¢cs101: Computer Programming and Utilization Jan-Apr 2016

Model Answers for the Questions in the Ungraded Lab of the Week 1

For all questions, the turtle orientations need not be that given in the figures.

Q1. Write a program to draw the figure shown. The area of the three squares are in the ratio
9:4:1.

s

#include <simplecpp>
main_program{

int len=3;

turtleSim();

repeat(6)

{
forward (30*len);
right(99);

}

right(180);

repeat(6)

{
forward (20*len);
right(99);

}

right(180);

repeat(6)

{
forward (10*len);
right(99);




}
wait(10);

Q2: Write a program which draws 4 concentric squares. The innermost square should have a
side of 40 and each two consecutive concentric squares should be separated by a distance of
20 (the second innermost one will have a side of 80). The figure should look like the following:

#include <simplecpp>
main_program{
turtleSim();
repeat(4){
forward(40);
left(90);

}

penUp();

right(135);
forward(20*sqrt(2));
left(135);
penDown () ;

repeat(4){
forward(80);
left(90);

}

penUp();
right(135);




forward(20*sqrt(2));
left(135);
penDown () ;

repeat(4){
forward(120);
left(90);

}

penUp();

right(135);
forward(20*sqrt(2));
left(135);
penDown () ;

repeat(4){
forward(160);
left(90);

}

Q3: Draw an N-sided regular polygon surrounded by N N-sided regular polygons of same side
length such that the polygon in the centre shares a side with the surrounding polygons. Your
program should take the number of sides (N) of the regular polygon as input. Consider the
diagrams below as examples.
[Limit N <= 8]

N=6



Experimentally fix the side length such that the entire figure should fit within the canvas.

#include<simplecpp>
main_program{
turtleSim();
int n;
cin>>n;
repeat(n){
repeat(n){
forward(40);
right(360.0/n);
}
forward(40);
left(360.0/n);
}
}

Output in Prutor
ForN=5



ForN=6

ForN=8




Q4: Draw the following figure consisting of 6 pentagons rotated at 60 degrees with respect to
their neighbours.

#include <simplecpp>
main_program {
turtleSim();
left(90);
int 1 = 80;
int angle = 72;
repeat(6) {
forward(i); right(angle);




forward(i); right(angle);
forward(i); right(angle);
forward(i); right(angle);
forward(i); right(angle);
right(360/6);

}

wait(200);

Q5: Draw a cuboid similar to the following figure.

Make sure there are no breaks in the figure. For this you may have to use some of the
commands/functions like sqrt (square root) described in the class. There is no fixed answer for
this question. Fix some angle for the slant lines and use side lengths not exceeding 100.

#include <simplecpp>
main_program{
turtleSim();
int sidelength = 100;
repeat(4){
forward(sideLength);
right(90);
}

penUp();
forward(sideLength/2);

left(90);
forward(sidelLength/2);




right(99);

penDown () ;

repeat(4){
forward(sideLength);
right(90);

}

right(135);

forward(sideLength / sqrt(2));

left(135);

forward(sidelLength);

left(45);

forward(sideLength / sqrt(2));

right(135);

forward(sideLength);

right(45);

forward(sideLength / sqrt(2));

right(45);

forward(sidelLength);

right(135);

forward(sideLength / sqrt(2));

wait(39);

Q6: Draw the last three digits digits of your roll.no using the basic 7 segment display.
Draw all digits using only straight lines as you see on a calculator. Figure below shows the output for

number 168

W4

#include <simplecpp>
main_program{
turtleSim();

left(90);
forward(100);
right(90);
penUp () ;
forward(50);




penDown () ;
forward(50);
forward(-50);
right(90);
forward(100);
left(90);
forward(50);
left(90);
forward(50);
left(90);
forward(50);
penUp();
left(90);
forward(50);
left(90);
forward(150);
penDown () ;

left(90);
forward(100);
left(90);
forward(50);
left(90);
forward(100);
left(90);
forward(50);
left(90);
penUp();
forward(50);
left(90);
penDown () ;
forward(50);

wait(20);

Q7: Draw a board as follows



"/

#include <simplecpp>
main_program{
turtleSim();
repeat(4){
repeat(4){
repeat(4){
forward(50);
right(90);
}

penUp();
forward(60);

penDown () ;
}
penUp();
right(90);
forward(60);
right(99);
forward(2490);
right(180);
penDown () ;

Q8: Draw a 5 point star like the one given below. What strategy will be required to generalize it to an N-point
star? (You do not have to write a program for N-point star).



#include <simplecpp>
main_program{
turtleSim();
repeat(5){
forward(100);
right(144);
}
wait(10);



