

 Project taken up by the team is to simulate a
user-friendly environment to play a game of
chess between two players.

 Ideally, the piece of software should ensure
that the game is played according to the
standard rules of the chess game and report the
end-game scenarios.

 Project Timeline:
Start Date : 27th Sep 2011
End Date : 12th Nov 2011 (Last Date Modified)

 Modules of the Development Phase:
 Algorithm Module
 GUI Module
 Debugging Module

 Algorithms Module :
 This module is related to the basic algorithm with which the

software was created or rather simply put : what happens
behind the screen.

 This module consisted of the major decisions such as what
classes to use and what are the data members to be allocated
so that all the possible end-game scenarios can be
reported and all special moves can be incorporated.

 Timeline :
 Base Source Code : 27th Sep 2011 to 21st Oct 2011
 Modifications : 04th Nov 2011 to 10th Nov 2011

Data Member Type Use
 x Integer Stores x position of the square
y Integer Stores y position of the square
colour Integer Stores the color of the square
coinId Integer Stores the coinId of the piece (if any)
coinIndex Integer Stores the coinIndex of the piece (if

any) :: required mainly for post pawn
promotion scenarios

Class Pos :

Class Movement:

Data Member Type Use
initPos Pos Stores initial position of a movement
finalPos Pos Stores final position of a movement
coinId Integer Stores coinId of moving coin
coinIndex Integer Stores coinIndex of moving coin
captureCoinId Integer Stores coinId of coin to be captured

(if any)
captureCoinIndex Integer Stores coinIndex of coin to be

captured (if any)

Colour Intger Stores colour of the coin to be moved

Class Coin

Data Member Type Use
curPos Pos Stores the current position of a piece
finalPos
coinRange Array of Pos Stores all the possible moves for a

piece
coinId Integer Stores coinId of the piece
nRange Integer Stores total number of moves

possible for each piece
nHistory Integer Stores the number of moves made by

the piece in the game
mode Integer Stores if the piece is active
colour Integer Stores the color of the piece

 The algorithm used is fool-proof in the sense
that it maintains the record in different format
in array of objects of the classes.

 board[8][8] is an array of Pos that stores the
current game scenario of the chess board.

 allCoins[32] is an array of Coin that stores
information about each piece on the board

 currentMove is an object of Movement that
acts like the only tunnel thro which a move can
be claimed

 Whenever a move is claimed by a player, it is
recognised by the GUI Module and it sends input to the
Algorithms module

 initializeMove() is called which subsequently calls
makeMove() which verifies the correctness of the
movement claimed and returns appropriate value back
to GUI implementing the corresponding changes in
algorithms module

 GUI module makes the corresponding change on-
screen and updates the range of all coins in algorithm
module after checking for end-game scenarios.

 updateRook()
 updateKnight()
 updateQueen()
 updateKing()
 updateBishop()
 updatePawn()
 verifyCheck()

 Note : As the name suggests they take care of
updating the range of all the coins after every move
is made

 GUI for the game is made in EzWindows with an
extensive use of bitmaps

 GUI module maintains its own global and local
variables and cannot access anything else from the
Algorithms Module except the currentMove

 The two modules have been developed completely
independent of each other

 Specific nomenclature of the bitmaps have been
followed to ease the job.

 Timeline :
 Start Date : 24th Oct 2011
 End Date : 12th Nov 2011

 As we had decided in the initiation of the project,
debugging was allotted around 35-40% of the project
time

 gdb in Ubuntu helped much in debugging
segmentation faults

 One major confusion about the interchange of index
numbers in board array was cleared

 Many logical errors were concerning uninitialized
variables.

 Timeline :
 Start Date : 04th Nov 2011
 End Date : 11th Nov 2011

 Operating System:
 UNIX Environment(Recommended)

(Tested in Ubuntu 11.04 and 11.10)
 Graphical User Interface:
 Ez Windows
 Hardware Requirements:
• 512 MB of RAM (Recommended)
• Compatible with all Configurations of Graphic Card
• Pointing Device(Required)

 Undo previous move can be added as a special
feature.

 The three fold repetition rule can be
incorporated in the game.

 Load game facility can be provided to the user.
 The graphics can be improvised further to give

it a 3D view.
 The current game is made to facilitate 2 player

game. It can be improvised further to a single
player game incorporating artificial
intelligence.

 The claimed project objectives were
successfully completed.

 Final stage testing and debugging has been
done.

 A trial run has been successfully done by
neutral non-team members

 glchess in Ubuntu : .svg files of pieces were
taken from the glchess game

 GIMP Image Editor : Used to edit and convert
.svg to .xpm as is required by EzWindows

 Geany : The light IDE which was used for
making the project.

 Friends: who helped us in realizing the minor
and major flaws in the project

Name Documentation Discussions Designing Testing Progr. Misc.

Guna 06 Hrs 13:15 Hrs 25 Hrs 30 Hrs 22 Hrs 20.5 Hrs

Sushant 06 Hrs 13:15 Hrs 07 Hrs 25 Hrs 12 Hrs 2.5 Hrs

Himanshu 00 Hrs 13:15 Hrs 06:15 Hrs 05 Hrs 10 Hrs 2 Hrs

Hardik 00 Hrs 13:15 Hrs 05 Hrs 10 Hrs 10 Hrs 2 Hrs

Kranthi 00 Hrs 12:45 Hrs 01 Hr 0 Hrs 03 Hrs 00 Hrs

Ritesh 00 Hrs 11:15 Hrs 01 Hr 0 Hrs 04 Hrs 00 Hrs

Indramoni 00 Hrs 09:45 Hrs 03 Hrs 0 Hrs 0 Hrs 00 Hrs

Consolidated report (complete timeline)

 Himanshu Roy:
 Base codes:

 updateRook();
 insufficientMoves();
 initialize();

 Modifications:
 updateKing();
 Debugging all the individual functions.
 Image editing of various bitmaps and converting them

to .xpm

 Hardik Kothari:

 Base Codes:
 updateKnight();
 verify_checkmate_stalemate();
 modifyBoard();
 undoBoard();

 Modifications:
 updateQueen();
 Debugging of all the individual functions written.
 Commenting of all the source codes.

 Sushant Hiray:
 Base Codes:

 updatePawn();
 updateFifityMoveRule();
 updateMakeMove();
 updateBishop();

 Modifications:
 updateKing();
 Debugging of various functions. Almost all the

class_decln errors were debugged.
 Debugging of all the individual functions written.

 Ritesh Kakade:
 Base Codes:

 updateKing();

 Kranthi Kumar:
 Base Codes:

 updateQueen();

 Indramoni Rout:
 Base Codes:

 He tried writing the updateBishop() function but
couldn’t complete it fully.

 He attended many Team Meetings.

 Guna Prasaad:
 Base Codes:

 verifyCheck();
 Class_decln.cpp;
 Complete GUI

 Modificatons:
 Class_decln.cpp;
 All range update functions.
 Debugging of all individual functions , GUI , class_decln

.

