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• Structures as collections of variables/arrays/other 
structures

• Statically declared variables/arrays of structure types

• Accessing members of structures

• Organization of main memory: locations and addresses

• Pointers to variables/arrays of basic data types
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Quick Recap of Relevant Topics 
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• Pointers to variables of structure types

• Accessing members of structures through pointers

3 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Overview of This Lecture
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Recall: Memory  and   Addresses

• Main memory is a sequence of 
physical storage locations

• Each location stores 1 byte (8 bits) 

Content/value of location

• Each physical memory location 
identified by a unique address

• Index in sequence of memory 
locations
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Memory for Executing a Program (Process) 

• Operating system allocates a 
part of main memory for use 
by a process

• Divided into: 

Code segment: Stores 
executable instructions in 
program

Data segment: For 
dynamically allocated data 
Stack segment: Call stack
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Structures in Main Memory

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}
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Needs 4 bytes of storage
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Structures in Main Memory
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int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}
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Structures in Main Memory
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Needs 1 + 4 + 4, 
i.e. 9 bytes of 

storage

int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}
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Structures in Main Memory
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int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}
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Structures in Main Memory
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int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

a

p1.x

p1.y

p1.z
What is that 

gap/padding?
Wait for a few 

slides
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Structures in Main Memory
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int main()
{

struct MyStructType {
char z;
int x, y;

};
MyStructType p1;
int a;
… Rest of code …
return 0;

}

a

p1.x

p1.y

p1.z

p1, a: local variables of “main”
Memory for “p1” and “a” allocated in activation 

record of “main”  in call stack  
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What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;
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No assumptions about 
relative layout of different 
members within memory 
allocated for a structure M
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What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;
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No assumptions about
“padding” (unused memory locations) after locations 

allocated for different members of a structure
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What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;
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No assumptions about
“padding” (unused memory locations) after locations 

allocated for different members of a structure
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What Can We Safely Assume About Structures?

struct MyStructType {

char z;

int x, y;

};

MyStructType p1;
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Memory locations allocated for each member are 
however contiguous (have consecutive addresses).

E.g., four contiguous locations for p1.x,
four contiguous locations for p1.y
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Recall:  “&” and “*” Operators

• We used “&” and “*” operators with variables of basic data 
types

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;
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Pointer-to-integer 
data type
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Recall:  “&” and “*” Operators

• We used “&” and “*” operators with variables of basic data 
types

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;
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Address of (starting location) of 
variable “a” of type “int”
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Recall:  “&” and “*” Operators

• We used “&” and “*” operators with variables of basic data 
types

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;
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Contents (as “int”) of memory locations 
whose starting address is given by “ptrA”
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“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of 
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};
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“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of 
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

Pointer-to-MyStructType
data type
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“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of 
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

Address of (starting 
location) of variable p1 of 

type MyStructType
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“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of 
structure types in exactly the same way

int a;

int * ptrA;

ptrA = &a;

*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 22

struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

Contents (as “MyStructType”) 
of memory locations whose 
starting address is given by 

“ptrP1”
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Accessing Members Through Pointers

• Can we access p1.x through 
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x =  1 + (*ptrP1).y;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};
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Accessing Members Through Pointers

• Can we access p1.x through 
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x =  1 + (*ptrP1).y;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};*ptrP1 is an object of 

type MyStructType
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Accessing Members Through Pointers

• Can we access p1.x through 
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x =  1 + (*ptrP1).y;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

(*ptrP1).x is the member “x” of 
the object (*ptrP1) of 

type MyStructType
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Accessing Members Through Pointers

• Can we access p1.x through 
ptrP1?

• Yes, and by the obvious way:

E.g. (*ptrP1).x =  1 + (*ptrP1).y;

C++ provides the “->” operator for 
above situations

E.g. ptrP1->x = 1 + ptrP1->y;
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};

ptrVar->memberName is equivalent to (*ptrVar).memberName
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Accessing Members Through Pointers
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
ptrP1->z = ‘c’; ptrP1->x = 2;
ptrP1->y =  3;
ptrP1->x = 1 + ptrP1->y;

struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};
(*ptrP1).x = 1 + (*ptrP1).y;
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Accessing Members Through Pointers
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struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
ptrP1->z = ‘c’; ptrP1->x = 2;
ptrP1->y =  3;
ptrP1->x = 1 + ptrP1->y;

struct MyStructType {
char z;  int x, y;

};
MyStructType p1;
MyStructType * ptrP1;
ptrP1 = &p1;
*ptrP1 = {‘c’, 2, 3};
(*ptrP1).x = 1 + (*ptrP1).y;

Functionally equivalent program fragments



IIT Bombay

Summary

• Pointers to variables of structure data types

• Use of “&” and “*” operators with structures

• Use of “->” operator to access members of structures 
through pointers.
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