CS 101:
 Computer Programming and Utilization

Jul - Nov 2016

Bernard Menezes
(cs101@cse.iitb.ac.in)

Lecture 13: Recursive Functions

About These Slides

- Based on Chapter 10 of the book An Introduction to Programming Through C++ by Abhiram Ranade (Tata McGraw Hill, 2014)
- Original slides by Abhiram Ranade -First update by Varsha Apte -Second update by Uday Khedker

Can a Function Call Itself?

```
int f(int n){
..
int z = f(n-1);
}
main_program{
    int z = f(15);
}
```

- Allowed by execution mechanism
- main_program executes, calls $f(15)$
- Activation Frame (AF) created for $f(15)$
- f executes, calls f(14)
- AF created for f(14)
- Continues in this manner, with AFs created for $f(13)$, $f(12)$ and so on, endlessly

Activation Frames Keep Getting Created in Stack Memory

> Activation frame of ...

Another Function that Calls Itself

```
int f(int n)\{
if(n > 13)
\(\mathrm{z}=\mathrm{f}(\mathrm{n}-1)\);
\}
main_program\{
    int w = f(15);
\}
```

- main_program executes, calls f(15)
- AF created for f(15)
- f(15) executes, calls f(14)
- AF created for f(14)
- $f(14)$ executes, calls $f(13)$
- AF created for f(13)
- $f(13)$ executes, check $n>13$ fails. some result returned
- Result received in f(14)
- $f(14)$ continues and in turn returns result to $f(15)$
- f(15) continues, returns result to main_program
- main_program continues and finished

Activation Frames Keep Getting Created in Stack Memory

and destroyed as the functions exit

Activation frame of main	Activation frame of $\mathrm{f}(15)$	Activation frame of $\mathrm{f}(14)$	Activation frame of \ldots

Recursion

Function called from its own body
OK if we eventually get to a call which does not call itself
Then that call will return
Previous call will return...
But could it be useful?

Outline

- GCD Algorithm using recursion
- A tree drawing algorithm using recursion

Euclid's Theorem on GCD

```
//lf m % n == 0, then
// GCD(m,n)= n,
// else GCD(m,n)= GCD(n, m % n)
int gcd(int m, int n){
    if (m % n == 0) return n;
    else return gcd(n, m % n);
}
main_program{
        cout << gcd(205,123) << endl;
}
```

Will this work?

Execution of Recursive gcd

Euclid's Theorem on GCD

Recursion Vs. Iteration

- Recursion allows multiple distinct data spaces for different executions of a function body
- Data spaces are live simultaneously
- Creation and destruction follows LIFO policy
- Iteration uses a single data space for different executions of a loop body
- Either the same data space is shared or one data space is destroyed before the next one is created
- Iteration is guaranteed to be simulated by recursion but not vice-versa

Correctness of Recursive gcd

We prove the correctness by induction on j
For a given value of $\mathrm{j}, \operatorname{gcd}(\mathrm{i}, \mathrm{j})$ correctly computes gcd(i,j) for all values of i
We prove this for all values of j by induction
-Base case: $\mathrm{j}=1 . \operatorname{gcd}(\mathrm{i}, 1)$ returns 1 for all i

Obviously correct

-Inductive hypothesis: Assume the correctness of gcd(i, j) for some j
-Inductive step: Show that $\operatorname{gcd}(\mathrm{i}, \mathrm{j}+1)$ computes the correct value

Correctness of Recursive gcd

Inductive Step: Show that gcd(i, $\mathrm{j}+1)$ computes the correct value, assuming that $\operatorname{gcd}(\mathrm{i}, \mathrm{j})$ is correct
-If $\mathrm{j}+1$ divides i , then the result is $\mathrm{j}+1$
Hence correct
-If $\mathrm{j}+1$ does not divide i , then $\operatorname{gcd}(\mathrm{i}, \mathrm{j}+1)$ returns the result of calling gcd(j, i\%(j+1)
$-i \%(j+1)$ can at most be equal to j
-By the inductive hypothesis, $\operatorname{gcd}(\mathrm{j}, \mathrm{i} \%(\mathrm{j}+1)$ computes
the correct value
-Hence $\operatorname{gcd}(\mathrm{i}, \mathrm{j}+1)$ computes the correct value

Remarks

- The proof of recursive gcd is really the same as that of iterative gcd, but it appears more compact
- This is because in iterative gcd, we had to speak about "initial value of m, n ", "value at the beginning of the iteration" and so on
- In general recursive algorithms are shorter than corresponding iterative algorithms (if any), and the proof is also more compact, though same in spirit

Factorial Function

- Iterative factorial function int fact(int n) \{
int res=1;
for (int $i=1 ; i<=n ; i++$)
res = res*i;
return res;
\}
- Recursive factorial function
int fact(int n) \{
if ($\mathrm{n}<=0$) return 1 ;
else return n *fact($\mathrm{n}-1$);
\}

Fibonacci Function

Iterative fibonacci function:

```
int fib(int n){
    if ( }\textrm{n}<=0)\mathrm{ ) return 0;
    if (n == 1) return 1;
    int n_2 = 0, n_1 = 1, result = 0;
    for (int i = 2; i <= n; i++) {
        result = n_1 + n_2;
        n_2 = n_1;
        n_1 = result;
    }
    return result;
}
```


Fibonacci Function

-Definition:

$$
\begin{aligned}
& \operatorname{fib}(0)=0 \\
& \operatorname{fib}(1)=1 \\
& \operatorname{fib}(n)=\operatorname{fib}(n-1)+\operatorname{fib}(n-2), \quad n>1
\end{aligned}
$$

-Recursive fibonacci function:

```
int fib(int n){
    if ( }\textrm{n}<=0)\mathrm{ ) return 0;
    if ( }n==1\mathrm{ ) return 1;
    return fib(n-1) + fib(n-2);
}
```


An Important Application of Recursion: Processing Trees

Botanical trees...
Organization Tree
Expression Tree
Search Tree: later

In this chapter we only consider how to draw trees
Must understand the structure of trees
Structure will be relevant to more complex algorithms

A Botanical Tree Drawn Using the Turtle in Simplecpp

A More Stylized Tree Drawn Using simplecpp

Organization Tree (Typically "grows" Downwards)

Tree Representing ((57*123)+329)*(358/32)

1 Stylized Tree =
 2 Small Stylized Trees + V

When a part of an object is of the same type as the whole, the object is said to have a recursive structure.

Drawing The Stylized Tree

Parts:
Root
Left branch, Left subtree
Right branch, Right subtree

Number of levels: number of times the tree has branched going from the root to any leaf.

Number of levels in tree shown $=5$
Number of levels in subtrees of tree: 4

Drawing The Stylized Tree

General idea:
To draw an L level tree:
if $L>0\{$
Draw the left branch, and a Level L-1 on top of it.
Draw the right branch, and a Level L-1 tree on top of it.
\}
We must give the coordinates where the lines are to be drawn

Say root is to be drawn at (rx,ry)
Total height of drawing is h.
Total width of drawing is w .
We should then figure out where the roots of the subtrees will be.

Drawing The Stylized Tree

Basic Primitive:
Drawing a line from $(x 1, y 1)$ to $(x 2, y 2)$

Drawing The Stylized Tree

Drawing The Stylized Tree

Basic Primitive Required: Drawing a line
-Create a named shape with type Line

Line line_name(x1,y1,x2,y2);
-Draw the shape
line_name.imprint();

Drawing The Stylized Tree

void tree(int L, double rx, double ry, double H, double W) \{
if($\mathrm{L}>0$) $\{$
Line left(rx, ry, rx-W/4, ry-H/L); // line called left Line right(rx, ry, rx+W/4, ry-H/L); // line called right right.imprint(); // Draw the line called right left.imprint();
// Draw the line called left tree(L-1, rx-W/4, ry-H/L, H-H/L, W/2); // left subtree tree(L-1, rx+W/4, ry-H/L, H-H/L, W/2);// right subtree

Concluding Remarks

- Recursion allows many programs to be expressed very compactly
- The idea that the solution of a large problem can be obtained from the solution of a similar problem of the same type, is very powerful
- Euclid probably used this idea to discover his GCD algorithm
- More examples in the book

