
CS 101:
Computer Programming and

Utilization

JJul ul -- Nov Nov 2016 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 17: Standard LibraryLecture 17: Standard Library

About These Slides

• Based on Chapter 22 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

− First update by Uday Khedker

The Standard Library

• Comes with every C++ distribution
• Contains many functions and classes that you are

likely to need in day to day programming
• The classes have been optimized and debugged

thoroughly
• If you use them, you may be able to write

programs with very little work
• Highly recommended that you use functions and

classes form the standard library whenever
possible

Outline

• The string class

• The template class vector

– Multidimensional vectors

– Sorting a vector

• The template class map

– Iterators

• Remarks

The String Class

• A much more powerful version of the String class

developed in Chapter 21

• More constructors

• Concatenation using +

• Works with >> and <<

• Operations for extracting substrings and finding

one string inside another

Examples

#include <string> // Needed to use the string class
string v = “abcdab”; // constructor
string w(v); // another constructor. w = v
v[2] = v[3]; // indexing allowed. v becomes “abddab”
cout << v.substr(2) << v.substr(1,3) << endl;
 // substring starting at v[2] (“ddab”)
 // Substring starting at v[1] of length 3 (“bdd”)
int i = v.find(“ab”); // find occurrence of “ab” in v
 // and return index
int j = v.find(“ab”,1); // find from index 1
cout << i << “, “ << j << endl; // will print out 0, 4.

Remarks
• If the find member function does not find the

argument in the receiver, then it returns a constant
string::npos, which is a value which cannot be a
valid index
– You can determine whether the argument was

found by checking whether the returned index
equals string::npos

• A string object can be passed by value, in which
case it is copied, or by reference

• More details on the web. Example:http

://www.cplusplus.com/reference/string/

http://www.cplusplus.com/reference/string
http://www.cplusplus.com/reference/stl/%0D

The Template Class Vector

• Friendlier, more versatile version of arrays
• Must include header file <vector> to use it
• You can make vectors of any type by supplying the

type as an argument to the template
• Indexing possible like arrays
• Possible to extend length, or even insert in the

middle
• We will not discuss how the vector class is

implemented, but you should be able to guess that
its member functions would allocate memory and
deallocate it as needed

Examples

#include <vector>// needed

vector<int> v1; //empty vector. Elements will be int

vector<float> v2; //empty vector. Elements will be float

vector<short> v3(10); // vector of length 10.

 // Elements are of type short

vector<char> v4(5,’a’); // 5 elements, all ‘a’

cout << v3.size() << endl; // prints vector length, 10

 // v3.length() is same

v3[6] = 34; // standard indexing

Examples (Contd.)

#include <vector> // needed
...

v3.push_back(22); // append 22 to v3.
 // Length increases
vector<char> w;
w = v5; // element by element
copy
v1.resize(9); // change length to 9
v2.resize(5, 3.3); // length becomes 5, all
 // values become 3.3
vector<string> s; // vector of string
vector<vector<int> > vv; // allowed!

A Technical Remark
• The member function size returns a value of type

size_t
• size_t is an unsigned integer type; it is meant

specially for storing array indices
• When going through array elements, use size_t for

the index variable
vector<double> v(10); // initialize v
for(size_t i; i<v.size(); i++)

 cout << v[i] << endl;
• If i were declared int, then the compiler would warn

about the comparison between i and v.size()
– comparison between signed and unsigned int,

which is tricky as discussed in Section 6.8.
– By declaring i to be size_t, the warning is

suppressed.

Multidimensional Vectors

vector<vector <int> > vv;
// each element of vv is itself a vector of int
// we must supply two indices to get to int
// Hence it is a 2d vector!
// Currently vv is empty
vector<vector <int> > vv1(5, vector<int>(10,23));
// vv1 has 5 elements
// each of which is a vector<int>
// of length 10,
// having initial value 23

Multidimensional Vectors

• Note that the syntax is not new/special

• It is merely repeated use of specifying the length and

initial value:

• vector<type> name(length, value)

• Two dimensional arrays can be accessed by supplying

two indices, i.e. we may write vv1[4][6] and so on

• Write vv1.size() and vv1[0].size() to get number of

rows and columns

Creating A 5x5 Identity Matrix

vector<vector<double>> m(5, vector<double>(5,0));

 // m = 5x5 matrix of 0s

 // elements of m can be accessed

 // by specifying two indices

for(int i=0; i<5; i++)

 m[i][i] = 1;

 // place 1s along the diagonal

Remarks

• The book gives a matrix class which internally

uses vector of vectors

• This class is better than two dimensional arrays

because it can be passed to functions by value or

by reference, with the matrix size being arbitrary

Sorting A Vector

• C++ provides a built-in facility to sort vectors and
also arrays

• You must include <algorithm> to use this

vector<int> v(10);
// somehow initialize v
sort(v.begin(), v.end());

• That’s it! v is sorted in non decreasing order
• begin and end are “iterators” over v. Think of

them as abstract pointers to the beginning and
the end.

Sorting An Array

• The algorithms in header file <algorithm> can
also sort arrays as follows

double a[100];
// somehow initialize a
sort(a, a+100); // sorted!
// second argument is name+length

• More variations in the book

The Map Template Class

• A vector or an array give us an element when we
supply an index
– Index must be an integer

• But sometimes we may want to use indices which
are not integers, but strings
– Given the name of a country, we may want to

find out its population, or its capital
– This can be done using a map

Map: General Form And Examples

• General form:
map<indextype, valuetype> mapname;

• Example:
map<string,double> population;

Indices will have type string (country names),
and elements will have type double (population)

Using A Map

map<string,double> population;

population[“India”] = 1.21;
 // in billions. Map entry created
population[“China”] = 1.35;
population[“USA”] = 0.31;

cout << population[“China”] << endl;
 // will print 1.35

population[“India”] = 1.22;
 //update allowed

Checking if An Index is Defined

string country;
cout << “Give country name: “;
cin >> country;

if(population.count(country)>0)
 // true if element with index = country
 // was stored earlier
 // count is a known member function
 cout << population[country] << endl;
else cout << “Not known.\n”;

Remarks

• A lot goes on behind the scenes to implement a

map

• Basic idea is discussed in Chapter 24 of our book

• If you wish to print all entries stored in a map,

you will need to use iterators, discussed next

Iterators

• A map can be thought of as holding a sequence of

pairs, of the form (index, value)

• For example, the population map can be considered

to be the sequence of pairs

[(“China”,1.35), (“India”,1.21), (“USA”, 0.31)]

• You may wish to access all elements in the map, one

after another, and do something with them

• For this, you can obtain an iterator, which points to

(in an abstract sense) elements of the sequence

Iterators

An iterator points to (in an abstract sense) elements of
the sequence

• An iterator can be initialized to point to the first
element of the sequence

• In general, given an iterator which points to some
element, you can ask if there is any element
following the element, and if so make the iterator
point to the next element

• An iterator for a map<index,value> is an object
with type map<index,value>::iterator

Iterators (contd.)

• An iterator points to elements in the map; each
element is a struct with members first and second

• We can get to the members by using
dereferencing

• Note that this simply means that the
dereferencing operators are defined for iterators

• If many elements are stored in an iterator, they
are arranged in (lexicographically) increasing
order of the key

Example

map<string,double> population;
population[“India”] = 1.21;

map<string,double>::iterator mi;
mi = population.begin();
 // population.begin() : constant iterator
 // points to the first element of population
 // mi points to (India,1.21)
cout << mi->first << endl;
 // will print out India
cout << mi->second << endl;
 // will print out 1.21

Example

map<string,double> population;
population[“India”] = 1.21;
population[“China”] = 1.35;
population[“USA”] = 0.31;
for(map<string,double>::iterator
 mi = population.begin();
 mi != population.end();
 // population.end() : constant iterator
 // marking the end of population
 mi++)
 // ++ just sets mi to point to the
 // next element of the map
 // loop body

Example (Contd.)

map<string,double> population;
population[“India”] = 1.21;
population[“China”] = 1.35;
population[“USA”] = 0.31;
for(map<string,double>::iterator
 mi = population.begin();
 mi != population.end();
 mi++)
{
 cout << mi->first << “: “ << mi->second << endl;
}
// will print out countries and population
// in alphabetical order

Remarks

• Iterators can work with vectors and arrays too
• Iterators can be used to find and delete elements

from maps and vectors.

 map<string,double>::iterator
 mi = population.find("India");
 population.erase(mi);

List

• Implements a classic list data structure

• Supports a dynamic bidirectional linear list

• Unlike a C++ array, the objects the STL list contains

cannot be accessed directly (i.e., by subscript)
• Is defined as a template class, meaning that it can be

customized to hold objects of any type

• Responds like an unsorted list (ie. the order of the list is

not maintained). However, there are functions available

for sorting the list

Populating and Traversing a List

#include <list> // list class library

 ...

 list <int> list1; // create a list object,

 // specifying its content as int

 // the list is empty

for (i=0; i<5; i++)

 list1.push_back (i); // add at the end of the list

...

while (list1.size() > 0)

{ cout << list1.front(); // print the front item

 list1.pop_front(); // discard the front item

}

Sets

• Sets are containers that store unique elements following a

specific order

• The value of the elements in a set cannot be modified once

in the container (the elements are always const), but they

can be inserted or removed from the container

• Internally, the elements in a set are always sorted following

a specific ordering criterion indicated by its internal

comparison object

• We will not study the details of sets

Concluding Remarks

• Standard Library contains other useful classes,
e.g. queue, list, set etc.

• The Standard Library classes use heap memory,
however this happens behind the scenes and you
don’t have to know about it

• The library classes are very useful. Get some
practice with them

• More details on the web. Example:

http://www.cplusplus.com/reference/stl/

http://www.cplusplus.com/reference/stl/%0D

	CS 101: Computer Programming and Utilization
	About These Slides
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	List
	Populating and Traversing a List
	Sets
	Slide 33

