CS 101.:
Computer Programming and
Utilization

Jul-Nov 2016

Bernard Menezes
(csl0l@cse.iitb.ac.in)

Lecture 10: Arrays

About These Slides

* Based on Chapter 14, 15 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

* Original slides by Abhiram Ranade

—First update by Varsha Apte
—Second update by Uday Khedker

Computers Must Deal with Large
Amounts of Data

Examples:

Pressure measured at various points in an area

Given altitudes of various points in a lake, find how much

water iIs there given the water level.
Account balance of thousands of bank customers

Quiz 1 Marks of all CS 101 students

How to Handle Lot of Data?

Fundamental problem: Writing out variable names to
store each piece of data would be tiring

double pressurel, pressure2, ..., pressurel000;
This is the problem solved using Arrays

More elaborate, modern, and flexible solution involving
vector's will be discussed later

Arrays are simple to understand. Ideas useful in vectors
too

Arrays

For storing a large amount of data of the same type
double pressure[1000];

*Essentially defines 1000 variables (array elements)
Variables are named pressure[0], pressure[l1], pressure[2],
..., pressure[999]

*The number inside [] is called index
*General form:
data-type array-namejsize];
array-namel[i] gives i"" variable (index is | here)
Necessary: 0 <= < size. (i <= size-1)
size also called length

Array Element Operations

* double pressure[1000];
e cin >> pressure[0];
e for(int 1=0; i<1000; i++)
cin >> pressure|i];
* pressure[34] = (pressure[33]+pressure[35])/2;
* cout << pressure[439]*3.33 << endl;

An array element is used in all the same ways as a scalar
variable is used

Array index can be itself an expression which will be
evaluated during execution and then the corresponding
element will be used

Index Out of Range

double pressure[1000];
pressure[1000] = 1.2;

double d = pressurel-5];

In the assignments above, the array index is outside the
allowed range: 0 through size-1. In such cases the
program may run and produce wrong results, may halt with
a message. Nothing is guaranteed

The programmer must ensure index stays in range

Initialization While Declaring

Int squares[4] = {0, 1, 4, 9},
Int cubes[] ={0, 1, 8, 27, 64}, // size =5 inferred.

Int X, pgr[200], y[]={1,2,3,4,7};

Marks Display Problem

Read in marks of the 100 students in a class, given in roll

number order, 1 to 100

After that, students may arrive in any order, and give their
roll number. The program must respond by printing out
their marks. If any illegal number is given as roll number,

the program must terminate

Program

double marks[100];

Note the strictly
less than sign

/[array indices go from O to 99.

// roll numbers go from 1 to
// marks of student wit | number 1 will be
// stored in marksi-

for(int i=0; i<100; i++)
cin >> marksJi];
while(true){
Int rollno;
cin >> rollno;
If(rollno < 1 || rollno > 100) break;
cout << marksjrollno - 1] << endl;

1
J

Display Who Got Highest

Realgl marks as before. Display all roll numbers who got highest
marks

// marks defined and read into as before.

double maxsofar = marks[0];

for(int i=1; 1 < 100; i++){
// Plan: in the ith iteration, maxsofar should
// hold the maximum of marks[0..i-1].
maxsofar = max(maxsofar, marksii]);

}

We can know the maximum marks only after seeing all the marks.

Hence identifying such students would need an additional iteration

Display Who Got Highest

// marks defined and read into as before.
double maxsofar = marks[0];
for(int i=1; 1 < 100; i++){

// Plan: in the ith iteration, maxsofar should

// hold the maximum of marks|O..i-1].

maxsofar = max(maxsofar, marksii]);

}
/[maxsofar now holds max value in marks[0..99].
for(int i=0; 1 < 100; i++)

If(marks|i] == maxsofar)

cout << i+1 << endl; // Marks[i] holds marks of rollno i+1.

Accumulating the maximum into the variable maxsofar: Very
standard idiom

Going over the array to filter elements that match a certain
condition: also standard

Histogram

Read in marks as before, print how many scored between
1-10, 11-20, ..., 91-100

Int hist[10];
I/ Plan: hist[i] will store number of students getting
// marks between (10*1)+1 and 10*(i+1)

On reading a certain mark v, add 1 to suitable element of
hist

Which element? (v-1)/10, assuming v is integer, and
truncation in division

Histogram

for(int 1I=0; i1<10; i++) hist[i]=0;
for(int i=0; i1<100; i++){
double marks;
cin >> marks;
hist[int(marks-1)/10]++;

// Int(..) converts to Int.

Mark Display Variation

Teacher enters 100 pairs of numbers: (rollno, marks),
Roll numbers are not necessarily 1...100. Can't become
Indices

Student types in roll number r. Program must print out
marks if r is valid roll number

If ris -1, then stop

Program idea: Store roll numbers into a separate array.
Examine each element of the array and see if it equals r. If
so print corresponding marks from the marks array.

Linear Search of an Array

Int rollno[100]; double marks[100];
for(int 1=0; i<100; i1++)
cin << rollnoli] << marksil;
while(true){
INnt r; cin >>r;
If(r == -1) break;
for(int 1=0; i<100; I1++)
If(rolino[i] == r){
cout << marksJi] << end];
break;

}

Polynomial Multiplication

Given polynomials A(x), B(x)

A(X) =a, +aXx+ax*+ ...+ ax"

B(x) =b, + b, x+ b,x>+ ...+ b_x"

Need to find their product C(x) = A(x) B(X)
C(x)=c,+cx+cx2+ ...+ C_ X"

Given a,, ..., a,and b,, ..., b_findc,, ..., C_,.

* Natural to use an array of n+1 elements to store the
coefficients of a degree n polynomial

Algorithm idea:
« Each term ax' in A(x) will multiply each term bx! in B(x)
and the product abx™ will contribute to the term c, x™

Example of Degree 2 Polynomial

a. 2x2+ x+3 Coefficients 2, 1, 3
b: 4x2 + 5x + 6 Coefficients 4, 5, 6

C: 8x*+ 14x3 + 29x2 + 21x + 18

Polynomial Multiplication

Read the polynomials in two arrays a and b
(Read cofficient of degree i and store in I index)
Initialize all elements in array cto O
(Initially all coefficients in the result are 0)
Implementing the Algorithm idea:
- Each term ax' in A(x) will multiply each term b/ in B(x)
and the product abx™ will contribute to the term c;, x™
— Multiply a[i] with b[j] and store in c[i+]]
— Consider each i: O<=i<=max_degree,
For each | consider each . O<=j<=max_degree

Program to Multiply Degree 10
Polynomials

double a[11], b[11], c[21];
// Polynomials A, B have degree 10, C has degree 20
for(int 1=0; I<=10; I1++)

cin >> alij; // read in polynomial A

for(int j=0; j<=10; j++)

cin >> Dblj]; // read in polynomial B

for(int k=0; k<=20; k++)

c[K] = 0;

for(int i=0; i1<=10; I++) // Now multiply A and B

for(int j=0; j<=10; j++)
cli+j] += a[i]*b[j]; /[as discussed earlier.

for(int k=0; k<=20; k++)

cout << c[k] <<* *; /[output c, separated by spaces

cout << endl:

Dispatching Taxis

* Taxidrivers arrive: driverID put into “queue”. driverID :

Integer

* Customer arrives: If taxi is waiting, first driver in queue
IS assigned. If no taxi waiting, customer asked to call

again later

Key Reguirements

Remember driverIDs of drivers who are waiting to pick

up customers
Remember the order of arrival

When customer arrives: assign the earliest driver.

Remove driverID of assigned driver from memory

When driver arrives: Add driver’s driverID to memory

How to Remember DriverlDs

Use an array.
const int n=500;
int driverID[n];

n. maximum number of drivers that might have to wait
simultaneously.

In what order to store the ids in the array?

What other information do we need to remember?
What do we do when customer arrives?

What do we do when driver arrives?

ldea 1

Store earliest driver in driverID[0]. Next earliest in

driveriD[1]. ...
Remember number of drivers waiting

Int nWaiting;

Visualizing the Problem
driverlD[]

Arrival Arrival

1 20

2 14

3 32

4 3 A

S S

6 38

14 22 B

38 21

9 10 C

Program Outline

const int n=500; int driverID[n], nWalting =
O;
while(true){
char command; cin >> command,;
If(command == ‘d’){
/[process driver arrival.
}
else if(command == ‘c’){
/[process customer.
}
else if(command == ‘x’) break;
else cout << “lllegal command.\n";

}

Invariants

* nWaiting = number of waiting drivers.

Number of waiting drivers can be at most the array
length

0 <= nWaiting <=n
* id of earliest waiting driver is in driverID[O]

Next in driverID[1]

Last in driverID[nWaiting-1]

Driver Arrival

If(nWaiting == n)
cout << “Queue full\n”;
else{
int d; cin >> d;
driverID[nWaiting] = d;
nWaiting ++;

}

When Customer Arrives:

Provided nWaiting > O:

Assign the earliest unassigned driver to customer.

Earliest unassigned: stored in driverID[O].
Second earliest should become new earliest...
Third earliest should become ...

nWaiting should decrease.

Customer Arrival

If(nWaliting == 0)
cout << “Try agalin later.\n”;
else{
cout << “Assigning “<< driverID[0]
<< endl; |
for(int i=1; i <= nWaiting — 1; i++)
driverIDJ[i-1] = driverlDIi];
// Queue shifts up
nWaiting-- ;
}

ldea 2

Our program can be made more efficient.
Emulate what might happen without computers.

Names written on blackboard. Arriving driver IDs written
top to bottom. When board bottom reached, begin from

top if drivers have left.

Blackboard for Driver Dispatch

DRIVER DRIVER DRIVER Driver #546 | No]1\V/= 3
QUEUE QUEUE QUEI Iz arives Wrap | Fellj ¥/

657 546 start entering | 546
@ at the top

982 "

095

457

103 103 103 4T 103 4T
889 889 889 889
333 333 333 333
425 425 425 425
489 489 489 489
723 723 723 723
613 613 613 613

063 063 063 063
205 {E=1 205 (= 205 205

More Efficient Implementation

* Think of driverID as a circular array

* The next position after driverID[n-1] (bottom of board) is

driverIDJ[0] (top of board)

Invariants

* nWaiting = number of waiting drivers
0 <= nWaiting <=n
* New variable front = position of earliest arriving driver who
has not yet been assigned. front initialized to O
O <=front<n
* Valid driver IDs are at
driverID[front] ... driverID[(front + nWaiting — 1) % n]
Note that % provides the effect of wrapping around
In the example (last table):
driveriD[4] to driver[ID][(4+12-1)%13]
= driverID[4] to driverID[2]

Processing Driver Arrival

If(nWaiting == n)
cout << “Queue full.\n";

else{
Int d; cin >> d;
driverID[(front+nWaiting) % n] = d,;
nWaiting ++;

}

I/ front + nWaiting % L : index of
/[empty position after end of queue.

Processing Customer Arrival

If(nWaiting == 0)
cout << “Try later.\n";
else{
cout << “Assigning “ <<
driverID[front] << endl;
front = (front + 1) % n;

nWaiting --;

Remarks

New idea is better, copying of elements of driverID is

avoided.
Efficiency gain: Fixed number of operations

Exercise: make sure that the invariants indeed remain true

after each customer or driver arrival.

Character Arrays

char name[10], address[50];

Can be used to store character sequences, or character
strings (no longer than 9 or 49 resp.)

Typically we will not know the exact length of the name or
the address

Standard protocol inherited from the C language:

— Store characters in the string in the array starting from
element O

— After all the characters are stored, store the character
\O’, sometimes called null (Character whose ASCII
value is 0)

— Key idea: everything until \0’ is a part of the string, not
what comes later

— No need to explicitly store the length of the string

Character Arrays With Initialization

char n1[20]="Ajanta”, n2[]="Ellora”;
This will create the arrays nl and n2

nl will be initialized as follows

*The first character string has length 6. So ‘A, , ... ‘a’ will get
stored in n1[0] through n1[5]

*Finally \O’ will get stored in n1[6]
*The elements n1[7] through n1[19] will not be initialized

No length has been specified for n2. C++ will give it length 1 more
than the length of the string “Ellora”

*It will also be Initialized to the string “Ellora” followed by \0O’

Character Array Processing

Standard idiom: process the array from the beginning until
\O’ Is found.

bool findchar(const char *cstr, char x){
/[determines if X occurs inside cstr
for(int i=0; cstr[i] = \0’; 1++){
If(cstr[i] == x) return true;
}
return false;
}
Int main(){
char name[] = “India”;
cout << findchar(name, ‘d’) << endl,
// should print 1;
}

Key point to note: Array length is not passed to function,
because It Is not needed.

Reading and Printing char Arrays

char buffer[80];

cin >> buffer;

// Reads one word (space or newline terminated)
/[and stores it into buffer, terminated by \O'.

/[If user types more than 80 characters, they will
// overflow buffer.

/[unsafe.

cin.getline(buffer,80);

// Reads a line (terminated by newline) or at most 79
// characters. Stores them in buffer, terminated by \O’.
/] Safe.

cout << buffer:;
/I Prints the content of buffer till \O’.

Concluding Remarks

* Later we will study the string class which is a much nicer

and safer way of dealing with textual data
* When writing new code, use string, and not char arrays

* However you must know char arrays because basic ideas Iin
string are similar. Also because char arrays are used a lot

In C language code, which you may encounter

Two Dimensional Arrays

*Useful for storing matrices, or tables
double xyz[m][n];

*Creates m*n variables. The variables can be accessed by
writing xyz[i][j], where 0 <i<m,and 0<j<n

*xyz[i][O], xyz[i][1], ... Xyz[i][n-1] constitute ith row of xyz
*xyz[O][j)], xyz[1][]], ... Xyz[m-1][j] constitute jth column of xyz
*m,n are first and second dimensions of xyz

*Variables stored in memory in row major order, i.e. row O,
followed by row 1, ..., row m-1

Visualizing Two Dimensional Arrays

double xyz[m][n];

Two Dimensional Arrays

*Initialization possible
int pgr[2][3] = {{1,5,7}, {13,6,2}};
*Values picked up from the initialization list in row major order

*Enhanced versions of two dimensional arrays will be discussed
later

Example 1

Create a 10x10 matrix A and initialize it to identity, i.e. value
1 in A[i][i] for all i and O elsewhere

double A[10][10];
for(int 1=0; I<10; I++)
for(int]=0; |<10; j++)
(1 ==))
Al = 1;
else
ADDl = 0;

Example 2

*Create an array M to store marks of 10 students in 5 tests.
Read the marks and store them in M.

double M[10][5];
for(int 1=0; 1<10; i++){
cout <<“Give marks of student ” <<i<<“: “
for(int j=0; J<5; j++)
cin >> M[i][j];

Example 3

char countries[3][20] = {*India”, “Nepal”, “China’};
*Creates array countries with 3 rows each containing 20
characters

*The rows are Initialized as shown

*As usual, each character string is stored with a \0’
following it

*Individual characters can be accessed in the usual
manner, e.g. countries[1][1] will be ‘e’

*Individual country can be accessed by writing countriesli].
This simply represents the string stored in row i of
countries. The following will print out “China™

cout << countries[2] << endl;

Visualizing Example 3

char countries[3][20] = {“India”, “Nepal”, “China’},

Passing 2 Dimensional Arrays to
Functions

* |n the called function, the second dimension must be a
constant

* The function will only work for two dimensional arrays having
arbitrary number of rows, but each row having the specified

size. This is a limitation

Passing 2 Dimensional Arrays to
Functions

void printCountries(char c[][20], int n){
for(int 1=0; I<n; I++)
cout << cJi] << end];
}
Int main(){
char countries[3][20]= ... /] as before
printCountries(countries, 2);
/[will print out only first two countries

	CS 101: Computer Programming and Utilization
	About These Slides
	Computers Must Deal with Large Amounts of Data
	How to Handle Lot of Data?
	Arrays
	Array Element Operations
	Index Out of Range
	Initialization While Declaring
	Marks Display Problem
	Program
	Display Who Got Highest
	Slide 12
	Histogram
	Slide 14
	Mark Display Variation
	Linear Search of an Array
	Polynomial Multiplication
	Example of Degree 2 Polynomial
	Slide 19
	Program to Multiply Degree 10 Polynomials
	Dispatching Taxis
	Key Requirements
	How to Remember DriverIDs
	Idea 1
	Visualizing the Problem
	Program Outline
	Invariants
	Driver Arrival
	When Customer Arrives:
	Customer Arrival
	Idea 2
	Blackboard for Driver Dispatch
	More Efficient Implementation
	Slide 34
	Processing Driver Arrival
	Processing Customer Arrival
	Remarks
	Character Arrays
	Character Arrays With Initialization
	Character Array Processing
	Reading and Printing char Arrays
	Concluding Remarks
	Two Dimensional Arrays
	Visualizing Two Dimensional Arrays
	Slide 45
	Example 1
	Example 2
	Example 3
	Visualizing Example 3
	Passing 2 Dimensional Arrays to Functions
	Slide 51

