9

IIT Bombay

Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty
Department of Computer Science and Engineering
IIT Bombay

Session: Structures and Pointers — Part 1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 1

Quick Recap of Relevant Topics

* Structures as collections of variables/arrays/other
structures

* Statically declared variables/arrays of structure types

* Accessing members of structures

* Organization of main memory: locations and addresses
* Pointers to variables/arrays of basic data types

Overview of This Lecture

* Pointers to variables of structure types
* Accessing members of structures through pointers

3 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Recall: Memory and Addresses

Address (in hexadecimal)

* Main memory is a sequence of
physical storage locations

* Each location stores 1 byte (8 bits)
Content/value of location

e Each physical memory location
identified by a unique address

* Index in sequence of memory
locations

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

400
401
402
403
404
405
406
407
408
409

40a

Memory for Executing a Program (Process)

* Operating system allocates a
part of main memory for use
by a process

MEMORY

e Divided into: ©O

Code segment: Stores <&

. L DATA % SEGMENT
executable instructions in *&\'

Data segment: For

dynamically allocated data
Stack segment: Call stack

MAIN

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 5

Structures in Main Memory

int main()

{
struct MyStructType {

char z;

int x, y;
}; Needs 4 bytes of storage }
MyStructType pl-

... Rest of code ...
return O;

}

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 6

Structures in Main Memory

int main()

{
struct MyStructType {

char z;
int x, y;

g
MyStructType pl; —> -[a

inta;— DATA SEGMENT

... Rest of code ...

return O;
Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, [IT Bombay 7

MEMORY

MAIN

}

Structures in Main Memory

int main()
{

struct MyStructType {
char z;
int x, y;

MyStructType pl;

Int a;
... Rest of code ...
return O;

}

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

\
Needs 1 +4 +4,

i.e. 9 bytes of
storage

)

Structures in Main Memory

int main()
{ -
struct MyStructType {
. —pLx =
char z; _ S
int x, y; pr
7]
MyStructType pl; - a
Int a; DATA SEGMENT
... Rest of code ...
return O; é
} =

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 9

Structures in Main Memory

at is that >
gap/padding? S
Wait for a few —pLx ._.E_,
slides - ply =

DATA SEGMENT

MAIN

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, [IT Bombay 10

Structures in Main Memory

IIT Bombay

int main()
S
{) =
struct MyStructType { : g
char z; 1 "'E‘
int x, y; pr
b
MyStructType pl; —> a
pt a,—)
pl, a: local variables of “main” z
Memory for “p1” and “a” allocated in activation <
}\ record of “main” in call stack 2

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 11

What Can We Safely Assume About Structures?

IIT Bombay

W
int x, y; | —plx
b / —PLY

MyStructType p1; -

struct MyStructType {

char z; 1

MEMORY

No assumptions about

:] DATA SEGMENT
relative layout of different

members within memory e e
allocated for a structure

MAIN

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 12

What Can We Safely Assume About Structures?

IIT Bombay

5

struct MyStructType {
char z; N e e
int x, y; —plx
/ | =Py

MyStructType p1;

/

_

No assumptions about

allocated for different members of a structure

—

“padding” (unused memory locations) after locations

A

Dr. Dee

pak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

MEMORY

MAIN

13

What Can We Safely Assume About Structures?

IIT Bombay

struct MyStructType { o>
char z; i g
int x, y; pL.X E

b / —ply
MystructType p1;] —
/

No assumptions about
“padding” (unused memory locations) after locations
allocated for different members of a structure

o A

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 14

MAIN

What Can We Safely Assume About Structures?

IIT Bombay

struct MyStructType {

MEMORY

char z; 1

int x, y; p1X

5 /:FEV

MyStructType p1; -

Memory locations allocated for each member are

however contiguous (have consecutive addresses).
E.g., four contiguous locations for pl.x,

N four contiguous locations for pl.y y

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 15

MAIN

Recall: “&” and “*” Operators

* We used “&” and “*” operators with variables of basic data
types

Pointer-to-integer
data type

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 16

Recall: “&” and “*” Operators

* We used “&” and “*” operators with variables of basic data

types
: . Address of (starting location) of
|nt a, . “u_n 3 14
variable “a” of type “int
int * ptrA;
*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 17

Recall: “&” and “*” Operators

* We used “&” and “*” operators with variables of basic data
types

[] / \

Int a; Contents (as “int”) of memory locations

int * ptrA; whose starting address is given by “ptrA”
N J

ptrA = &a;
[*ptral= 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 18

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of
structure types in exactly the same way

Int a;

int * ptrA;
ptrA = &3a;
*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

struct MyStructType {
charz; intx,y;

5
MyStruct
MyStruct

ype pl;
'ype * ptrP1;

ptrP1 = &
*ptrP1 = {

01;
‘), 2, 3};

19

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of

stry

N

ame way
Pointer-to-MyStructType | ..., MyStructType {
data type charz; intx,y;
ptrA = &a; &}; T
“otrA = 10, MyStructType p1;
|MyStructType *|ptrP1;
ptrP1 = &p1;

*ptrPl = {'c, 2, 3};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

20

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of

stry—

Address of (startlng
location) of variable p1 of
type MyStructType

ptrA = &3a;
*ptrA = 10;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

ame way

struct MyStructType {
charz; intx,y;

};

\VyStructType p1;

Type * ptrP1;

ptrP1 =
*ptrP1 = {'c’, 2, 3};

21

“&” and “*” Operators for Structures

We can use “&” and “*” operators with variables of

e wa
4 Contents (as ”MyStructType”) ht Y
of memory locations whose struct MyStructType {

starting address is given by charz; intx,y;
\ uptrpln }’
*otrA = 10; MyStructType p1;

MyStructType * ptrP1;
ptrP1 = &p1l;
(*ptrP1)={'c, 2, 3};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 22

Accessing Members Through Pointers

* Can we access pl.x through struct MyStructType {
ptrP1? charz; intx,y;

* Yes, and by the obvious way: 5
E.g. (*ptrP1).x= 1+ (*ptrPl)y; | MyStructType p1;

MyStructType * ptrP1;

ptrP1 = &p1l;

*ptrP1 = {'c’, 2, 3};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 23

Accessing Members Through Pointers

* Can we access pl.x through struct MyStructType {
ptrP1? char z; intx,y;
* Yes, and by the obvious way: };
E.g.[(*ptrm].x = 1+ (*ptrP1)y; | MyStructType p1;
MyStructType * ptrP1;
/—/ N ptrP1l = &pl;
*ptrP1 is an object of *ptrP1 ={c’, 2, 3};

type MyStructType
g J

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 24

Accessing Members Through Pointers

* Can we access pl.x through struct MyStructType {
ptrP1? charz; intx,y;

* Yes, and by the obvious way: %

— MyStructType * ptrP1;
/(*ptrPl).x is the member “x” of [Pt'P1=&pL;

. . *ptrP1 = {'c), 2, 3};
the object (*ptrP1) of

9 type MyStructType

)

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 25

Accessing Members Through Pointers

* Can we access pl.x through struct MyStructType {
ptrP1? char z; intx, y;
* Yes, and by the obvious way: %

E.g. (*ptrP1).x = 1 + (*ptrP1).y; MyStructType p1l;
MyStructType * ptrP1;
C++ provides the “->” operator for EtrP;f_&?l,; 5 3.
above situations ptrP1 = {'c’ 2, 3}
E.g2. ptrP1->x =1 + ptrP1->y;
ptrVar->memberName is equivalent to (*ptrVar).memberName

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

26

Accessing Members Through Pointers

struct MyStructType {
charz; intx,y;

};

MyStructType p1l;

MyStructType * ptrP1;

ptrP1 = &pl;

*otrP1 = {c, 2, 3};

(*ptrP1).x =1 + (*ptrP1).y;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

struct MyStructType {
charz; intx,y;

5

MyStruct’
MyStruct]

ptr
ptr
ptr
ptr

ype pl;
'ype * ptrP1;

Pl =&

01;

P1->z =‘c’; ptrP1->x = 2;
P1->y = 3;
P1->x =1 + ptrP1->y;

27

Accessing Members Through Pointers

struct MyStructType {

struct MyStructType {

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

ptr

C)
b Functionally equivalent program fragments
My y
MyStructType * ptrP1; MyStructType * ptrP1;
ptrP1 = &pl; ptrP1 = &p1l;
*otrP1 = {c, 2, 3}; ptrP1->z = °c’; ptrP1->x = 2;
(*ptrP1).x =1 + (*ptrP1).y; ptrP1->y = 3;

P1->x =1 + ptrP1->y;

28

Summary

* Pointers to variables of structure data types
e Use of “&” and “*” operators with structures

e Use of “->” operator to access members of structures
through pointers.

