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• Object-oriented programming with structures and 
classes

• Accessing data members and member functions
• Constructors and destructors
• Function calls with structures/classes
• Operator overloading
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Quick Recap of Relevant Topics 
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• Friend classes and functions

• Static data members and static member functions
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Overview of This Lecture
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Friend Functions
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• Normally, “private” members of a class are accessible only to 
member functions of the class
• Data encapsulation or hiding

• Occasionally it may be desirable to bypass this access 
restriction for a few specific non-member functions
• Should these functions be made members of the class?

• Should we make all members of the class public?

• C++ provides a better solution:

A “friend” declaration allows a class to explicitly allow 
specific non-member functions to access its private members
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Friend Functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 6

class Point { private: double x, y;
public: 
… Member functions …

};

bool collinear(Point &p1, Point &p2, Point &p3) {
// Not a member of class Point
double temp;
temp = p1.x*(p2.y – p3.y) + p2.x*(p3.y – p1.y) + p3.x* (p1.y – p2.y);
return (temp == 0);

} 
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Friend Functions
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class Point { private: double x, y;
public: 
friend bool collinear(Point &p1, Point &p2, Point &p3);
… Member functions …

};                                                                                                                           

bool collinear(Point &p1, Point &p2, Point &p3) {
// Not a member of class Point
double temp;
temp = p1.x*(p2.y – p3.y) + p2.x*(p3.y – p1.y) + p3.x* (p1.y – p2.y);
return (temp == 0);

} 

Can be in public or private section of class Point
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Friend Functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 8

class Point { private: double x, y;
friend bool collinear(Point &p1, Point &p2, Point &p3);
public:
… Member functions …

};                                                                                                                           

bool collinear(Point &p1, Point &p2, Point &p3) {
// Not a member of class Point
double temp;
temp = p1.x*(p2.y – p3.y) + p2.x*(p3.y – p1.y) + p3.x* (p1.y – p2.y);
return (temp == 0);

} 
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Friend Functions

• In general,

A function func can be “friend” of several classes C1, C2, …

func can access private members of classes C1, C2, …

A class C can have several “friend” functions func1, func2, ...

Each of func1, func2, … can access private members of C
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Friend Classes

• Various members of class C1 may need access to private 
members of class C2
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class Point { private: double x, y;
public: 
… Member functions …

};

class PointsInPlane { private: int numPoints; Point pointArray[100];
public: bool collinear(Point &p1, Point &p2, Point &p3) { … }

bool isEquiLateral(Point &p1, Point &p2, Point &p3) { … }
… Other member functions …

};
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Friend Classes

• Entire class C1 can be declared “friend” of class C2
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class Point { private: double x, y;
public: 
friend class PointsInPlane;
… Member functions …

};

class PointsInPlane { private: int numPoints; Point pointArray[100];
public: bool collinear(Point &p1, Point &p2, Point &p3) { … }

bool isEquiLateral(Point &p1, Point &p2, Point &p3) { … }
… Other member functions …

};
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Static Data Members [Ref. AGRBook]
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class Point { 
private: double x, y;
public: 
static   int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}  

};

int Point::count = 0;

C++ keyword
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Static Data Members [Ref. AGRBook]
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class Point { 
private: double x, y;
public: 
static   int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}  

};

int Point::count = 0;

Declaration of static public 
data member

Single copy of static data 
member “count” shared across 

all objects of class Point

Inside class Point, referred to 
as simply “count”
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Static Data Members [Ref. AGRBook]
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class Point { 
private: double x, y;
public: 
static   int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}  

};

int Point::count  = 0;

Referring to member count 
of class Point

Note use of scope resolution 
operator ::

Necessary when referring to a 
member outside the class 

definition
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Static Data Members [Ref. AGRBook]
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class Point { 
private: double x, y;
public: 
static   int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}  

};

int Point::count = 0;

Creation and initialization of 
static public data member

Note this is not tied to creation 
of objects of class Point
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Static Data Members [Ref. AGRBook]
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class Point { 
private: double x, y;
public: 
static   int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}  

};

int Point::count = 0;

int main () {
Point a, b, c(0.0, 0.0);
cout << “Count of points “;
cout << Point::count << endl;
return 0;

}

All constructor calls update 
the same static data member. 
So this counts the number of 

points created.
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Static Data Members [Ref. AGRBook]
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class Point { 
private: double x, y;
public: 
static   int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}  

};

int Point::count = 0;

int main () {
Point a, b, c(0.0, 0.0);
cout << “Count of points “;
cout << Point::count << endl;
return 0;

}

Accessing count outside the 
class Point requires scope 

resolution operator
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Static Member Functions [Ref. AGRBook]
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class Point { 
private: 

double x, y;
static  int count;

public:
Point() { count++; return; }
Point(double a, double b) {x = a; y = b; count++; return;}
static void resetCount() { count = 0; return; }
void printCount() {cout << count << endl; return;}

};
int Point::count;    

Declaration of static private data member

Creation of static private data member
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Static Member Functions [Ref. AGRBook]
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class Point { 
private: 

double x, y;
static  int count;

public:
Point() { count++; return; }
Point(double a, double b) {x = a; y = b; count++; return;}
static void resetCount() { count = 0; return; }
void printCount() {cout << count << endl; return;}

};
int Point::count;    

Declaration of static public 
member function

Declaration of non-static public 
member function
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Use of Static Member Functions

Static member function not invoked on object of class Point
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int main () {
Point::resetCount();
Point a, b, c(0.0, 0.0);
cout << “Count of points “;
cout << Point::count << endl;
a.printCount();

return 0;
}

Invocation of static 
public member 

function in “main”

Requires scope 
resolution operator
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Summary

• Friend functions and friend classes and their usage

• Static data members, static member functions and their 
usage
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