
 Software Requirement Specification
of

 Easy hire

 101 acs project

by

 batch – 6, slot – 12

 (wednesday morning)(lecture slot 11)

 The project was worked on in two teams, led by Md. Tahir Patel,
under the mentorship of Dileep Singh (T.A.) .

 TEAM 1 : Roll Number

• Kshitij Jayakrishnan 111030011

• Mehak Priya 111030029

• Mohak Mehta 111030026

 TEAM 2:

• Akshat Kadam 111030006

• Jaideep Sontake 111030008

• Md. Tahir Patel 111030002

• Mohit Khatri 111030014

Introduction : what inspired the project?

The basis of this project lies in simplifying the almost everyday activity of
hiring a cab. After conducting a small survey amongst the team members
themselves we landed up short listing the following problems which served
as an inspiration to this project -

• The common man faces the very problem of not being able to locate a
cab. For example a person A is towards the remoter part of the city in
the non busy hours of the day. Neither does the cab driver going by
any nearby region has any clue that where a customer would be and
vice versa.

• A person new to the city, say a tourist has no clue about the fare, and
in many cases it so happens that the cab driver ends up overcharging.

• In fact, Cab drivers in the real world exercise discretion in choosing
their customers. In the end usually the customer becomes totally
dependent on the cab driver rather than both of them depending on
each other equally!

• Often the customer tends to get anxious, that when will next available
cab pass by!

 After analyzing all these problems the following problem statement was

designed.

Problem statement
The aim of this project is to design an APPLICATION SOFTWARE (can be
extended to a mobile application) in which as per user’s input of his position
and destination (in a hypothetical city) the program allocates him the
nearest cab in his region.

The fare is deducted from his account.

The city’s components:

 Sectors: It has 10 sectors, laid out in a straight line, as shown

 Check-points: Every sector has a check –point, where a person can
come and request for a cab.

 Cab: Every sector has 5 cabs initially.

 The Model Map (for this project)

 yellow boxes indicate checkpoints

 green boxes indicate the sectors

 to the extreme left is the only available road for travel.

Implementation(what is the use of this project!!!)

 methodology of locating the nearest possible cab, reduces not only the
anxiousness of both the customer and the cab driver but shall also
reduce the communication gap between them , thus making things
easy.

 It can be very easily implemented after , certain modifications
especially in well planned cities like Chandigarh which has a 2
dimensional linear map.

Software requisites:
EzWindows

Linux OS

Gcc or gnu compiler

Various libraries included:

(1) iostream

(2) cstring

 (3) cmath

 (4) cstdlib

(5) cstdio

Assumptions
1) The above illustrated linear map has been assumed as a model for

this project.

2) We assume that to travel between any two consecutive sectors in
the city, it takes the same time.

3) A customer is picked up or dropped at the checkpoint. If idle the
cabs will be present at the checkpoints.

 4) We assume that picking and dropping the customer takes no time.

 5) Taking a cab from the same check-point takes no time.

 6) The program is not responsible, about how the user deposits money

 in his/her account. It is responsible only for the balance in the account.

7) Our program assumes a maximum of 1000 customers.

 The Basic Flowchart of The Program

Inputs by the user:
1) Login/ Register page –

Inputs for Registration: Name (Username), Password, Contact Number,
Balance (for the payment of fares).

Inputs for Login: Username, Password

Inputs for urgent mode: contact number

2)

3) Source, Destination (In terms of sector number)

Outputs:
1) A unique customer ID

2) Fare

3) Bill Statement.

4) Deducted balance card details.

5) Estimated time of travel

 6) Time of approach(of cab)

Function prototypes:

Additional functionalities:
1) We can include traffic signals (either red or green) each of which can delay
the travel for a certain fixed time.

2) we can include additional functions such booking of cabs and cancellation
of cabs

3) We can get login and registration done on a dialog box.

4) Most importantly, for the security and privacy of the user, we are working
on a code that shows asterisks instead of the password when the user types
it.

5) Time delay can be added so that when a cab is on the , it can be shown
that the cab is occupied.

Databases required:

cust_ details.txt

 stores data of the user viz. customer ID, login id, password, name, contact number

cab_info.txt

 stores information of the starting point of the cab and stores the position of the
cabs after every travel

 cab_num.txt

stores information about how many cabs in each sector

Current Status of the project:

 implementation of Ez Windows is taking place and
the program code has been written for the terminal
as of now.

 We are enclosing the code we have written till now.
However, debugging is still in the process and the
program is not free of all bugs currently. The three
main glitches being faced are -

1. Cab_avail file prints +2 in the destination instead
of +1.

2. There are five attempts for login. However on one
incorrect attempt, even if next input is correct,
login fails.

3. On the spot registration and login is giving
problems.

Preliminary Code written:

// Batch 6 slot – 12 (wednesday morning)

//Files included : Database.txt ; cust_details.txt ; cab_data.txt .

#include<iostream>

#include<cstdio>

#include<fstream>

#include<cmath>

#include<cstdlib>

#include<cstring>

using namespace std;

#define UNITTIME 5

#define UNITFARE 10

class cab

{

int cab_num,sec_num;

public:

char get_cab();

int get_sector();

int check_avail(int ,int);

int compute(int ,int ,int);

int t_approach(int);

float fare(int ,int ,int);

int time_travel(int ,int ,int);

int update(int ,int);

//static int cab_avail[10]={5,5,5,5,5,5,5,5,5,5};

};

//static int cab_avail[10]={5,5,5,5,5,5,5,5,5,5};

int register_acc(){

 char
name[100],contact[100],passcode[100],passtemp[100],cust_id[80]={'1','1','5','0','0'
,'0','\0'},linestr[80]={'1','1','5','0','0','0','\0'};

 int exit_count=0,i,j,return_val=0,k,l=0;

 long id_sequence;

 float balance;

 FILE *fp=fopen("cust_details.txt","r+");

 if(fp==NULL){

 cout<<"Could not open file.";

 return 1;

 }

 cout<<"\n-----Register-----"<<endl;

 cout<<"Enter your Name: ";

 cin>>name; // ends on white line
character (space_bar);

 cout<<"Enter your Contact Number: ";

 cin>>contact;

 cout<<"Enter your desired pass code: ";

 cin>>passcode;

 cout<<"Confirm password: ";

 cin>>passtemp;

 while(strcmp(passcode,passtemp)!=0){

 if(exit_count==5){

 cout<<"You have reached your limit for attempts. Program will now
exit."<<endl;

 return -1;

 }

 passtemp[0]='\0';

 cout<<"Password not confirmed. Please confirm password again: ";

 cin>>passtemp;

 if(strcmp(passcode,passtemp)==0)

 break;

 exit_count++;

 }

 //Reading file.

 while(!feof(fp)){

 return_val=fscanf(fp,"%s",linestr);

 //return_val stores the integer that fscanf returns. To prevent reading of the last
value in the file twice we use this method.

 if(return_val==-1){

 break;

 }

 }

 for(i=0;i<6;i++){

 cust_id[i]=linestr[i];

 }

 id_sequence=(cust_id[0]-48)*100000+(cust_id[1]-48)*10000+(cust_id[2]-
48)*1000+(cust_id[3]-48)*100+(cust_id[4]-48)*10+(cust_id[5]-48);

 id_sequence++;

 for(j=5;j>=0;j--){

 cust_id[j]=id_sequence%10+48;

 //Adding 48 to get proper ASCII values.

 id_sequence/=10;

 }

 //Adding null character at the end of cust_id.

 cust_id[6]='\0';

 cout<<"Your Customer ID is: "<<cust_id<<". Please note it for future
reference."<<endl;

 cout<<"Enter balance: ";

 cin>>balance;

 //Writing values into file "cust_details.txt".

 fprintf(fp,"%6s,%s,%3.2f,%s,%s\n",cust_id,passcode,balance,name,contact);

 cout<<"You have been successfully registered."<<endl;

fclose(fp);

return 0;

}

int login(){

 char
linestr[80],cust_id[80],pass_code[100],pass_file[100],custid_file[80],balance[100],na
me[100];;

 int return_val,i=0,k=0,pos,foundflag=0;

 FILE *fp=fopen("cust_details.txt","r");

 if(fp==NULL){

 cout<<"Could not open file.";

 return 1;

 }

 cout<<"\n-----Login-----"<<endl;

 here:

 cout<<"Enter your Customer ID: ";

 cin>>cust_id;

 cout<<"Enter your password: ";

 cin>>pass_code;

 while(!feof(fp)){

 return_val=fscanf(fp,"%s",linestr);

 //return_val stores the integer that fscanf returns. To prevent reading of the last
value in the file twice we use this method.

 if(return_val==-1){

 break;

 }

 for(k=0;linestr[k]!=',';k++){

 custid_file[k]=linestr[k];

 }

 custid_file[k]='\0';

 //To change position of linestr to the character after the first comma.

 k++;

 for(i=0;linestr[k]!=',';i++,k++){

 pass_file[i]=linestr[k];

 }

 pass_file[i]='\0';

 k++;

 for(i=0;linestr[k]!=',';i++,k++){

 balance[i]=linestr[k];

 }

 balance[i]='\0';

 k++;

 for(i=0;linestr[k]!=',';i++,k++){

 name[i]=linestr[k];

 }

 name[i]='\0';

 k++;

 //Checking the login details entered by the user.

 if((strcmp(cust_id,custid_file)==0) && (strcmp(pass_code,pass_file)==0)){

 foundflag=1;

 break;

 }

 }

 if(foundflag==1){

 cout<<"Login Successful.\nWelcome "<<name<<"."<<endl;

 }

 else{

system("clear");

 cout<<"Invalid Customer ID/Password"<<endl;

goto here;

 }

return 0;

}

int cab::check_avail(int S,int D)

{

int i=0,sign=1,add=0,addf,cabfound=1,sec_num,num;

FILE *fpoint;

fpoint=fopen("cab_data.txt","r+");

fseek(fpoint,D*4,SEEK_SET);

fscanf(fpoint,"%d %d",&sec_num,&num);

//num++;

fseek(fpoint,-3,SEEK_CUR);

fprintf(fpoint,"%d %d",sec_num,(num+1)); //need to debugg
here

while(cabfound)

{

if(S+i>=0 && S+i<10)

{

fseek(fpoint,(S+i)*4,SEEK_SET);

fscanf(fpoint,"%d %d",&sec_num,&num);

if(num!=0)

{

//cout<<"Cab found in sector : "<<S+i<<endl;

num--;

fseek(fpoint,-3,SEEK_CUR);

fprintf(fpoint,"%d %d",sec_num,num);

cabfound=0;

return(i);

}

}

sign=sign*(-1);

add++;

addf=sign*add;

i+=addf;

}

}

int cab::t_approach(int i)

{

int t;

t=fabs(i)*UNITTIME;

return t;

}

float cab::fare(int S,int D,int flag)

{

int dist;

float extra=20.0;

float fare;

dist=fabs(D-S);

if(flag==1)

{

fare=extra+(dist*UNITFARE);

return fare;

}

else

{

fare=dist*UNITFARE;

return fare;

}

}

int cab::time_travel(int S,int D,int fare)

{

int dist,t_est;

dist=fabs(D-S);

t_est=dist*UNITTIME;

return t_est;

}

int cab::update(int snum,int D)

{

FILE *fp;

int i=0;

long pos;

int cab_no,sector;

fp=fopen("Database.txt","r+");

if(fp==NULL)

{

cout<<"Database Open Failure"<<endl;

//return 1;

}

fscanf(fp,"%d %d",&cab_no,§or);

while(!feof(fp))

{

if(snum==sector)

{

fseek(fp,-4,SEEK_CUR);

fprintf(fp,"%d %d",cab_no,D);

cout<<"Cab available\nCab Number : "<<cab_no<<" In Sector
number : "<<sector<<endl;

//cab_avail[D-1]--;

return 1;

}

fscanf(fp,"%d %d",&cab_no,§or);

}

}

int main(){

 system("clear");

 int ans;char choice;

 do{

 cout<<"1.Login\n2.Register\n3.Exit"<<endl;

 cout<<"Enter choice number: ";

 cin>>ans;

 system("clear");

 switch(ans){

 case 1: login();

//cout<<"\n Do you want to go to the main menu? Type y/n: ";

//cin>>choice;

 break;

 case 2: register_acc();

cout<<"\n Do you want to go to the main menu? Type y/n: ";

cin>>choice;

 break;

 case 3: return 1;

 default:cout<<"Invalid choice."<<endl;

 }

 }while(choice=='y'||choice=='Y');

if(choice=='n')

{

cout<<"Thank You"<<endl;

return 1;

}

cab c;

int S,D,flag,z;

float f;

cout<<"Enter Source : ";

cin>>S;

cout<<endl;

cout<<"Enter Destination : ";

cin>>D;

z=S+c.check_avail(S,D);

f=c.fare(S,D,0);

cout<<"Time of Approach for Cab is : "<<c.t_approach(z-S);

cout<<"\nFare is : "<<f<<endl;

c.update(z,D);

return 0;

}

DIARY

1) Pre-meet

Agenda-everybody directed to think about topics for the project and come up with
the layout about its execution

Date-25th September

Time duration- individual time spent varied from 1 hr 30 minutes

2)meet 2(lab)

September 28

time : 9:30am to 10:30am

agenda-

• each team member to speak on his idea for 5 minutes followed by an
analysis of his/her idea as well as a viability check on it.

• After all the reviews have been done ,chose two best topics. after
preparing their layout , the more feasible and interesting topic of the
two to be chosen .

• Chose the leader of the team

outcome-

• topic of the project decided

• time and agenda of the next meet decided.

• Everyone told to write the layout of the project as he/she perceives it
and speak on it in the next meet.

• Md. Tahir Patel unanimously chosen the leader.

2) Meet 3

September 29

Time -10:30am to 11:30am

Agenda:

• Each team member to speak on his/her layout perception and
execution of the project

• Decide on the most favourable layout

Outcome:

• Various aspects and approaches to the topic discussed

• Each team member directed to prepare a sample algorithm of the
program

4)meet 4

October 4

Time: 10:25 am to 11:30am

 Discussion of modules and tentative division of teams.

5)meet 5(lab)

October 5

Time: 8:30 to 10:30 am

Lab meeting

 Sub teams finalized.

 Discussion of abstract and project documentation.

 Sub Team1: Kshitij Jayakrishnan, Mehak Priya, Mohak Mehta. To deal with
Registration of user, login of user and getting other inputs.

 Sub Team 2: Tahir Patel, Akshat Kadam, Mohit Khatri, Jaideep Sontakke. To
deal with updation of availabe cabs at various sectors.

6)meet6

October 6

Time 10:20pm to 11:30pm

Meeting with TA.

 Project topic discussed, limitations observed and problem statement
modified accordingly.

7)meet 7

October 9

Time 11:30 am to 1 pm

Agenda:

• Team 1’s algorithm to be discussed

outcome

 algorithm discussed and tentatively finalised

 team directed to start with sample coding

8)meet 8

October 10

Time –10:15 am to 11:30 am(entire team)

6pm to 8pm(team 1)

Agenda:

• Team 1 to start writing the code on its part of the program

• Team 1 to check the code it has written in the OSL.

• Team 2 to discuss its algorithm

Outcome:

• Team 1 wrote the entire flowchart and layout of the code.

• Team 1 also wrote a sample code to be checked in the OSL.

• Team 1 wrote the function register_acc()

• Team 2 wrote the algorithm partially

9)meet 9

October 11

time: 10pm to 12pm

agenda-

 team 1 to check their code.

 Team 2 had to finish their algorithm

Outcome

 the primary code of team 1 did not work on the compiler of a personal laptop.
Plan to meet in OSL the next day to test the code.

10)meet 10(lab)

October 12

Time: 8:30am to 10:30am.

Venue: OSL

Agenda-

 Team 1 to test their code.

 Team 2 to start with their code.

Outcome:

 Objectives reached.

11)meet11

October 16

Time: 3pm to 5pm(team 1)

Venue: OSL

Agenda:

 Team 1 to write login() function and main function to link register and login
functions.

Outcomes:

 Code written and tested.

Time 11pm to 1am(team 2)

Venue: Hostel 1 Computer Room.

Agenda:

 Team 2 to write their code for computation and updation of Database.txt for
the availability of cabs.

Outcome:

 Code written and tested.

October 17

Time:8:30 am to 10 am

Venue: Hostel 1 Computer Room.

Agenda:

 All team meet for merging of code of both teams.

Outcome:

 Code merged but some errors found. Errors to be rectified in another meet

INDIVIDUAL TIME SPENT

Mehak priya:

 read the project documentations of 2010
projects(2hrs)

 typed the project documentation and diary . (4hrs)

 read about files(1 hr)

 discussed abstract with Akshat kadam(1.5 hrs)

 Evaluating the Code and the SRS document.(5hours
20mins + still in the osl lab!!! ++ still in the h10
comp lab)

 debugging , conversion of SRS document and
uploading! (1 hour)

Kshitij Jayakrishnan

 read project documentations of 2010 projects (1 hour
15 mins)

 read about files and programs on files(1hr 30
minutes)

 Extra time spent on code(3hrs)

 worked on the flowchart for the SRS documentation. (
2hours)

Akshat Kadam

 read project documentations(1 hr 30 minutes)

 discussed abstract with Mehak Priya(1 hr 30 minutes)

 read files and programs on it (2 hr)

 extra time on code (2 hrs 30 minutes)

 debugging the code (3hours)

Tahir Patel

 extra time on codes,logic, algorithms(1hr 30
minutes)

 read files and programs on it(1hr)

 worked on the making the algorithm and the
module(1hour and 30 mins)

 made the map for the SRS documentation(I hour 30
mins)

 worked on debugging (30mins)

Mohak mehta

 worked on the idea of the project – easy hire(2 hours
15 mins)

 designed the basic layout of the project (45
minutes)

 read on functions and cstring library , files and
classes from tata mcgrawhill, c++ reference and
cohoon. (3hours)

 worked on developing the algorithm and the
flowchart for the code.(40 mins)

 assisted kshitij in finding errors.

 Wored in debugging (40 mins)

 Worked on the SRS documentation, googled images ,
worked on the implementation and wrote the SRS
along with Mehak and edited it. (6hours 15mins +
(still editing!!!))

 conversion of SRS document and uploading of doc.
(30 mins)

