
IIT Bombay

Computer Programming
Dr. Deepak B Phatak

Dr. Supratik Chakraborty
Department of Computer Science and Engineering

IIT Bombay

Session: Friends and Static Members

1Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

IIT Bombay

• Object-oriented programming with structures and
classes

• Accessing data members and member functions
• Constructors and destructors
• Function calls with structures/classes
• Operator overloading

2 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Quick Recap of Relevant Topics

IIT Bombay

• Friend classes and functions

• Static data members and static member functions

3 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Overview of This Lecture

IIT Bombay

Acknowledgment

• Much of this lecture is motivated by the treatment in

An Introduction to Programming Through C++

by Abhiram G. Ranade

McGraw Hill Education 2014

• Examples taken from this book are indicated in slides by

the citation AGRBook

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 4

IIT Bombay

Friend Functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 5

• Normally, “private” members of a class are accessible only to
member functions of the class
• Data encapsulation or hiding

• Occasionally it may be desirable to bypass this access
restriction for a few specific non-member functions
• Should these functions be made members of the class?

• Should we make all members of the class public?

• C++ provides a better solution:

A “friend” declaration allows a class to explicitly allow
specific non-member functions to access its private members

IIT Bombay

Friend Functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 6

class Point { private: double x, y;
public:
… Member functions …

};

bool collinear(Point &p1, Point &p2, Point &p3) {
// Not a member of class Point
double temp;
temp = p1.x*(p2.y – p3.y) + p2.x*(p3.y – p1.y) + p3.x* (p1.y – p2.y);
return (temp == 0);

}

IIT Bombay

Friend Functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 7

class Point { private: double x, y;
public:
friend bool collinear(Point &p1, Point &p2, Point &p3);
… Member functions …

};

bool collinear(Point &p1, Point &p2, Point &p3) {
// Not a member of class Point
double temp;
temp = p1.x*(p2.y – p3.y) + p2.x*(p3.y – p1.y) + p3.x* (p1.y – p2.y);
return (temp == 0);

}

Can be in public or private section of class Point

IIT Bombay

Friend Functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 8

class Point { private: double x, y;
friend bool collinear(Point &p1, Point &p2, Point &p3);
public:
… Member functions …

};

bool collinear(Point &p1, Point &p2, Point &p3) {
// Not a member of class Point
double temp;
temp = p1.x*(p2.y – p3.y) + p2.x*(p3.y – p1.y) + p3.x* (p1.y – p2.y);
return (temp == 0);

}

IIT Bombay

Friend Functions

• In general,

A function func can be “friend” of several classes C1, C2, …

func can access private members of classes C1, C2, …

A class C can have several “friend” functions func1, func2, ...

Each of func1, func2, … can access private members of C

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 9

IIT Bombay

Friend Classes

• Various members of class C1 may need access to private
members of class C2

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 10

class Point { private: double x, y;
public:
… Member functions …

};

class PointsInPlane { private: int numPoints; Point pointArray[100];
public: bool collinear(Point &p1, Point &p2, Point &p3) { … }

bool isEquiLateral(Point &p1, Point &p2, Point &p3) { … }
… Other member functions …

};

IIT Bombay

Friend Classes

• Entire class C1 can be declared “friend” of class C2

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 11

class Point { private: double x, y;
public:
friend class PointsInPlane;
… Member functions …

};

class PointsInPlane { private: int numPoints; Point pointArray[100];
public: bool collinear(Point &p1, Point &p2, Point &p3) { … }

bool isEquiLateral(Point &p1, Point &p2, Point &p3) { … }
… Other member functions …

};

IIT Bombay

Static Data Members [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 12

class Point {
private: double x, y;
public:
static int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}

};

int Point::count = 0;

C++ keyword

IIT Bombay

Static Data Members [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 13

class Point {
private: double x, y;
public:
static int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}

};

int Point::count = 0;

Declaration of static public
data member

Single copy of static data
member “count” shared across

all objects of class Point

Inside class Point, referred to
as simply “count”

IIT Bombay

Static Data Members [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 14

class Point {
private: double x, y;
public:
static int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}

};

int Point::count = 0;

Referring to member count
of class Point

Note use of scope resolution
operator ::

Necessary when referring to a
member outside the class

definition

IIT Bombay

Static Data Members [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 15

class Point {
private: double x, y;
public:
static int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}

};

int Point::count = 0;

Creation and initialization of
static public data member

Note this is not tied to creation
of objects of class Point

IIT Bombay

Static Data Members [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 16

class Point {
private: double x, y;
public:
static int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}

};

int Point::count = 0;

int main () {
Point a, b, c(0.0, 0.0);
cout << “Count of points “;
cout << Point::count << endl;
return 0;

}

All constructor calls update
the same static data member.
So this counts the number of

points created.

IIT Bombay

Static Data Members [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 17

class Point {
private: double x, y;
public:
static int count;
Point() { count++; return; }
Point(double a, double b) {

x = a; y = b; count++; return;
}

};

int Point::count = 0;

int main () {
Point a, b, c(0.0, 0.0);
cout << “Count of points “;
cout << Point::count << endl;
return 0;

}

Accessing count outside the
class Point requires scope

resolution operator

IIT Bombay

Static Member Functions [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 18

class Point {
private:

double x, y;
static int count;

public:
Point() { count++; return; }
Point(double a, double b) {x = a; y = b; count++; return;}
static void resetCount() { count = 0; return; }
void printCount() {cout << count << endl; return;}

};
int Point::count;

Declaration of static private data member

Creation of static private data member

IIT Bombay

Static Member Functions [Ref. AGRBook]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 19

class Point {
private:

double x, y;
static int count;

public:
Point() { count++; return; }
Point(double a, double b) {x = a; y = b; count++; return;}
static void resetCount() { count = 0; return; }
void printCount() {cout << count << endl; return;}

};
int Point::count;

Declaration of static public
member function

Declaration of non-static public
member function

IIT Bombay

Use of Static Member Functions

Static member function not invoked on object of class Point

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 20

int main () {
Point::resetCount();
Point a, b, c(0.0, 0.0);
cout << “Count of points “;
cout << Point::count << endl;
a.printCount();

return 0;
}

Invocation of static
public member

function in “main”

Requires scope
resolution operator

IIT Bombay

Summary

• Friend functions and friend classes and their usage

• Static data members, static member functions and their
usage

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 21

