
CS 101: 
Computer Programming and 

Utilization

JJul ul -- Nov Nov 2016 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 13: Recursive Lecture 13: Recursive Functions



About These Slides

• Based on Chapter 10 of the book 

An Introduction to Programming Through C++ 

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker



Can a Function Call Itself?

int f(int n){

   … 

   int z = f(n-1); 

   …

}

main_program{

  int z = f(15);

}

• Allowed by execution 
mechanism

• main_program executes, 
calls f(15)

• Activation Frame (AF) 
created for f(15)

• f executes, calls f(14)

• AF created for f(14)

• Continues in this manner, 
with AFs created for f(13), 
f(12) and so on, endlessly



Activation Frames Keep Getting 
Created in Stack Memory 

Activation 
frame of 
main

Activation 
frame of 
f(14)

Activation 
frame of …

Activation 
frame of 
f(15)



Another Function that Calls Itself

int f(int n){

   … 

   if(n > 13) 

      z = f(n-1); 

   …

}

main_program{

  int w = f(15);

}

• main_program executes, calls f(15)

• AF created for f(15)

• f(15) executes, calls f(14)

• AF created for f(14)

• f(14) executes, calls f(13)

• AF created for f(13)

• f(13) executes, check n>13 fails.  some 
result returned

• Result received in f(14)

• f(14) continues and in turn returns result 
to f(15)

• f(15) continues, returns result to 
main_program

• main_program continues and finished



Activation Frames Keep Getting 
Created in Stack Memory 

Activation 
frame of 
main

Activation 
frame of 
f(14)

Activation 
frame of …

Activation 
frame of 
f(15)

and destroyed as the functions exit



Recursion

Function called from its own body

OK if we eventually get to a call which does not call itself

Then that call will return

Previous call will return…

But could it be useful?



Outline

• GCD Algorithm using recursion

• A tree drawing algorithm using recursion



Euclid’s Theorem on GCD

//If m % n == 0, then 
//            GCD(m, n) = n, 
// else GCD(m,n) = GCD(n, m % n)

int gcd(int m, int n){
   if (m % n == 0) return n;
   else return gcd(n, m % n);
}
main_program{

cout << gcd(205,123) << endl;
}

Will this work?



Execution of Recursive gcd

gcd(205, 123)

return gcd(123, 82)

return gcd(82, 41)

return 41

41

41

41



Euclid’s Theorem on GCD

int gcd(int m, int n){
   if (m % n == 0) return n;
   else return gcd(n, m % n);
}

main_program{
cout 
<< gcd(205,123) 
<< endl;
}

Activation 
frame of main 
created

Activation 
frame of gcd 
(205, 123) 
created

Execute
this

Activation 
frame of gcd 
(123, 82) 
created

Execute
this

Activation 
frame of gcd 
(82, 41) 
created

return 41return 41return 41



Recursion Vs. Iteration

• Recursion allows multiple distinct data spaces for 
different executions of a function body

– Data spaces are live simultaneously

– Creation and destruction follows LIFO policy

• Iteration uses a single data space for different executions 
of a loop body

– Either the same data space is shared or one data 
space is destroyed before the next one is created

• Iteration is guaranteed to be simulated by recursion but 
not vice-versa



Correctness of Recursive gcd

We prove the correctness by induction on j  

    For a given value of j, gcd(i,j) correctly   

    computes gcd(i,j) for all values of i

    We prove this for all values of j by induction

•Base case: j=1. gcd(i,1) returns 1 for all i

Obviously correct

•Inductive hypothesis: Assume the correctness of gcd(i,j) 
for some j

•Inductive step: Show that gcd(i,j+1) computes the correct 
value



Correctness of Recursive gcd

Inductive Step: Show that gcd(i,j+1) computes the correct 
value, assuming that gcd(i,j) is correct

•If j+1 divides i, then the result is j+1

Hence correct

•If j+1 does not divide i, then gcd(i,j+1) returns the result of 
calling gcd(j, i%(j+1)

–i%(j+1) can at most be equal to j

–By the inductive hypothesis, gcd(j, i%(j+1) computes 
the correct value

–Hence gcd(i, j+1) computes the correct value



Remarks

• The proof of recursive gcd is really the same as that of 

iterative gcd, but it appears more compact

• This is because in iterative gcd, we had to speak about 

“initial value of m,n”, “value at the beginning of the 

iteration” and so on

• In general recursive algorithms are shorter than 

corresponding iterative algorithms (if any), and the proof 

is also more compact, though same in spirit



Factorial Function

• Iterative factorial function

int fact(int n) {

int res=1;

for (int i=1; i<=n; i++) 

res = res*i;

     return res;

}
• Recursive factorial function

int fact(int n) {

if (n<=0) return 1;

else return n*fact(n-1);

}



Fibonacci Function
• Iterative fibonacci function: 

int fib(int n){

    if (n <= 0) return 0;

    if (n == 1) return 1;    

    int n_2 = 0, n_1 = 1, result = 0;      

    for (int i = 2; i <= n; i++) {

        result = n_1 + n_2;

        n_2 = n_1;

        n_1 = result;

    }

    return result;

}



Fibonacci Function

•Definition:

    fib(0) = 0

    fib(1) = 1

    fib(n) = fib(n-1) + fib(n-2),    n > 1

•Recursive fibonacci function: 

int fib(int n){

    if (n <= 0) return 0;

    if (n == 1) return 1;    

    return fib(n-1) + fib(n-2);

}



An Important Application of Recursion: 
Processing Trees

Botanical trees…

Organization Tree

Expression Tree

Search Tree: later

In this chapter we only consider how to draw trees

Must understand the structure of trees 

Structure will be relevant to more complex algorithms



A Botanical Tree Drawn Using the 
Turtle in Simplecpp



A More Stylized Tree Drawn Using 
simplecpp



Organization Tree
(Typically “grows” Downwards)

President

VP VP

Director Director Director Director

Manager Manager



Tree Representing 
((57*123)+329)*(358/32)

President

 +  /

      *     329     358       32

      57       123

*



1 Stylized Tree =
 2 Small Stylized Trees + V

When a part of an object is of the same type as 
the whole, the object is said to have a recursive 
structure.



Drawing The Stylized Tree

Parts:

Root

Left branch,   Left subtree

Right branch, Right subtree

Number of levels: number of times the tree has branched 

going from the root to any leaf.

Number of levels in tree shown = 5

Number of levels in subtrees of tree: 4



Drawing The Stylized Tree

General idea:
To draw an L level tree:

if L > 0{
Draw the left branch, and a Level L-1 on top of  

     it.
Draw the right branch, and a Level L-1 tree on 

     top of it.
}

We must give the coordinates where the lines are to be 
drawn

Say root is to be drawn at (rx,ry)
Total height of drawing is h.
Total width of drawing is w.

We should then figure out where the roots of the subtrees 
will be.



Basic Primitive: 

Drawing a line from (x1,y1) to (x2,y2)

Drawing The Stylized Tree



(rx,ry)

W

H

H/L

(rx-W/4,ry-H/L) (rx+W/4,ry-H/L)

Drawing The Stylized Tree



Drawing The Stylized Tree

Basic Primitive Required: Drawing a line

•Create a named shape with type Line

Line line_name(x1,y1,x2,y2);

•Draw the shape

line_name.imprint();



void tree(int L, double rx, double ry, 

                 double H, double W) {

  if(L>0){

    Line left(rx, ry, rx-W/4, ry-H/L);     // line called left

    Line right(rx, ry, rx+W/4, ry-H/L); // line called right

    right.imprint();              // Draw the line called right

    left.imprint();                // Draw the line called left

    tree(L-1, rx-W/4, ry-H/L, H-H/L, W/2); // left subtree

    tree(L-1, rx+W/4, ry-H/L, H-H/L, W/2);// right subtree

  }

}

Drawing The Stylized Tree



Concluding Remarks

• Recursion allows many programs to be expressed very 

compactly

• The idea that the solution of a large problem can be 

obtained from the solution of a similar problem of the 

same type, is very powerful

• Euclid probably used this idea to discover his GCD 

algorithm

• More examples in the book
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