) body
Equivalent to:

int count =0, limit =n; // new variables

while(count < limit){ body count++;}

Why worry about repeat if you
have while?

If you are writing programs for special devices,
e.g. a robot, you may not have full C++ but may
have constraints, e.g.

* No while. Only repeat.

 Limited amount of memory. So all input data
cannot be stored, but must be consumed as
quickly as possible.

In general, Engineering = solve problems under
constraints.

A problem impossible using repeat

Read marks of students from the keyboard and print
the average. Valid marks lie between 0 and 100
(inclusive). Number of students not given explicitly.
Instead, if negative value is given as mark, then itis a
signal that all marks have been entered.

7090 85 200 : class has 3 students.
759599608892 77 200: 7 students.

Algorithm idea

To calculate the average, we need the sum, and
the count of how many numbers there are.

Phase 1:

Read numbers. Compute sum, count.
Phase 2:

Print sum/count.

Phase 1

1. Read the next value into nextmark.
f nextmark < 0, then go to phase 2.

. If nextmark >= 0, then add nextmark to sum.
Add 1 to count.

4. Go to step 1.

How do we write this as a ?

Previous statement in the program Start

N P

Y
A
cin >> nextmark;
False
False
C nextmark >= 0
True
B
sum = sum + nextmark;
BOdy count = count + 1;
|

Calculate and print average

y
Next statement in the program (a)

Start

P
Y
A
cin >> nextmark;
C < nextmark >=0

False

sum = sum + nextmark;

count = count + 1;

Y

Calculate and print average

(a)

RN

Start

cin >> nextmark;

cin >> nextmark;

False
nextmark >= 0

sum = sum + nextmark;

count = count + 1;

Y

Calculate and print average

(b)

Program

main_program{

float nextmark, sum =0; int count =0;

cin >> nextmark; /] A
while(nextmark >= 0){ // C
sum += nextmark; count++; // B
cin >> nextmark; /] A
}

cout << sum/count << endl;

}

Auxiliary Loop clauses

break

e Skips rest of current iteration.
 Goes to next statement following loop
continue

* skips rest of current iteration
* continues with next iteration.

Program 2

main_program{
float nextmark, sum =0; int count =0;
while(true){
cin >> nextmark;
if(nextmark < 0) break; //jump out of loop!
sum += nextmark; count++;

}

cout << sum/count << endl;

}

Comparison of 2 programs

without break:

. written 2 times. In general, code
duplication should be avoided.

with break:

* while condition does not express when loop
terminates. Need to look inside the loop body.

Variation: ignore marks greater
than 100

while(true){
cin >> nextmark;
if(nextmark > 100){
cout << “Ignoring.\n”;
continue;

}

if(nextmark < 0) break;

sum += nextmark; count++;

}

do body while condition

body : statement
condition : boolean expression

1.Execute body.
2.Evaluate condition.
3.If true, repeat from step 1. Else, done.

The for statement

Inti=1;
repeat(100){
cout << i << ‘<< i*i*i << endl;
i++;
}
// Can be written as
for(int i=1; i<= 100; i++)

cout << i <<’ ‘<< i*i*i<< endl;

for(initialization; condition;
update) body

initialization: expression. Typically assighment, or
variable definition with initialization.

condition: boolean expression

update: expression. Typically assighment.

1. Execute initialization.
2. Evaluate condition.

3. If true, execute body, update, and then start again
from step 2.

Previous statement in the program

"

Initialization

False

True

Body

Update

\
Next statement in the program

Primality testing

main_program{
Int n; cin >> n;
bool found = false; // factor found?
for(intd = 2; d < n && !found; d++)
found = found || (n % d == 0);
if(found) cout << “Composite.\n”;

else cout << “Prime;\n”;

}

Number of digits

main_program{
Int n; cin >> n;
int d, ten_power_d;
for(d =1, ten_power_d = 10;
ten_power d<=n;
d++, ten_power _d *= 10){}

cout << d << endl;

}

Remarks

Initialization, update can be comma
separated assignments.

Body can be empty.

If a variable is defined inside initialization, it
cannot be used outside of the loop.

Variable(s) declared in initialization: control
variables.

Computing In x from the definition

Integral from 1 to x of f(x) = 1/x.
Integral = area under the curve.

Approximate area by rectangles.

Riemann Integral

How many rectangles?

More the merrier! Say n = 1000.

Total width of rectangles = x - 1.

Width w of each = (x - 1)/n

x coordinate of left side of ith rectangle
= 1+iw, rectangles numbered 0..999
Height of ith rectangle = 1/(1+iw)

Riemann Integral

(1+iw, 1/(1+iw))

Program

main_program{

float x; cin >> x; // will compute In(x)

int n; cin >> n; // number of rectangles
float w = (x-1)/n; // rectangle width
float area = 0; // final answer

for(int i=0; i<n; i++)
area +=w / (1+i*w);
cout << area << ‘ ‘ << log(x) << endl;

} // log: built in C++ function.

Remarks

Two sources of errors

— Rectangle height = 1/x, is represented as float,
correct to 7 digits only.

— Each rectangle area approximates area under the
curve.

Large number n of rectangles:

— More terms to add. Hence errorin 1/x gets
magnified.

— Rectangles approximate area under the curve better,
error reduces.

Optimal choice of n : tradeoff.

Tradeoff is different if numbers are

