9

IIT Bombay

Computer Programming
Dr. Deepak B Phatak
Dr. Supratik Chakraborty
Department of Computer Science and Engineering
IIT Bombay

Session: Recap of Function Calls and Parameter Passing

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 1

Overall Program Structure

9

IIT Bombay

#include <iostream>

using namespace std;

int myEncode(int g1Marks,int g2Marks);

int power(int base, int exponent);

int main() { ...
for(..){ ..

cipher = myEncode(q1Marks, g2Marks);

o)
e}

// PRECONDITION: ...

int myEncode(int g1Marks,
int g2Marks)

{..

twoRaisedQ1 = power(2, g1Marks);

threeRaisedQ2 = power(3, g2Marks);

e]
// POSTCONDITION: ...

// PRECONDITION: ...
int power(int base, int exponent)

{..}
// POSTCONDITION: ...

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Contract View of Functions

IIT Bombay

#finclude <iostream>
using namespace std;

int myEncode(int gq1Marks, int g2Marks);

int main() {

Ensure pre-condition of }
“myEncode” before invoking

for(..){ ..
cipher = myEncode(glMarks, g2Marks);

[Guaranteed post-condition of }
} “myEncode” on returning

}

// PRECONDITION:

// 1 <=qlMarks <= 10

// 1 <= qgq2Marks <= 10

int myEncode(int g1Marks,
int g2Marks)

{
BLACK BOX

J
// POSTCONDITION:

// Returned value =
// 2 glMarks X 3 g2Marks

// No side effects (later lecture)

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

3

Flow of Control: An Animation

IIT Bombay

#include <iostream>

using namespace std;

int myEncode(int g1Marks,int g2Marks);

int power(int base int exponent);

int main() { ... ';\
for (49 -3‘ E X

|pher = myEncode(glMarks, g2M

return ot’}

int myEncode(int g1Marks,

int g2Marks)
3

RaisedQ1 = power(2, qlMarks)...
eRaisedQ2 = power(3, g2Marks

9 1. 9
return up?gr_:;‘

}

|nt power(mt base, int exponent)

return resu | #

)

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Activation Records in Call Stack

When a function (caller) calls a
function (callee)

* a fresh activation record for callee
created

 Values of function parameters from
caller copied to space allocated for
formal parameters of callee

e PC of caller saved

e Other book-keeping information
updated

e Activation record for callee pushed
on call stack

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

IIT Bombay

int

myEncode(int q1Marks, int g2Marks)

{...
twoRaisedQ1 = power(2, glMarks);

v}

I |
(-g)Activation record: power

Activation record:
myEncode

Activation record: main

STACK

CALL

Activation Records in Call Stack

When a function (callee) returns

 Callee’s activation record popped
from call stack

e Return value from popped activation
record copied to activation record of
caller (now on top of stack)

* Value of PC saved in popped
activation record loaded in PC of
CPU

* Free activation record of callee

e Resume execution of instruction at
location given by updated PC

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

IIT Bombay

int power(int base, int exponent)

{...

return result;

e

(L

4

[| 2:

Activation record: power |5
Activation record:

-

myEncode =

o

Activation record: main

Call-by-Value Parameter Passing

IIT Bombay

{Values of function parameters copied from activation record of}
caller to activation record of callee

Recall:
Formal parameters of callee (power) are its local variables

Not confused with parameters used in caller (myEncode) when
invoking callee (power)

Only way in which callee (power) can let caller (myEncode) see
effects of its computation is through return value of callee

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 7

Call-by-Reference Parameter Passing

IIT Bombay

H#Hinclude <iostream>

int mainf)\ {

m and n are NOT local variables of swap,

but references (or aliases) to caller
variables (a and b) used to pass parameters

A — 4B~ B -] A0 A L4 L~ 4

return O;

- ¥ lvll’

}

int swap(int &m, int &n)

using namespace std; /
int swap(int &m, int &n);

int temp;
temp = m;

m = n;

n =temp;
return O;

}

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Practice Problem 1

IIT Bombay

Write a C++ function intSqRoot that takes a
non-negative double input parameter and
returns a double value such that

* fractional part of intSqRoot(x) is always 0.0
* intSqRoot(x) is always non-negative
* (intSqRoot(x))? <= x < (intSqRoot(x) + 1)

Practice Problem 1 (continued)

double intSqRoot(double x) {
double result;
// Input validation

// Your code to compute intSqRoot
return result;

}

Practice Problem 2

IIT Bombay

We want to write a program that takes the co-
ordinates of 3 points, each in 3-dimensional
space, and finds which one of them is farthest

from the origin, and which is nearest to the
origin.

The program then prints the nearest and

farthest points, along with the integral part of
their distances from the origin.

Practice Problem 2 (continued)

Each point is represented by a triple of
floating-point coordinates (x, vy, z).

The distance of the point (x, y, z) from the
origin is the positive square root of

X2 + y? + 22

Practice Problem 2 (continued)

Write a C++ program to solve the above
problem. Use the intSgRoot function
designed in Practice Problem 1.

Optional: How would you extend your

‘.

program to accept “n” points and find the

0 3

farthest and nearest ones, where “n” is user
provided. [You cannot use arrays].

Practice Problem 3

IIT Bombay

We want to write a C++ function that can be
eventually used to play a game of tic-tac-toe

(using 0’s and 1’s).
0

0

1
1
1

Practice Problem 3 (continued)

A configuration of the tic-tac-toe grid is
represented by a sequence of 9 integers

o|1|o> 0,1,0,
1
0|1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 15

Practice Problem 3 (continued)

A configuration of the tic-tac-toe grid is
represented by a sequence of 9 integers

0|10 010,-1,1,-1,

Lt

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 16

Practice Problem 3 (continued)

A configuration of the tic-tac-toe grid is
represented by a sequence of 9 integers

0

0

91,0,-1,1,-1,0,1, -1

0

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

4

Practice Problem 3 (continued)

A valid configuration has number of “0”s
either equal to number of “1”s or more by
one. Similarly, a valid configuration can
have at most one winning line of “0”s or
“1”5.

Practice Problem 3 (continued)

Example of invalid configuration

0|10 01,0,1,1,1,0,1, -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Practice Problem 3 (continued)

Write a C++ function “tttCheckConfig” that
checks if a configuration of the game is a
valid one.

Your function should return the boolean
value true if the configuration is valid, else it
should return the boolean value false.

Practice Problem 4

Write a C++ function “tttReferee” that takes
as inputs a sequence of 9 integers in {-1, O,
1} representing a config of tic-tac-toe, and
returns

1if “1” has a winning config,
0 if “0” has a winning config,
2 otherwise

Practice Problem 5

Using the functions “tttCheckConfig” and
“tttReferee”, we want to write a C++
program that plays a game of tic-tac-toe
with the user. The user always plays first
and uses “0”. The program and the user
alternate with their turns, and the program
uses “1”.

Practice Problem 5 (continued)

Positions on tic-tac-toe grid

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 23

Practice Problem 5 (continued)

IIT Bombay

The user indicates her choice of position for the
next “0” by providing the position of the tic-tac-
toe grid.

The program must read in this input, and find a
position for the next “1” such that we have a
valid configuration, and (hopefully, a winning
configuration for “1”).

It then outputs the position of “1” so that the
user can read it. This process continues until
either the grid is filled or somebody wins.

Practice Problem 5 (continued)

Typical run of your program:
Position of 0: 3 (user input)
Position of 1 is 5 (program output) 1

Position of 0: 6 (user input) 4

Position of 1 is 1 (program output) -
Position of 0: 9 (user input)
0 is winner

D epak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

