
IIT Bombay

Computer Programming
Dr. Deepak B Phatak

Dr. Supratik Chakraborty
Department of Computer Science and Engineering

IIT Bombay

Session: Structures and Pointers – Part 1

1Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

IIT Bombay

• Structures as collections of variables/arrays/other
structures

• Statically declared variables/arrays of structure types

• Accessing members of structures

• Organization of main memory: locations and addresses

• Pointers to variables/arrays of basic data types

2 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Quick Recap of Relevant Topics

IIT Bombay

• Pointers to variables of structure types

• Accessing members of structures through pointers

3 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Overview of This Lecture

IIT Bombay

Recall: Memory and Addresses

• Main memory is a sequence of
physical storage locations

• Each location stores 1 byte (8 bits)

Content/value of location

• Each physical memory location
identified by a unique address

• Index in sequence of memory
locations

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 4

1 0 0 1 1 1 0 1

1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1

1 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 0 1 1 1 1 1 1

1 0 1 1 0 1 1 1

1 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Address (in hexadecimal)

400
401
402
403
404
405
406
407
408
409
40a M

A
IN

 M

EM
O

R
Y

IIT Bombay

Memory for Executing a Program (Process)

• Operating system allocates a
part of main memory for use
by a process

• Divided into:

Code segment: Stores
executable instructions in
program

Data segment: For
dynamically allocated data
Stack segment: Call stack

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 5

M
A

IN

 M
EM

O
R

Y

CODE SEGMENT

STACK SEGMENT

DATA SEGMENT

IIT Bombay

Structures in Main Memory

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 6

Needs 4 bytes of storage

IIT Bombay

Structures in Main Memory

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 7

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

a

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

IIT Bombay

Structures in Main Memory

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 8

Needs 1 + 4 + 4,
i.e. 9 bytes of

storage

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

IIT Bombay

Structures in Main Memory

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 9

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

a

p1.x

p1.y

p1.z

IIT Bombay

Structures in Main Memory

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 10

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

a

p1.x

p1.y

p1.z
What is that

gap/padding?
Wait for a few

slides

IIT Bombay

Structures in Main Memory

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 11

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

a

p1.x

p1.y

p1.z

p1, a: local variables of “main”
Memory for “p1” and “a” allocated in activation

record of “main” in call stack

IIT Bombay

What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 12

No assumptions about
relative layout of different
members within memory
allocated for a structure M

A
IN

 M
EM

O
R

Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

p1.x

p1.y

p1.z

IIT Bombay

What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 13

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

p1.x

p1.y

p1.z

No assumptions about
“padding” (unused memory locations) after locations

allocated for different members of a structure

IIT Bombay

What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 14

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

p1.x

p1.y

p1.z

No assumptions about
“padding” (unused memory locations) after locations

allocated for different members of a structure

IIT Bombay

What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 15

M
A

IN

 M

EM
O

R
Y

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

p1.x

p1.y

p1.z

Memory locations allocated for each member are
however contiguous (have consecutive addresses).

E.g., four contiguous locations for p1.x,
four contiguous locations for p1.y

IIT Bombay

Recall: “&” and “*” Operators

• We used “&” and “*” operators with variables of basic data
types

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 16

Pointer-to-integer
data type

IIT Bombay

Recall: “&” and “*” Operators

• We used “&” and “*” operators with variables of basic data
types

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 17

Address of (starting location) of
variable “a” of type “int”

IIT Bombay

Recall: “&” and “*” Operators

• We used “&” and “*” operators with variables of basic data
types

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 18

Contents (as “int”) of memory locations
whose starting address is given by “ptrA”

IIT Bombay

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 19

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

IIT Bombay

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 20

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

Pointer-to-MyStructType
data type

IIT Bombay

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 21

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

Address of (starting
location) of variable p1 of

type MyStructType

IIT Bombay

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 22

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

Contents (as “MyStructType”)
of memory locations whose
starting address is given by

“ptrP1”

IIT Bombay

Accessing Members Through Pointers

• Can we access p1.x through
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x = 1 + (*ptrP1).y;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 23

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

IIT Bombay

Accessing Members Through Pointers

• Can we access p1.x through
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x = 1 + (*ptrP1).y;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 24

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};*ptrP1 is an object of

type MyStructType

IIT Bombay

Accessing Members Through Pointers

• Can we access p1.x through
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x = 1 + (*ptrP1).y;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 25

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

(*ptrP1).x is the member “x” of
the object (*ptrP1) of

type MyStructType

IIT Bombay

Accessing Members Through Pointers

• Can we access p1.x through
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x = 1 + (*ptrP1).y;

C++ provides the “->” operator for
above situations

E.g. ptrP1->x = 1 + ptrP1->y;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 26

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

ptrVar->memberName is equivalent to (*ptrVar).memberName

IIT Bombay

Accessing Members Through Pointers

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 27

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
ptrP1->z = ‘c’; ptrP1->x = 2;
ptrP1->y = 3;
ptrP1->x = 1 + ptrP1->y;

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};
(*ptrP1).x = 1 + (*ptrP1).y;

IIT Bombay

Accessing Members Through Pointers

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 28

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
ptrP1->z = ‘c’; ptrP1->x = 2;
ptrP1->y = 3;
ptrP1->x = 1 + ptrP1->y;

struct MyStructType {
char z; int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};
(*ptrP1).x = 1 + (*ptrP1).y;

Functionally equivalent program fragments

IIT Bombay

Summary

• Pointers to variables of structure data types

• Use of “&” and “*” operators with structures

• Use of “->” operator to access members of structures
through pointers.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 29

