
CS 101:
Computer Programming and

Utilization

Jul-Nov 2016Jul-Nov 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 16: Object-oriented Programming and Lecture 16: Object-oriented Programming and
ClassesClasses

About These Slides

• Based on Chapter 18 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker

Main Recommendations From The
Previous Chapter

• Define a struct to hold information related

to each entity that your program deals with

• Define member functions corresponding to

actions/operations associated with the entity

Outline

• Constructors
• Copy Constructors
• Destructors
• Operator overloading
• Overloading the assignment operator
• Access control
• Classes
• Graphics and input/output classes

 Motivational Example: The Queue
Struct in Taxi Dispatch

const int N=100;

struct queue{

 int elements[N],

 nwaiting,front;

 bool insert(int v){

 …

 }

 book remove(int &v){

 …

 }

};

• Once the queue is
created, we expect it
to be used only
through the member
functions, insert and
remove

• We do not expect
elements, nWaiting,
front to be directly
accessed

Main Program Using Queue
int main(){
 Queue q;
 q.front = q.nWaiting = 0;
 while(true){
 char c; cin >> c;
 if(c == ‘d’){
 int driver; cin >> driver;
 if(!q.insert(driver))
 cout <<“Q is full\n”;
 }
 else if(c == ‘c’){
 int driver;
 if(!q.remove(driver))
 cout <<“No taxi.\n”;
 else cout <<“Assigning <<
 driver<< endl;
 }
}

•Main program does use q through
operations insert and remove

•However, at the beginning, q.front and
q.nWaiting is directly manipulated

•This is against the philosophy of
software packaging

•When we create a queue, we will
always set q.nWaiting and q.front to 0

•C++ provides a way by which the
initialization can be made to happen
automatically, and also such that
programs using Queue do not need to
access the data members directly

•Just defining Queue q; would by itself
set q.nWaiting and q.front to 0!

– Next

Constructor Example

• In C++, the programmer may
define a special member
function called a constructor
which will always be called when
an instance of the struct is
created

• A constructor has the same
name as the struct, and no
return type

• The code inside the constructor
can perform initializations of
members

• When q is created in the main
program, the constructor is
called automatically

struct Queue{

 int elements[N], front,

 nWaiting;

 Queue(){ // constructor

 nWaiting = 0;

 front = 0;

 }

 // other member functions

};

int main(){

 Queue q;

 // no need to set

 // q.nWaiting, q.front

 // to 0.

}

Constructors In General

struct A{

 …

 A(parameters){

 …

 }

};

int main(){

 A a(arguments);

}

• Constructor can take
arguments

• The creation of the object a
in main can be thought of
as happenning in two steps
– Memory is allocated for a

in main
– The constructor is called

on a with the given
arguments

• You can have many
constructors, provided they
have different signatures

Another example: Constructor
for V3

struct V3{
 double x,y,z;
 V3(){
 x = y = z = 0;
 }
 V3(double a){
 x = y = z = a;
 }
};
int main();
 V3 v1(5), v2;
}

• When defining v1, an
argument is given

• So the constructor taking
a single argument is
called. Thus each
component of v1 is set to
5

• When defining v2, no
argument is given. So
the constructor taking no
arguments gets called.
Thus each component of
v2 is set to 0

Remarks

• If and only if you do not define a constructor, will C+
+ define a constructor for you which takes no
arguments, and does nothing
– If you define a constructor taking arguments, you

implicitly tell C++ that you want programmers to
give arguments. So if some programmer does not
give arguments, C++ will flag it as an error

– If you want both kinds of initialization, define both
kinds of constructor

• A constructor that does not take arguments (defined
by you or by C++) is called a default constructor

• If you define an array of struct, each element is
initialized using the default constructor

The Copy Constructor

• Suppose an object is passed by value to a function
– It must be copied to the variable denoted by the

parameter
• Suppose an object is returned by a function

– The value returned must be copied to a
temporary variable in the calling program

• By default the copying operations are implemented
by copying each member of one object to the
corresponding member of the other object
– You can change this default behaviour by

defining a copy constructor

Example

struct Queue{

 int elements[N], nWaiting, front;

 Queue(const Queue &source){ // Copy constructor

 front = source.front;

 nWaiting = source.nWaiting;

 for(int i=front, j=0; j<nWaiting; j++){

 elements[i] = source.elements[i];

 i = (i+1) % N;

 }

};

Copy Constructor in the Example

•The copy constructor must take a single reference
argument: the object which is to be copied
•Note that the argument to the copy constructor
must be a reference, otherwise the copy constructor
will have to be called to copy the argument! This is
will result in an unending recursion
•Member elements are not copied fully. Only the
useful part of it is copied

– More efficient
•More interesting use later

Destructors

• When control goes out of a block in which a

variable is defined, that variable is destroyed

– Memory allocated for that variable is reclaimed

• You may define a destructor function, which will

get executed before the memory is reclaimed

Destructor Example

• If a queue that you have defined goes out of scope,
it will be destroyed

• If the queue contains elements at the time of
destruction, it is likely an error

• So you may want to print a message warning the
user

• It is usually an error to call the destructor explicitly.
It will be called automatically when an object is to
be destroyed. It should not get called twice.

• More interesting uses of the destructor will be
considered in later chapters.

Destructor Example

struct Queue{

 int elements[N], nWaiting, front;

 …

 ~Queue(){ //Destructor

 if(nWaiting>0) cout << “Warning:”

 <<“ non-empty queue being destroyed.”

 << endl;

 }

};

Operator Overloading

• In Mathematics, arithmetic operators are used
with numbers, but also other objects such as
vectors

• Something like this is also possible in C++!

• An expression such as x @ y where @ is any
“infix” operator is considered by C++ to be
equivalent to x.operator@(y) in which operator@
is a member function

• If the member function operator@ is defined,
then that is called to execute x @ y

Example: Arithmetic on V3 objects

struct V3{
 double x, y, z;
 V3(double a, double b, double c){
 x=a; y=b; z=c;
 }
 V3 operator+(V3 v){ // adding two V3s
 return V3(x+b.x, y+b.y, z+b.z); // constructor call
 }
 V3 operator*(double f){ // multiplying a V3 by f
 return V3(x*f, y*f, z*f); // constructor call
 }
};

Using V3 Arithmetic

int main(){

 V3 u(1,2,3), a(4,5,6), s;

 double t=10;

 s = u*t + a*t*t*0.5;

 cout << s.x <<‘ ‘<< s.y <<‘ ‘

 << s.z << endl;

}

Remarks

• Expression involving vectors can be made to look

very much like what you studied in Physics

• Other operators can also be overloaded, including

unary operators (see the book)

• Overload operators only if they have a natural

interpretation for the struct in question

• Otherwise you will confuse the reader of your

program

Overloading The Assignment
Operator

• Normally if you assign one struct to another, each
member of the rhs is copied to the corresponding
member of the lhs

• You can change this behaviour by defining
member function operator= for the struct

• A return type must be defined if you wish to allow
chained assignments, i.e. v1 = v2 = v3; which
means v1 = (v2 = v3);

– The operation must return a reference to the
left hand side object

Example

struct Queue{
 ...
 Queue & operator=(Queue &rhs){
 front = rhs.front;
 nWaiting = rhs.nWaiting;
 for(int i=0; i<nWaiting; i++){
 elements[i] = rhs.elements[i];
 i = (i+1) % N;
 }
 }
};
// only the relevant elements are copied

Access Control

• It is possible to restrict access to members or

member functions of a struct

• Members declared public: no restriction

• Members declared private: Can be accessed only

inside the definition of the struct

• Typical strategy: Declare all data members to be

private, and some subset of function members to

be public

Access Control Example

struct Queue{

private:

 int elements[N], nWaiting, front;

public:

 Queue(){ … }

 bool insert(int v){

 ..

 }

 bool remove(int &v){

 ..

 }

};

Remarks

•public:, private: : access specifiers
•An access specifier applies to all members defined
following it, until another specifier is given
•Thus elements, nWaiting, front are private, while
Queue(), insert, remove are public

Remarks

• The default versions of the constructor, copy
constructor, destructor, assignment operator are
public

• If you specify any of these as private, then they
cannot be invoked outside of the struct definition

• Thus if you make the copy constructor of a struct X
private, then you will get an error if you try to pass a
struct of type X by value

• Thus, as a designer of a struct, you can exercise great
control over how the struct gets used

Classes

•A class is essentially the same as a struct, except:
– Any members/member functions in a struct are

public by default
– Any members/member functions in a class are

private by default

Classes

•Example: a Queue class:

class Queue{

 int elements[N], nWaiting, front;

public:

 Queue(){…}

 bool remove(int &v){…}

 bool insert(int v){…}

};

•Members elements, nWaiting and front will be private.

Header files

• The code that uses a struct/class does not need to
have the bodies of the member functions, but only
their signature

• Analogous to functions, we can have a declaration of
a struct/class which only contains declarations of the
data members and the member functions, i.e. the
body is omitted. Such a declaration can be placed in
a header file

• The user of functions must include the header files
• The bodies are called the implementation and can be

given outside, for which a special syntax is provided
• An example of the syntax is given next, but details

are in the book

Example

struct V3{

 double x,y,z;

 V3(double v){

 x = y = z = v;

 }

 double X(){

 return x;

 }

};

struct V3{

 double x,y,z;

 V3(double v);

 double X();

};

//implementations

V3::V3(double v){

 x = y = z = v;

}

double V3::X(){

 return x;

}

Input Output Classes

• cin, cout : objects of class istream, ostream resp.
predefined in C++

• <<, >> : operators defined for the objects of
these classes

• ifstream: another class like istream
• You create an object of class ifstream and

associate it with a file on your computer
• Now you can read from that file by invoking the

>> operator!
• ofstream: a class like ostream, to be used for

writing to files
• Must include header file <fstream> to uses

ifstream and ofstream

Example of file i/o

#include <fstream>

#include <simplecpp>
int main(){

 ifstream infile(“f1.txt”);
 // constructor call. object infile is created and associated

 // with f1.txt, which must be present in the current directory
 ofstream outfile(“f2.txt”);

 // constructor call. Object outfile is created and associated
 // with f2.txt, which will get created in the current directory

Example of file i/o

 repeat(10){

 int v;

 infile >> v;

 outfile << v;

 }

 // f1.txt must begin with 10 numbers. These will be
read and

 // written to file f2.txt

}

Concluding Remarks
• The notion of a packaged software component is

important.
• Making data members private: hiding the

implementation from the user
• Making some member functions public: providing an

interface using which the object can be used
• Separation of the concerns of the developer and the

user
• Idea similar to what we discussed in connection with

ordinary functions
– The specification of the function must be clearly

written down (analogous to interface)
– The user should not worry about how the function

does its work (analogous to hiding data members)

	CS 101: Computer Programming and Utilization
	About These Slides
	Main Recommendations From The Previous Chapter
	Outline
	Motivational Example: The Queue Struct in Taxi Dispatch
	Main Program Using Queue
	Constructor Example
	Constructors In General
	Another example: Constructor for V3
	Remarks
	The Copy Constructor
	Example
	Copy Constructor in the Example
	Destructors
	Destructor Example
	Slide 16
	Operator Overloading
	Example: Arithmetic on V3 objects
	Using V3 Arithmetic
	Slide 20
	Overloading The Assignment Operator
	Slide 22
	Access Control
	Access Control Example
	Slide 25
	Slide 26
	Classes
	Slide 28
	Header files
	Slide 30
	Input Output Classes
	Example of file i/o
	Slide 33
	Concluding Remarks

