
Handout on Vector Class

Vectors are sequence containers that can change in size and are implemented using arrays for fast
random access. Like arrays, elements can be accessed sequentially, or directly using offsets on the
pointers to its elements. Unlike arrays, the storage can be handled automatically by the container.

Header file

To use this class, we need to include the following header file in our program
#include<vector>

All the member functions of the vector class and the vector class itself are in the namespace std.
Vector objects can be constructed based on the contructor used. Various ways in which a vector
object can be created, are as follows:

Usage Explanation
vector<int> v1; This creates an empty vector container of type integer.

vector<int> v2 (10,3); This creates a vector container of 10 integers with all
set to value 3.

vector<int> v3 (v2.begin(),v2.end()); This creates a vector container v3 of 10 integers with
all set to value 3 by iterating though the vector
container v2 created in the previous example.

vector<int> v4 (v3); This copies the vector container v3 to v4.

The iterator constructor can also be used to construct vector containers from arrays.
For example, we can initially define an array as int A[]={3, 6, 4, 7}; and use the iterator construct
as vector<int> v5 (A, A + sizeof(A)/sizeof(int));

The member function operator= can be used to assign new contents to the vector container. The
following statements will initialize the size of vector container b2 as 4(b1 initially declared as size
4 will all 4 integers initialized to 0) with all 4 integers initialized to 0.

vector<int> b1 (4,0);
vector<int> b2;

b2 = b1;

Iterators:
Iterators are public member functions defined for iterating through the element of type defined for
the containers. Following are the list of iterators available for the vector class.

begin()
This returns an iterator pointing to the first element in the vector. The following statement will
initialize the iterator pointing to the begining of the vector container

vector<int> b1(4,0);
vector<int>::iterator it = b1.begin();

We can use use *it to access the first element of the vector container b1.

end()

This returns an iterator pointing to the past-the-end element in the vector. The following statement
will initialize the iterator pointing to the past-the-end element of the vector container
vector<int> b1(4,0);

vector<int>::iterator it = b1.end();
We cannot use use *it to access, as it will not point to any element of the vector container, and
should not be used to dereference.

begin in conjunction with end can be used to iterate through the vector elements, as follows:
for (vector<int>::iterator it = v5.begin(); it != v5.end(); ++it) {

 cout << ' ' << *it;
}

rbegin()

rbegin is a backward iterator, and it returns a reverse iterator pointing to the last element in the
vector. It points to the element before the one that would be pointed to by member iterator end and
incrementing it moves towards the begining of the container. The following statement will initialize
the reverse iterator pointing to the last element of the vector container
vector<int> b1(4,0);

vector<int>::reverse_ iterator rit = b1.rbegin();
After initializing, we can use *rit to access the last element of the vector container.

rend()

rend is a backward iterator and it returns a reverse iterator pointing to the element before the first
element in the vector. The following statement will initialize the reverse iterator pointing to the
element one before the first element
vector<int> b1(4,0);

vector<int>::reverse_ iterator rit = b1.rend();
After returning a reverse iterator, we should not use *rit to access the element of the vector
container, as it will point to an element before the first element of the vector container.

rbegin in conjunction with rend can be used to reverse iterate through the vector elements, as
follows:

for (vector<int>::reverse_iterator rit = v5.rbegin(); it != v5.rend(); ++rit) {
 cout << ' ' << *rit;

}

Capacity:
When vectors are initialized, they typically consist of a pointer to a dynamically allocated memory.
The allocated size(capacity) may be larger than the actual size used in the program. When new
elements are inserted, the actual size of the vector is automatically set. If the size becomes larger
than the capacity, reallocation occurs. We mention below some of the useful member functions for
checking size and capacity of the vector container.

size()
size is a member function which returns the actual size(number of elements) of the vector in use by
the program. The following statements can be used to calculate the actual size of the vector
container. In this example, the size returned is 3.

vector<int> b1(3,4);

 cout << b1.size();

If we had used vector<int> b1; instead of the above statement, the size returned would have been
0.

capacity()
This returns the size of the allocated space for the vector during initialization. It can be equal or
greater than the actual size. For example, if the statements are

vector<int> b1(50,4);
cout<< b1.capacity();

Then, the cout statement could possibly return 128.

max_size()
This returns the maximum number of elements the vector can hold. It is system dependent. On
some systems, you would get the value as high as 1073741823.

empty()

This can be used to test if the vector is empty(no elements). The function returns a boolean result.
Usage: Explanation

if(!v3.empty()){ v3 is a vector container checked to see whether it is not empty
//do this

}
else{

//do something
}

resize()

This member function resizes the vector container so that it contains the number of elements(n)
specified in the argument. The argument can also contain the value that is to be written for each of
the n elements. If new n is greater than the current size of the container, then the container is
expanded by adding those many elements(value if specified in the argument) required to make the
new size of the container equal to n. If n is less than the previous size of the container, then the
container is resized to n with the remaining elements destroyed.
Usage Explanation

vector<int> b1(10,3); create a vector container of 10 integers with all set to value 3.
b1.resize(5); resizes the size of container to 5 and destroys all the elements

b1.resize(7,20); resizes the size of container to 7 by adding two elements(both set to
value 20)

Element Access:
Elements of a vector container, can be accessed using various mechanisms as described below:

operator[]
It returns a reference to the position of an element in the container. The position starts with 0(like
in basic C arrays) rather than 1. The operator[] allows the vector container to be accessed in the

same fashion as the array element access using the index. The member operator[] does not check
for bounds, and has undefined behavior if access is made using a position value which is out of
bound.

The following statements of code will illustrate the usage of an operator[]
Usage Explanation

vector<int> v5(10,3); This creates a vector container v5 of 10 integers with all
set to value 3.

for(int k = 0 ; k < v5.size(); k++{ The for loop assigns value 4 to all the elements of v5

v5[k]=4;
}

at()
This is a member function taking argument as position value n, and has the same effect on
accessing vector elements using operator[], except that out_of_range exception is thrown if access
is made to a non-valid(out of bound) vector element

The following statements of code will illustrate the usage of an at() member function
Usage Explanation

vector<int> v5(10,3); This creates a vector container v5 of 10 integers with all
set to value 3.

for(int k = 0 ; k < v5.size(); k++{ The for loop assigns value 4 to all the elements of v5

v5.at(k)=4;
}

front()

This member function returns a direct reference to the first element in the vector, unlike begin()
which returns an iterator(abstract pointer). It has an undefined behavior if you try to call this
function on an empty container.
The following example of code will illustrate the usage of a front() member function

Usage Explanation
vector<int> v5(10,3); This creates a vector container v5 of 10 integers with all

set to value 3.

for(int k = 0 ; k < v5.size(); k++{ The for loop assigns value of counter k to each element of v5
v5.at(k)=k; i.e., v5[0]=0, v5[1]=1, v5[2]=2, v5[3]=3, v5[4]=4

}
cout<<v5.front(); This will display 0 as it was assigned to the 0th element of the

vector v5

back()

This member function returns a direct reference to the end element in the vector, unlike end()
which returns an iterator(abstract pointer) past-the-end element. It has an undefined behavior if
you try to call this function on an empty container.
The following example of code will illustrate the usage of a back() member function

Usage Explanation
vector<int> v5(10,3); This creates a vector container v5 of 10 integers with all

set to value 3.

for(int k = 0 ; k < v5.size(); k++{ The for loop assigns value of counter k to each element of v5

v5.at(k)=k; i.e., v5[0]=0, v5[1]=1, v5[2]=2, v5[3]=3, v5[4]=4

}
cout<<v5.back(); This will display 4 as it was assigned to the 4th element of the

vector v5

Modifiers:

These are member functions which help in assigning values to elements of vector containers, add
an element at the end of a vector, delete the last element, insert elements at arbitrary position, erase
elements, etc. The following member functions are used to perform such operations:
assign()

This member function assigns new contents to the vector by replacing its current content, and
modifying its size accordingly.
The following example code will illustrate the usage of an assign() member function with varous
parameters:

Usage Explanation
vector<int> v1, v2, v3; This creates 3 empty vectors v1, v2, v3 of type integer

v1.assign(8,10); This assigns 8 integer elements with a value of 10 each.
cout<<v1.size(); This will display 8 as 8 integer values were assigned to v1

vector<int>::iterator it; This declares an iterator it to a vector of type integer
it= v1.begin()+2; iterator it pointing to the third element of v1

v2.assign(it, v1.end()-2); This will assign four elements from v1 to v2, starting from the
third element of v1 to the sixth element of v1
Note: v1.end() returns an iterator pointing to the past-the-end
 element in the vector v1.

cout<<v2.size(); This will display 4 as 4 integer values were assigned from v1
int A[]={1,2,3}; Array A is declared and initialized to 3 elements

v3.assign(A,A+3); vector v3 gets assigned from array A
cout<<v3.size(); This will display 3 as 3 integer values were assigned from

array A

push_back()

This memeber function accepts a single value(this value depends on the type, i.e., int, float), and
adds a new element at the end to the vector.
The below example illustrates the push_back function:

Usage Explanation
vector<int> v5(2,3); This creates a vector container v5 of 2 integers with all

set to value 3.

for(int k = 0 ; k < v5.size(); k++{ The push_back function adds each value of counter k to the
v5.push_back(k); end of v5 i.e., v5[0]=3, v5[1]=3, v5[2]=0, v5[3]=1

} and note that v5.size() will now be 4.

pop_back()
This deletes the end element of the vector, thus reducing the size by 1. In the above example, if
v5.pop_back(); is executed, the size of vector v5 will be reduced by 1 i.e., 3 and the elements of
the vector v5 will be v5[0]=3, v5[1]=3, v5[2]=0

insert()
The vector container can also be extended by inserting new elements based on the position(position
between the first element and the last element) specified. The elements are inserted before the
element at the specified position. The size of the vector is automatically increased. This operation
is very inefficient as all the elements after the position specified need to be reallocated to make
space for the new elements.

The below example illustrates the insert() function in various ways:
Usage Explanation

vector<int> v5(2,3); This creates a vector container v5 of 2 integers with both
 set to value 3. This makes v5[0]=3, v5[1]=3

vector<int>::iterator it =v5.begin(); initializing iterator it

v5.insert(it, 2, 4); inserting 2 elements of value 4 before the first
 element(pointed by iterator it at the first element) of the
 vector v5. This makes v5[0]=4, v5[1]=4, v5[2]=3, v5[3]=3

it = v5.begin(); iterator it needs to be re-initialized as the old one is not valid

int A[] ={2,2}; Array A declared and initialized with two elements each of
 value 2

v5.insert(it+2, A, A+2); The iterator it is increased by 2 and it will point to v5[2].
 This will insert the two elements of the array A, before the
 element at v5[2].

 This makes v5[0]=4, v5[1]=4, v5[2]=2, v5[3]=2, v5[4]=3,
 v5[5]=3.

erase()
The element(s) from the vector container, can also be removed by using this function. It can either
remove a single element or a range of elements specified in the arguments. In using the range from
first and last as an argument, it will remove all the elements positioned between the first and the
last, including the element pointed by first(but not last). The size of the vector container will be
automatically decreased.

The below examples illustrate the erase() function:
Usage Explanation

vector<int> v5(4,3); This creates a vector container v5 of 4 integers all
 set to value 3. This makes v5[0]=3, v5[1]=3, v5[2]=3,
 v5[3]=3

vector<int>::iterator it =v5.begin(); initializing iterator it

v5.insert(it+2, 1, 4); The iterator it is increased by 2 and it will point to v5[2].
 This will insert an element having value 4 before the
 element at v5[2]
 This makes v5[0]=3, v5[1]=3, v5[2]=4, v5[3]=3, v5[4]=3

v5.erase(it+2); This will erase the 3rd element, the size of vector v5 will be
 4.
 This makes v5[0]=3, v5[1]=3, v5[2]=3, v5[3]=3

swap()

This member function exchanges the content of the container by the content of another container of
the same type specified in the argument. The iterators reamain valid even after swapping vector
contents.
Usage Explanation

vector<int> v5(4,3); This creates a vector container v5 of 4 integers all
set to value 3. This makes v5[0]=3, v5[1]=3, v5[2]=3, v5[3]=3
The size of v5 is 5

vector<int> v6(2,5); This creates a vector container v5 of 2 integers both
set to value 5. This makes v6[0]=5, v6[1]=5
The size of v6 is 2

v5.swap(v6); This will make v6 as size 4 containing 4 elements each of
value 3 and v5 as size 2 containing 2 elements both having
value 5

For more details, please refer to the following reference links:
http://www.cplusplus.com/reference

http://en.wikipedia.org/wiki/C++_Standard_Library

http://www.cplusplus.com/reference
http://en.wikipedia.org/wiki/C%2B%2B_Standard_Library

