
CS 101:
Computer Programming and

Utilization

JJul ul -- Nov Nov 2016 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 13: Recursive Lecture 13: Recursive Functions

About These Slides

• Based on Chapter 10 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker

Can a Function Call Itself?

int f(int n){

 …

 int z = f(n-1);

 …

}

main_program{

 int z = f(15);

}

• Allowed by execution
mechanism

• main_program executes,
calls f(15)

• Activation Frame (AF)
created for f(15)

• f executes, calls f(14)

• AF created for f(14)

• Continues in this manner,
with AFs created for f(13),
f(12) and so on, endlessly

Activation Frames Keep Getting
Created in Stack Memory

Activation
frame of
main

Activation
frame of
f(14)

Activation
frame of …

Activation
frame of
f(15)

Another Function that Calls Itself

int f(int n){

 …

 if(n > 13)

 z = f(n-1);

 …

}

main_program{

 int w = f(15);

}

• main_program executes, calls f(15)

• AF created for f(15)

• f(15) executes, calls f(14)

• AF created for f(14)

• f(14) executes, calls f(13)

• AF created for f(13)

• f(13) executes, check n>13 fails. some
result returned

• Result received in f(14)

• f(14) continues and in turn returns result
to f(15)

• f(15) continues, returns result to
main_program

• main_program continues and finished

Activation Frames Keep Getting
Created in Stack Memory

Activation
frame of
main

Activation
frame of
f(14)

Activation
frame of …

Activation
frame of
f(15)

and destroyed as the functions exit

Recursion

Function called from its own body

OK if we eventually get to a call which does not call itself

Then that call will return

Previous call will return…

But could it be useful?

Outline

• GCD Algorithm using recursion

• A tree drawing algorithm using recursion

Euclid’s Theorem on GCD

//If m % n == 0, then
// GCD(m, n) = n,
// else GCD(m,n) = GCD(n, m % n)

int gcd(int m, int n){
 if (m % n == 0) return n;
 else return gcd(n, m % n);
}
main_program{

cout << gcd(205,123) << endl;
}

Will this work?

Execution of Recursive gcd

gcd(205, 123)

return gcd(123, 82)

return gcd(82, 41)

return 41

41

41

41

Euclid’s Theorem on GCD

int gcd(int m, int n){
 if (m % n == 0) return n;
 else return gcd(n, m % n);
}

main_program{
cout
<< gcd(205,123)
<< endl;
}

Activation
frame of main
created

Activation
frame of gcd
(205, 123)
created

Execute
this

Activation
frame of gcd
(123, 82)
created

Execute
this

Activation
frame of gcd
(82, 41)
created

return 41return 41return 41

Recursion Vs. Iteration

• Recursion allows multiple distinct data spaces for
different executions of a function body

– Data spaces are live simultaneously

– Creation and destruction follows LIFO policy

• Iteration uses a single data space for different executions
of a loop body

– Either the same data space is shared or one data
space is destroyed before the next one is created

• Iteration is guaranteed to be simulated by recursion but
not vice-versa

Correctness of Recursive gcd

We prove the correctness by induction on j

 For a given value of j, gcd(i,j) correctly

 computes gcd(i,j) for all values of i

 We prove this for all values of j by induction

•Base case: j=1. gcd(i,1) returns 1 for all i

Obviously correct

•Inductive hypothesis: Assume the correctness of gcd(i,j)
for some j

•Inductive step: Show that gcd(i,j+1) computes the correct
value

Correctness of Recursive gcd

Inductive Step: Show that gcd(i,j+1) computes the correct
value, assuming that gcd(i,j) is correct

•If j+1 divides i, then the result is j+1

Hence correct

•If j+1 does not divide i, then gcd(i,j+1) returns the result of
calling gcd(j, i%(j+1)

–i%(j+1) can at most be equal to j

–By the inductive hypothesis, gcd(j, i%(j+1) computes
the correct value

–Hence gcd(i, j+1) computes the correct value

Remarks

• The proof of recursive gcd is really the same as that of

iterative gcd, but it appears more compact

• This is because in iterative gcd, we had to speak about

“initial value of m,n”, “value at the beginning of the

iteration” and so on

• In general recursive algorithms are shorter than

corresponding iterative algorithms (if any), and the proof

is also more compact, though same in spirit

Factorial Function

• Iterative factorial function

int fact(int n) {

int res=1;

for (int i=1; i<=n; i++)

res = res*i;

 return res;

}
• Recursive factorial function

int fact(int n) {

if (n<=0) return 1;

else return n*fact(n-1);

}

Fibonacci Function
• Iterative fibonacci function:

int fib(int n){

 if (n <= 0) return 0;

 if (n == 1) return 1;

 int n_2 = 0, n_1 = 1, result = 0;

 for (int i = 2; i <= n; i++) {

 result = n_1 + n_2;

 n_2 = n_1;

 n_1 = result;

 }

 return result;

}

Fibonacci Function

•Definition:

 fib(0) = 0

 fib(1) = 1

 fib(n) = fib(n-1) + fib(n-2), n > 1

•Recursive fibonacci function:

int fib(int n){

 if (n <= 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) + fib(n-2);

}

An Important Application of Recursion:
Processing Trees

Botanical trees…

Organization Tree

Expression Tree

Search Tree: later

In this chapter we only consider how to draw trees

Must understand the structure of trees

Structure will be relevant to more complex algorithms

A Botanical Tree Drawn Using the
Turtle in Simplecpp

A More Stylized Tree Drawn Using
simplecpp

Organization Tree
(Typically “grows” Downwards)

President

VP VP

Director Director Director Director

Manager Manager

Tree Representing
((57*123)+329)*(358/32)

President

 + /

 * 329 358 32

 57 123

*

1 Stylized Tree =
 2 Small Stylized Trees + V

When a part of an object is of the same type as
the whole, the object is said to have a recursive
structure.

Drawing The Stylized Tree

Parts:

Root

Left branch, Left subtree

Right branch, Right subtree

Number of levels: number of times the tree has branched

going from the root to any leaf.

Number of levels in tree shown = 5

Number of levels in subtrees of tree: 4

Drawing The Stylized Tree

General idea:
To draw an L level tree:

if L > 0{
Draw the left branch, and a Level L-1 on top of

 it.
Draw the right branch, and a Level L-1 tree on

 top of it.
}

We must give the coordinates where the lines are to be
drawn

Say root is to be drawn at (rx,ry)
Total height of drawing is h.
Total width of drawing is w.

We should then figure out where the roots of the subtrees
will be.

Basic Primitive:

Drawing a line from (x1,y1) to (x2,y2)

Drawing The Stylized Tree

(rx,ry)

W

H

H/L

(rx-W/4,ry-H/L) (rx+W/4,ry-H/L)

Drawing The Stylized Tree

Drawing The Stylized Tree

Basic Primitive Required: Drawing a line

•Create a named shape with type Line

Line line_name(x1,y1,x2,y2);

•Draw the shape

line_name.imprint();

void tree(int L, double rx, double ry,

 double H, double W) {

 if(L>0){

 Line left(rx, ry, rx-W/4, ry-H/L); // line called left

 Line right(rx, ry, rx+W/4, ry-H/L); // line called right

 right.imprint(); // Draw the line called right

 left.imprint(); // Draw the line called left

 tree(L-1, rx-W/4, ry-H/L, H-H/L, W/2); // left subtree

 tree(L-1, rx+W/4, ry-H/L, H-H/L, W/2);// right subtree

 }

}

Drawing The Stylized Tree

Concluding Remarks

• Recursion allows many programs to be expressed very

compactly

• The idea that the solution of a large problem can be

obtained from the solution of a similar problem of the

same type, is very powerful

• Euclid probably used this idea to discover his GCD

algorithm

• More examples in the book

	CS 101: Computer Programming and Utilization
	About These Slides
	Can a Function Call Itself?
	Activation Frames Keep Getting Created in Stack Memory
	Another Function that Calls Itself
	Slide 6
	Recursion
	Outline
	Euclid’s Theorem on GCD
	Execution of Recursive gcd
	Slide 11
	Recursion Vs. Iteration
	Correctness of Recursive gcd
	Slide 14
	Remarks
	Factorial Function
	Fibonacci Function
	Slide 18
	An Important Application of Recursion: Processing Trees
	A Botanical Tree Drawn Using the Turtle in Simplecpp
	A More Stylized Tree Drawn Using simplecpp
	Organization Tree (Typically “grows” Downwards)
	Tree Representing ((57*123)+329)*(358/32)
	1 Stylized Tree = 2 Small Stylized Trees + V
	Drawing The Stylized Tree
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Concluding Remarks

