CS 101
PROJECT
SRS




Sudoku is a popular numerical puzzle solved and enjoyed all
over the world. This game has a 9x9 grid filled with a few
numbers which is given to the user. The grid is then divided into
9,3x3 boxes as shown in the figure below. The aim of the game
is to fill the blank spaces with numbers from 1 to 9 in such a way
that all the rows, columns and boxes have all the numbers from
1t0 9. Thus because of the dimensions of the grid, we see that

no number should be repeated along a row, column or in the
block.

Sample Sudoku



This program is designed to be a complete Sudoku game in
which the user is given a Sudoku puzzle and the program can
also auto solves the Sudoku given by the user.

PART 1:SUDOKU GENERATOR

Main aim of this part is to check the Sudoku solving skills
and capability of the user to solve Sudoku .

The method used to generate sudoku is quite obvious . The
unsolved Sudoku is saved in particular directories or files and
named on the basis of difficulties i.e. the user is asked the level
of toughness he wishes in Sudoku(namely easy, medium and
hard) .Based on the users choice of difficulty level the unsolved
Sudoku is generated and is solved internally by the program
using the “sudokusolver()” function defined in the program
and the users input after completing the sudoku is matched
with the solved sudoku to validate him whether he has correctly
solved sudoku or not.

In the mean while time, the time taken to solve a particular
Sudoku is also recorded by the user by retrieving the system
time when user started the Sudoku and at the instant when the
user completed the Sudoku and then subtracting the two times



or using another function to compute time.Similarly, we have
included the time limited level of Sudoku in which user is
allowed to solve a particular Sudoku in a fixed time interval and
then allotting him points according to the number of right cells .

PART 2: SUDOKU AUTO SOLVER

Main aim of the program is to generate all possible
configurations of numbers from 1 to 9 to fill the empty cells one
by one until the correct configurations is found and finally

displaying it.

The method used for solving Sudoku is BACKTRACKING. In
backtracking, Sudoku is solved one by one assigning numbers to
empty cells .Before assigning a number, the number is checked
whether the number is possible at that cell or not, according to
the rules of Sudoku i.e. We basically check that the same number
is not present in current row, current column and current 3X3
subgrid. After checking for validity of a number, we assign the
number, and recursively check whether this assignment leads to
a solution or not. If the assignment doesn” t lead to a solution,
then we try next number for current empty cell. And if none of

number (1 to 9) lead to solution, we return false.



Find row, col of an unassigned cell , If there is none, return true
For digits from 1to 9

a) If there is no conflict for digit at row, col assign digit to row,

col and recursively try fill in rest of grid.
b) If recursion successful i.e. Sudoku is solvable, return true
c) Else, remove digit and try another.

If all digits have been tried and nothing worked, return false.

FUNCTIONS USED

1.bool FindEmptyLocation(int grid[9][9], int &row, int &col);

This function basically finds the unassigned cells or empty
cells in the Sudoku which is input by the user i.e. this function
accepts the Sudoku 2-D array and just changes the values of
rows and columns passed to it by reference to the value of

unassigned cell or empty cell.



If empty location found, it changes the values of row and
col to the coordinates of that location and returns true else if not
found it returns false i.e. the Sudoku is solved.

2. bool number validity(int grid[9][9], int row, int col, int num);

This function basically checks whether the particular
number num accepted as parameter is valid in the row, column

which it is accepting as a parameter by a series of functions.
2.1) bool PresentinRow(int grid[N][N], int row, int num)

Returns a boolean which indicates whether any
assigned entry in the specified row matches the given
number i.e. whether the number is possible in a row or

not.
2.2) bool PresentInCol(int grid[N][N], int col, int num)

Returns a boolean which indicates whether any
assigned entry in the specified column matches the
given number i.e. whether the number is possible in

column or not.

2.3)bool UsedInBox(int grid[N][N], int boxStartRow, int

boxStartCol, int num)



Returns a boolean which indicates whether any
assigned entry within the specified 3x3 box matches
the given number i.e. whether the number is possible
in particular box or not.

3. bool SolveSudoku(int grid[9][9])

Takes a partially filled-in grid and attempts to assign values
to all unassigned locations in such a way to meet the
requirements for Sudoku solution (non-duplication across
rows, columns, and boxes) i.e . this particular function is
practically contains the code for solving the Sudoku
recursively using backtracking method.

4.int SudokuGenerator(int grid[9][9],int temp)

This function basically reads the unsolved Sudoku already
present in the file based on the level of difficulty passed as
temp and the Sudoku generated is randomly generated
using random function.

5.)printGrid(grid[9][9])

This function basically prints the solved grid and

generates the grid using the basic functions of simple cpp to



create lines, rectangle and coloring it using set color function
defined in header file #include<simplecpp> and even

6.)other functions used to implement graphics as well

FOR GENERATING ALGORITHMS

1.) Used files to store solvable sudokus and using a function

written by us the program generates the Sudoku by

opening the file and reading the file using file handling

operations defined in the header file fstream.h.

2.) Used C++ library functions to generate random
numbers in the program .

3.) If the user choses the Sudoku game the main function

chooses a unsolved Sudoku from a random Sudoku file and

displays it on the initCanvas() window.

4.)We used Timer function defined in the header file time.h

to produce a timer as well as a stop watch in our program.



GRAPHICS

1.)Used line and Rectangle function defined in the header file
#incluyde<simplecpp> to generate lines, rectangles and using
these we generated a grid.

2.)Took input in form of mouseclicks and retrieve the position of
mouse click using getClick() function defined in simplecpp and
on the basis of the position of the mouse click in a particular
range displayed the output grid and other buttons which have
their own functionality.

3.) using mouse click to play the game and making the game
more user friendly by making the program more interactive and
making the program more attractive using simple cpp

Souvik Sinha

Mudit Dhanpat Bothra(Team leader)-140100002
Rishikesh Prasade-140100012
Mehul Lad-140100017






